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The method we introduced in 1992 for measuring hardness and elastic modulus by
instrumented indentation techniques has widely been adopted and used in the
characterization of small-scale mechanical behavior. Since its original development, the
method has undergone numerous refinements and changes brought about by
improvements to testing equipment and techniques as well as from advances in our
understanding of the mechanics of elastic–plastic contact. Here, we review our current
understanding of the mechanics governing elastic–plastic indentation as they pertain to
load and depth-sensing indentation testing of monolithic materials and provide an
update of how we now implement the method to make the most accurate mechanical
property measurements. The limitations of the method are also discussed.

I. INTRODUCTION

The method we introduced in 1992 for measuring
hardness and elastic modulus by instrumented indenta-
tion techniques has widely been adopted and used in the
characterization of mechanical behavior of materials at
small scales.1,2 Its attractiveness stems largely from the
fact that mechanical properties can be determined di-
rectly from indentation load and displacement measure-
ments without the need to image the hardness impres-
sion. With high-resolution testing equipment, this facili-
tates the measurement of properties at the micrometer
and nanometer scales.3–5 For this reason, the method has
become a primary technique for determining the me-
chanical properties of thin films and small structural fea-
tures.6–23 Films with characteristic dimensions of the or-
der 1 �m are now routinely measured, and with good
technique, the method can be used to characterize, at
least in a comparative sense, the properties of films as
thin as a few nanometers.

During the past decade, we have made several impor-
tant changes to the method that both improve its accuracy
and extend its realm of application. These changes have
been developed both through experience in testing a
large number of materials and by improvements to test-
ing equipment and techniques. For example, the meas-
urement of contact stiffness by dynamic techniques al-
lows for continuous measurement of properties as a func-
tion of depth and also facilitates more accurate
identification of the point of first surface contact.24 We
have also developed improved methods for calibrating
indenter area functions and load frame compliances.
Thus, the primary purpose of this article is to provide the
reader with an update on how we implement the method
in practice now and the improvements we have made to
it during the past 10 years.

We have also developed a much better understanding
of the contact mechanics on which the method is based,
mostly through finite element simulation.25–36 Thus, a
second objective of the article is to review what we now
know about the mechanics of elastic–plastic contact and
how this impacts the measurement methods. For in-
stance, we now have a much better grasp of the physical
origin of some of the empirical constants needed in the
method,35 and we also have a much better understanding
of the limitations of the method, particularly in materials
that pile-up.25,34,37

a)This author was an editor of this focus issue during the review
and decision stage. For the JMR policy on review and publication
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To keep the article to a reasonable length, we have
intentionally limited its focus to the behavior of mono-
lithic materials that can be described as a semi-infinite,
elastic–plastic half spaces. There are, of course, impor-
tant issues that must be addressed when applying the
method to thin films to account for the influences of the
substrate. In fact, much of the recent literature on load
and depth-sensing indentation testing deals with this sub-
ject, and there are numerous important unresolved issues
remaining to be explored.11–23 We also limit the dis-
cussion to materials in which there are no time-
dependent deformation mechanisms such as creep or vis-
coelasticity. Here, too, there are important issues under
investigation.38–42

To set the stage, we begin with a brief review of the
method as it was originally developed. This is then fol-
lowed by a discussion of advances in our understanding
of the contact problem and then details of the method as
we now use and apply it.

II. THE METHOD

A. Basic principles

The method was developed to measure the hardness
and elastic modulus of a material from indentation load–
displacement data obtained during one cycle of loading
and unloading. Although it was originally intended for
application with sharp, geometrically self-similar indent-
ers like the Berkovich triangular pyramid, we have since
realized that it is much more general than this and applies

to a variety of axisymmetric indenter geometries includ-
ing the sphere. A discussion of why the method works for
spherical indentation is given at the end of this section.

A schematic representation of a typical data set ob-
tained with a Berkovich indenter is presented in Fig. 1,
where the parameter P designates the load and h the
displacement relative to the initial undeformed surface.
For modeling purposes, deformation during loading is
assumed to be both elastic and plastic in nature as the
permanent hardness impression forms. During unload-
ing, it is assumed that only the elastic displacements are
recovered; it is the elastic nature of the unloading curve
that facilitates the analysis. For this reason, the method
does not apply to materials in which plasticity reverses
during unloading. However, finite element simulations
have shown that reverse plastic deformation is usually
negligible.35

There are three important quantities that must be
measured from the P–h curves: the maximum load, Pmax,
the maximum displacement, hmax, and the elastic unload-
ing stiffness, S � dP/dh, defined as the slope of the
upper portion of the unloading curve during the initial
stages of unloading (also called the contact stiffness).
The accuracy of hardness and modulus measurement de-
pends inherently on how well these parameters can be
measured experimentally. Another important quantity is
the final depth, hf, the permanent depth of penetration
after the indenter is fully unloaded.

The analysis used to determine the hardness, H, and
elastic modulus, E, is essentially an extension of the
method proposed by Doerner and Nix43 that accounts for
the fact that unloading curves are distinctly curved in a
manner that cannot be accounted for by the flat punch
approximation. In the flat punch approximation used by
Doerner and Nix, the contact area remains constant as the
indenter is withdrawn, and the resulting unloading curve
is linear. In contrast, experiments have shown that un-
loading curves are distinctly curved and usually well ap-
proximated by the power law relation:

P = ��h − hf�
m , (1)

where � and m are power law fitting constants.1 Table I
summarizes the values of the constants observed in our

TABLE I. Values of parameters characterizing unloading curves as
observed in nanoindentation experiments with a Berkovich indenter.a

Material
�

(mN/nmm) m
Correlation

coefficient, R

Aluminum 0.265 1.38 0.999938
Soda-lime glass 0.0279 1.37 0.999997
Sapphire 0.0435 1.47 0.999998
Fused silica 0.0500 1.25 0.999997
Tungsten 0.141 1.51 0.999986
Silica 0.0215 1.43 0.999985

aData from Ref. 1.
FIG. 1. Schematic illustration of indentation load–displacement data
showing important measured parameters (after Ref. 1).
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original experiments.1 The variation of the power law
exponents in the range 1.2 � m � 1.6 demonstrates not
only that the flat punch approximation is inadequate
(m � 1 for the flat punch), but also that the indenter
appears to behave more like a paraboloid of revolution,
for which m � 1.5.44 This result was somewhat surpris-
ing because the axisymmetric equivalent of the Berko-
vich indenter is a cone, for which m � 2. This discrep-
ancy has since been explained by the concept of an
“effective indenter shape,” which will be discussed in
Sec. III. A.35,36

The exact procedure used to measure H and E is based
on the unloading processes shown schematically in
Fig. 2, in which it is assumed that the behavior of the
Berkovich indenter can be modeled by a conical indenter
with a half-included angle, �, that gives the same depth-
to-area relationship, � � 70.3°. The basic assumption is
that the contact periphery sinks in in a manner that can be
described by models for indentation of a flat elastic half-
space by rigid punches of simple geometry.44–48 This
assumption limits the applicability of the method because
it does not account for the pile-up of material at the
contact periphery that occurs in some elastic–plastic ma-
terials. Assuming, however, that pile-up is negligible, the
elastic models show that the amount of sink-in, hs, is
given by:

hs = �
Pmax

S
, (2)

where � is a constant that depends on the geometry of the
indenter. Important values are: � � 0.72 for a conical
punch, � � 0.75 for a paraboloid of revolution (which
approximates to a sphere at small depths), and � � 1.00
for a flat punch.44 Based on the empirical observation
that the unloading curves are best approximated by an
indenter that behaves like a paraboloid of revolution
(m � 1.5), the value � � 0.75 was recommended and
has since become the standard value used for analysis.
Recent analytical work has provided a more complete
picture of why � takes on this value.35,49 This is also
addressed in Sec. III. A.

Using Eq. (2) to approximate the vertical displacement
of the contact periphery, it follows from the geometry of

Fig. 2 that the depth along which contact is made be-
tween the indenter and the specimen, hc � hmax − hs, is:

hc = hmax − �
Pmax

S
. (3)

Letting F(d) be an “area function” that describes the
projected (or cross sectional) area of the indenter at a
distance d back from its tip, the contact area A is then

A = F�hc� . (4)

The area function, also sometimes called the indenter
shape function, must carefully be calibrated by indepen-
dent measurements so that deviations from nonideal in-
denter geometry are taken into account. These deviations
can be quite severe near the tip of the Berkovich indenter,
where some rounding inevitably occurs during the grind-
ing process. Although a basic procedure for determining
the area function was presented as part of the original
method, we have made significant changes to it in recent
years. A complete description of the process we now use
in its place is presented in Sec. IV.

Once the contact area is determined, the hardness is
estimated from:

H =
Pmax

A
. (5)

Note that because this definition of hardness is based on
the contact area under load, it may deviate from the tra-
ditional hardness measured from the area of the residual
hardness impression if there is significant elastic recov-
ery during unloading. However, this is generally impor-
tant only in materials with extremely small values of
E/H.25

Measurement of the elastic modulus follows from its
relationship to contact area and the measured unloading
stiffness through the relation

S = �
2

��
Eeff �A , (6)

where Eeff is the effective elastic modulus defined by

1

Eeff
=

1 − �2

E
+

1 − �i
2

Ei
. (7)

The effective elastic modulus takes into account the fact
that elastic displacements occur in both the specimen,
with Young’s modulus E and Poisson’s ratio �, and the
indenter, with elastic constants Ei and �i. Note that
Eq. (6) is a very general relation that applies to any
axisymmetric indenter.2,50 It is not limited to a specific
simple geometry, even though it is often associated with
flat punch indentation. Although originally derived for
elastic contact only,2 it has subsequently been shown to
apply equally well to elastic–plastic contact50 and that

FIG. 2. Schematic illustration of the unloading process showing pa-
rameters characterizing the contact geometry (after Ref. 1).
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small perturbations from pure axisymmetry geometry do
not effect it either.51 It is also unaffected by pile-up and
sink-in.

In the original method for measuring hardness and
modulus, the dimensionless parameter � was taken as
unity. Traditionally, � has been used to account for de-
viations in stiffness caused by the lack of axial symmetry
for pyramidal indenters. However, it has been shown that
even for indentation of an elastic half-space by axisym-
metric rigid cone, � can deviate significantly from
unity.26 In this work, we therefore choose to redefine �
to account for any and all physical processes that may
affect the constant in Eq. (6). In Sec. III. E, other values
for � that may be important in precise measurements will
be considered along with the physical nature of their
origins.

B. Application to spherical indentation

Although we have discussed the method primarily as it
pertains to indentation with a sharp Berkovich or conical
indenter, it is not generally recognized that the method
applies equally well to a sphere and can be used without
modification to determine the hardness and modulus
from spherical indentation. To demonstrate this, it is use-
ful to consider the contact depth for spherical indentation
determined by means of Eq. (3) when applied to Hertzian
elastic contact by a spherical indenter of radius R1

pressed into a spherical hole of radius R2 that represents
the hardness impression. Note that Hertzian contact
analysis is restricted to the condition that the depth of
penetration is small relative to the radius of the sphere.
Letting R � (1/R1 +1/R2)−1, the load–displacement re-
lation is52,53

P = 4⁄3�REeff�h − hf�
3�2 . (8)

The depth that appears in this relation is h − hf rather than
h because the displacements are for the elastic unloading
curve only (Fig. 1). The stiffness during unloading is
then found by differentiating this expression with respect
to h, or

S =
dP

dh
= 2�REeff�h − hf�

1�2 . (9)

Letting h � hmax to evaluate the expressions at the
maximum depth and noting that � for a sphere is 0.75,
substituting Eqs. (8) and (9) into Eq. (3) yields

hc =
hmax + hf

2
, (10)

or the contact depth determined from the method is sim-
ply the average of the final and maximum depths. This is
precisely the value recommended by Field and Swain in
their method for analyzing load and depth-sensing data
obtained with spherical indenters.54,55 The contact area
and hardness determined by the two methods will thus be

the same as will be the elastic modulus because Eq. (6)
applies to any indenter geometry. Note that hardnesses
measured with a spherical indenter are not necessarily the
same as those for the Berkovich.

III. ADVANCES IN UNDERSTANDING

Although the method has extensively been used and
verified for numerous materials, certain aspects of it have
always been of concern to us, either because the physical
processes were not completely understood or because
some of the constants needed to apply it were empirically
derived. In particular, we have always been interested in
understanding: (i) why unloading curves are well de-
scribed by the power law relation of Eq. (1); (ii) why the
power law exponent in Eq. (1) falls roughly in the range
1.2 � m � 1.6 rather than taking on the value m � 2 as
would be expected for a conical indenter; and (iii) why
the best value for the geometric parameter � is about
0.75. Moreover, from a more fundamental standpoint, it
was not entirely clear to us how the elastic contact solu-
tions used to derive Eqs. (3) and (6) could be used to
model accurately the elastic unloading process as they
apply to the indentation of a flat elastic half-space,
whereas the real problem involves a half space whose
surface has severely been distorted by the formation of a
hardness impression. These questions have been an-
swered through the concept of an “effective indenter
shape.”35,36

A. The effective indenter shape

The ideas underlying the effective indenter shape are
outlined in Fig. 3. The basic principles are derived from
observations gleaned from finite element simulations of
indentation of elastic–plastic materials by a rigid conical
indenter with a half included angle of 70.3°.35 During the
initial loading of the indenter [Fig. 3(a)], both elastic and
plastic deformation processes occur, and the indenter
conforms perfectly to the shape of the hardness impres-

FIG. 3. Concepts used to understand and define the effective indenter
shape (from Ref. 35).
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sion. However, during unloading [Fig. 3(b)], elastic re-
covery causes the hardness impression to change its
shape. A key observation is that the unloaded shape is not
perfectly conical, but exhibits a subtle convex curvature
that has been exaggerated in Fig. 3(b) for the purposes of
illustration. The importance of the curvature is that as the
indenter is elastically reloaded [Fig. 3(c)], the contact
area increases gradually and continuously until full load
is again achieved, a process which must be the reverse of
what happens during unloading because both processes
are elastic. It is this continuous change in contact area
that produces the nonlinear unloading curves. Further-
more, the relevant elastic contact problem is not that of
conical indenter on a flat surface, but a conical indenter
pressed into a surface that has been distorted by the for-
mation of the hardness impression.

Experimental evidence for the curvature in the un-
loaded hardness impressions is given in Fig. 4, where
topographical images of a Berkovich indentation in fused
silica are presented. The images were obtained by scan-
ning the specimen laterally under the indenter tip with a
very light load applied to the indenter to keep it in con-
tact. The three-dimensional (3D) image in Fig. 4(a)

clearly shows the curvature of the indentation faces as
does the cross section in Fig. 4(b).

The mathematical form of the unloading curve can be
understood by introducing an “effective indenter shape.”
As shown in the lower portion of Fig. 3, the shape of the
effective indenter is that which produces the same nor-
mal surface displacements on a flat surface that would be
produced by the conical indenter on the unloaded, de-
formed surface of the hardness impression. As such, the
shape is described by a function z � u(r), where u(r) is
the distance between the conical indenter and the un-
loaded deformed surface and r is the radial distance from
the center of contact. Thus, provided the shape of the
deformed surface is known, the function u(r) can be
found and the effective indenter can be constructed. Fi-
nite element simulations have verified that constructing
the effective indenter in this way provides an accurate
representation of the unloading data.35,36 Although the
exact shape of the effective indenter depends in compli-
cated ways on the elastic and plastic deformation char-
acteristics of the material, it always has a smooth,
rounded profile at its tip. The reason for this is that the
slope of the unloaded hardness impression at its center
exactly matches the slope of the conical indenter (i.e., the
two surfaces conform perfectly at the tip of the indenter).
Thus, the plastic deformation producing the hardness im-
pression has the interesting effect of removing the elastic
singularity at the tip of the indenter. Finite element stud-
ies have also shown that the effective indenter shape is
well approximated by the power-law relation

z = Brn , (11)
where B is a fitting constant and the exponent n varies in
the range 2–6 depending on the material properties.35

The lower end of this range corresponds to an indenter
with the shape of a paraboloid of revolution, thus ex-
plaining why indentation with a rigid cone is more like
that of a paraboloid of revolution or a sphere.

One can also use the effective shape concept to un-
derstand why unloading curves are well described by the
power-law relation of Eq. (1) with power-law exponents
m in the range 1.2–1.6. Sneddon44 has shown that for
indentation of an elastic half-space by an axisymmetric
rigid indenter described by the power-law relation of
Eq. (11), the load–displacement relation is

P =
2Eeff

���B�1�n� n

n + 1��	�n�2 + 1�2�

	�n�2 + 1� �1�n

h1+1�n ,

(12)
where 	 is the factorial or “gamma” function. Compari-
son with Eq. (1) shows that

m = 1 + 1�n . (13)
Thus, given that n values range from 2–6, one would

expect ms in the range 1.2–1.5, in accordance with the
experimental observations in Table I.

FIG. 4. Topographic image of a Berkovich indentation in fused silica
obtained using a quantitative imaging system that uses the indenter
itself as the imaging tip: (a) complete 3D image showing the curvature
of the faces; (b) cross section through an edge and the opposing face
with straight lines included to accentuate the curvature.
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From a more fundamental standpoint, the shape of the
effective indenter can be estimated by making simple
assumptions about the distribution of pressure under the
indenter. As schematically illustrated in the lower portion
of Fig. 3, the pressure that develops during initial loading
is determined by complex elastic and plastic deformation
processes that are generally not amenable to closed-form
analysis. However, during unloading, the pressure de-
creases by elastic processes only, and the shape of the
hardness impression changes to produce the curved sur-
face. Upon reloading, this pressure distribution must be
recovered by elastic processes only. Thus, the pressure
distribution at peak load serves to link the elastic–plastic
processes during initial loading to the elastic processes
during unloading and reloading. In this context, the shape
of the effective indenter must be that which produces this
same pressure distribution by elastic deformation of flat
elastic half-space.

To implement these ideas, one must have some knowl-
edge of what the actual pressure distribution is. Finite
element simulations of conical indentation of elastic–
plastic materials have shown that to a first approxima-
tion, the pressure is roughly uniform.35 This occurs be-
cause plasticity tends to diminish the effects of the elastic
singularity at the tip of the cone and more evenly dis-
tribute the pressure. Assuming, then, a perfectly flat pres-
sure distribution, elastic contact theory gives the effec-
tive indenter shape as

z�r� =
4pamax

�Eeff
��

2
− E�r�amax�� , (14)

where p is the pressure, amax is the radius of the contact
circle at peak load, and E(r/amax) is the complete elliptic
integral of the second kind evaluated at r/amax.35,53

Curve-fitting procedures show that this shape is very
well approximated by the power-law relation:35

z�r� = 0.548
4pamax

�Eeff
�r�amax�2.61 . (15)

Note that this equation is exactly of the form of
Eq. (11) with n � 2.61, for which the corresponding
value of m according to Eq. (13) is m � 1.38. Thus, to
the extent that the pressure distribution is constant, there
is a simple explanation for why the effective indenter
behaves more like a paraboloid of revolution (with n �
2.61) than a cone and why unloading curves obtained
with conical indenters can be described by power-law
relations like Eq. (1) with m ≈ 1.38.

The effective shape concept can also be used to de-
velop an equation that describes the entire unloading
curve in terms of fundamental material properties. Com-
bining Eqs. (11), (12), and (15) and noting that the pres-
sure p is equivalent to the hardness, H, the unloading
curve is given by

P

Pmax
= 0.858� Eeff

�PmaxH
�h − hf��1.38

, (16)

which compares relatively well to experimental data.35

Note that although the concepts discussed here were de-
veloped specifically for conical indentation, they prob-
ably apply to other indenter geometries as well, as plas-
ticity has the effect of flattening the pressure distribution.
Thus, one might expect unloading curves for spherical
and other indenters to be well approximated by this same
equation.

Lastly, the effective indenter shape concept is also
valuable in the way it provides a physically justifiable
procedure for determining the value of the geometric
parameter � needed for accurate measurement of H and
E.35,49 Using Sneddon’s method for determining the sur-
face displacement at the contact perimeter for indentation
with a rigid punch with profile given by Eq. (11) in
conjunction with Eq. (2) yields35:

� = m�1 −
2	� m

2�m − 1��
��	� 1

2�m − 1��
�m − 1�� . (17)

This relation is plotted in Fig. 5. Note that over the
range of expected ms (m � 1.2 to 1.6), � varies only
mildly between 0.74 and 0.79 with an average value of
0.76. Thus, the value typically used in experiment, � �
0.75, is a reasonable estimate, although one could easily
rationalize slightly different values. Alternatively, a bet-
ter, more self-consistent approach would be to measure
experimentally the exponent m from the unloading curve
and then use Eq. (17) to determine the relevant value
of �. This could easily be implemented in experiment.

FIG. 5. The relation between � and m given by Eq. (17) (from Ref. 35).
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B. Errors due to pile-up for conical and
Berkovich indenters

As noted in our discussion of Eq. (2), one significant
problem with the method is that it does not account for
pile-up of material around the contact impression, as is
observed in many elastic–plastic materials. When pile-up
occurs, the contact area is greater than that predicted by
the method, and both the hardness estimated from Eq. (5)
and the modulus from Eq. (6) are overestimated, some-
times by as much as 50%.25 This inability to deal with
pile-up is a direct consequence of using an elastic contact
analysis to determine the contact depth. Because materi-
als deformed elastically always sink-in, pile-up cannot
properly be modeled.

The types of materials and conditions for which pile-
up is most likely to occur have been examined by finite
element simulation.25 The fundamental material proper-
ties affecting pile-up are the ratio of the effective modu-
lus to the yield stress, Eeff/
y, and the work-hardening
behavior. In general, pile-up is greatest in materials with
large Eeff/
y and little or no capacity for work hardening
(i.e., “soft” metals that have been cold-worked prior to
indentation). The ability to work harden inhibits pile-up
because as material at the surface adjacent to the indenter
hardens during deformation, it constrains the upward
flow of material to the surface.

Results of finite element studies that illustrate the in-
fluence of material parameters on pile-up and sink-in are
presented in Fig. 6,25 which shows contact profiles under
load for indentation by a 70.3° rigid cone. The materials
examined all had a Young’s modulus E � 70 GPa and
Poisson’s ratio � � 0.25, but the yield stresses were
systematically varied between 
y � 0.114 GPa and

y � 26.62 GPa to examine different plastic behaviors.
Two separate cases of work hardening were considered:
one with no work hardening, that is, a work-hardening
rate � � d
/d� � 0, (an elastic–perfectly plastic mate-
rial) and the other with a linear work-hardening rate � �
10
y. These yield strengths and work-hardening rates
cover a wide range of metals and ceramics.

In the course of the study, it was found that there is a
convenient, experimentally measurable parameter that
can be used to identify the expected indentation behavior
of a given material.25 The parameter is the ratio of final
indentation depth, hf, to the depth of the indentation at
peak load, hmax. The ratio hf/hmax can be extracted easily
from the unloading curve in a nanoindentation experi-
ment. Furthermore, because conical and Berkovich in-
denters have self-similar geometries, hf/hmax does not
depend on the depth of indentation. The natural limits for
the parameter are 0 � hf/hmax � 1. The lower limit
corresponds to fully elastic deformation and the upper
limit to rigid–plastic behavior. A similar approach based
on the ratio of the slopes of the loading and unloading

curves, a quantity that can be measured continuously
during loading by dynamic stiffness measurement, has
also been developed.56

The results in Fig. 6 show that the amount of pile-up or
sink-in depends on hf/hmax and the work-hardening be-
havior. Specifically, pile-up is large only when hf/hmax is
close to 1 and the degree of work hardening is small. It
should also be noted that when hf/hmax < 0.7, very little
pile-up is observed no matter what the work-hardening
behavior of the material.

These observations are particularly important when
considered in relation to the contact areas shown in
Fig. 7. This figure includes two separate measures of the
contact area: one obtained by direct examination of the
contact profiles in the finite element mesh, Atrue, and the
other by applying Eqs. (3) and (4) to the simulated in-
dentation load–displacement data to obtain the area de-
duced from the data analysis method, Aexpt. To general-
ize, each area has been normalized with respect to Aaf,
the area given by the indenter area function evaluated at
the maximum indentation depth, hmax. Since Aaf is the
area that would occur in the absence of pile-up or

FIG. 6. Finite element simulation of contact profiles under load for
conical indentation of (a) non-work-hardening materials and (b) linear
work-hardening materials with work-hardening rate � � 10 
y (after
Ref. 25).
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sink-in, values of A/Aaf greater than 1 indicate pile-up,
whereas values less than 1 indicate sink-in. From this
figure it is seen that the data analysis method, because it
is based on an elastic analysis, significantly underesti-
mates the true contact area for materials in which pile-up
is important. Furthermore, when hf/hmax > 0.7, the accu-
racy of the method depends on the amount of work hard-
ening in the material. If the material is elastic–perfectly
plastic, the method underestimates the contact area by as
much as 50%. On the other hand, contact areas for ma-
terials that work harden are predicted very well by the
method.

Note that from an experimental point of view, it is not
possible to predict if a material work hardens based
solely on the load–displacement data. Therefore, in an
indentation experiment, care must be exercised when
hf/hmax > 0.7, as use of the method can lead to large
errors in the contact area. On the other hand, when the
pile-up is small (i.e., hf/hmax < 0.7), the contact areas
given by the method match very well with the true con-
tact areas obtained from the finite element analyses, in-
dependent of the work-hardening characteristics. Be-
cause the hardness of the material is given by H � P/A,
errors in the contact area will lead to similar errors in the
hardness, and according to Eq. (6), the modulus will be in
error by a factor that scales as √A.

As a practical matter, if there is suspicion that pile-up
may be important based on the value of hf/hmax and/or
other independent knowledge of the properties of the
material, indentations should be imaged to examine the
extent of the pile-up and establish the true area of con-
tact. For Berkovich indenters, indentations with a large
amount of pile-up can be identified by the distinct
bowing out at the edges of the contact impression.57 If
pile-up is large, accurate measurements of H and E can-
not be obtained using the contact area deduced from the

load–displacement data; rather, the area measured from
the image should be used to compute H and E from
Eqs. (5) and (6).

C. Correcting for pile-up

Developing a method that can be used to correct for
pile-up in a manner that does not involve imaging the
contact impression has been one of the “holy grails” of
instrumented indentation research. The basic problem in
achieving this goal is that the amount of pile-up and
sink-in depends on the work-hardening characteristics of
the material, so without some independent knowledge of
the work-hardening behavior, one does not know what
correction to apply.

A good example of work in this area is that of Cheng
and Cheng,29–31 who used finite element simulations of a
wide variety of elastic–plastic materials with different
work-hardening behaviors to examine pile-up during in-
dentation with a 68° cone (68° is the centerline-to-face
angle for a Vickers indenter; although a 70.3° cone is
more representative of Berkovich indentation, the basic
results of this work are still relevant). The method they
proposed to account for pile-up is based on the work of
indentation,31 which can be measured from the areas un-
der indentation loading and unloading curves. Letting
Wtot be the total work of indentation (the area under the
loading curve) and Wu the work recovered during un-
loading (the area under the unloading curve), they found
that the ratio of the irreversible work to the total work,
(Wtot − Wu)/Wtot, appears to be a unique function of
Eeff/�, independent of the work-hardening behavior.31

Although their results are presented only in graphical
form, the relation can be approximated as:

Wtot − Wu

Wtot
≅ 1 − 5

H

Eeff
. (18)

Combining Eqs. (5) and (6) and taking � � 1 leads to
another equation involving H and Eeff:

4

�

Pmax

S2 =
H

Eeff
2 . (19)

Because Wtot, Wu, Pmax, and S are all measurable from
load–displacement data, Eqs. (18) and (19) represent two
independent relations that can be solved for H and Eeff in
a manner that does not directly involve the contact area.
However, the contact area could be computed from the
derived value of H by means of Eq. (5). Presumably, this
area would be the true area including the effects of
pile-up.

To the best of our knowledge, this method has never
been tested experimentally. One potential problem is that
although pile-up is large and potentially an issue only
when Eeff/H and Eeff/
y are relatively large (Fig. 6) (i.e.,

FIG. 7. Dependence of normalized contact areas on the experimental
parameter hf/hmax. The areas are normalized with respect to Aaf, the
area given by the area function of the indenter assuming no pile-up or
sink-in (after Ref. 25).
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in soft metals), close inspection of the data used to derive
Eq. (18) shows that (Wtot − Wu)/Wtot may not be entirely
independent of the work-hardening behavior in this re-
gime. If this is the case, then the method suffers from
exactly the same problem as others, that is, one must
have an independent knowledge of the work-hardening
behavior to apply the corrections. Further experimental
examination of this issue is warranted.

D. Pile-up for spherical indenters

We would also like to comment briefly on the issue of
pile-up during spherical indentation, as the method can
be applied to this important indenter geometry as well.
Spherical indentation differs from conical or pyramidal
indentation in that there is no elastic singularity at the tip
of the indenter to produce large stresses. As a conse-
quence, deformation at small loads and displacements is
entirely elastic and then transitions to plastic as the in-
denter is driven further into the material. This feature of
spherical indentation is what allows stress–strain curves
to be approximated from indentation data using the
classical approach of Tabor.58 Field and Swain54,55 have
applied Tabor’s approach to instrumented indentation
and have developed a method that uses the indenta-
tion load–displacement data to approximate the stress–
strain curve and the work-hardening exponent. The ap-
proach requires that the deformation be “fully plastic”;
that is, beyond the transition from elastically dominated
to plastic-dominated deformation. Also, it is assumed
that in the fully plastic regime, the pile-up geometry is
uniquely related to material deformation parameters.

A point we would like to make is that the pile-up
geometry can change considerably during the course of
spherical indentation and it is therefore not possible to
predict the pile-up based on the mechanical properties of
the material alone, even when “fully plastic” deformation
is achieved. The results of a recent finite element study
help to elucidate how the pile-up changes with the depth
of penetration.34 Figure 8 shows the pile-up profiles for
an elastic–perfectly plastic material with E/
y � 200,
which is fairly typical for a metal. To present the profiles
on a single set of axes, the z coordinates have been nor-
malized with respect to the depth, h, the r coordinates
with respect to the contact radius, a, and the depth of
penetration h with respect to the radius of the indenter, R.
The pile-up and sink-in behavior are conveniently char-
acterized by the parameter s/h, where s is the height of
the contact periphery relative to the undeformed surface
(s/h < 0 for sink-in and s/h > 0 for pile-up).

At small depths, the material deforms only elastically,
with the indentation profile corresponding to that of
Hertzian contact with sink-in at the contact periphery
such that s/h � −0.5. First yielding occurs at h/R ≈ 1.4 ×
10−4 and a mean pressure pm ≈ 1.1
y in a region on the
axis of symmetry below the surface at z ≈ 0.5a, also in

accordance with Hertzian contact theory.52,53 As the load
on the indenter is increased, the plastic zone grows and
spreads upward, and the sink-in diminishes. At h/R of
about 0.08, material begins to pile-up, and with further
penetration, the pile-up grows larger. It should be noted,
however, that an upper limiting value for s/h was not
reached in the simulations, even at the maximum depth
of penetration, h/R � 0.34, corresponding to a/R � 0.75.
This is significant because it shows that the pile-up ge-
ometry can continue to change even up to contact radii in
excess of 0.75R, a value near the upper end of most
indentation experiments. Thus, unlike the constraint fac-
tor, pm /
y, which plateaus at an upper value of approxi-
mately 3 at the onset of the “fully plastic” deformation
regime,33,34 pile-up can continue to grow well after full
plasticity is achieved. Therefore, it does not follow that
just because the constraint factor has become constant
that the pile-up geometry can also be assumed to be
constant. This ever-changing nature of the pile-up geom-
etry should carefully be considered when interpreting
results from spherical indentation experiments in mate-
rials with a tendency to pile-up.

E. The correction factor �

The correction factor � appearing in Eq. (6) plays a
very important role when accurate property measure-
ments are desired. This constant affects not only the elas-
tic modulus calculated from the contact stiffness by
means of Eq. (6), but the hardness as well because pro-
cedures for determining the indenter area function are

FIG. 8. Finite element simulation of normalized contact profiles under
load for spherical indentation of an elastic–perfectly-plastic material
with E/
y � 200 showing the influence of the normalized penetration
depth, h/R, on the pile-up/sink-in behavior (after Ref. 34).
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also based on Eq. (6), and area functions can be in error
if the wrong value of � is used (area function calibration
methods are addressed in Sec. IV). Thus, without a good
working knowledge of �, one is limited in the accuracy
that can be achieved in the measurement of both H and E.

For the case of small deformation of an elastic material
by a rigid axisymmetric punch of smooth profile, � is
exactly 1 (note that small deformation is achieved only if
the half-included angle of the indenter � is close to 90°).
However, because real indentation experiments are con-
ducted with non-axisymmetric indenters and involve
large strains, other values for � may be more appropriate.
Here, we review the factors that affect � for Berkovich
indentation and attempt to draw some conclusions
concerning what value is best. The complex nature of
elastic–plastic deformation with pyramidal indenters
makes this a very difficult exercise with results that are
not entirely satisfying.

The importance of correcting Eq. (6) was first recog-
nized by King,59 who used numerical methods to explore
how noncircular geometries effect the elastic contact
stiffness of materials tested with rigid, flat-ended
punches. He found that that � � 1.012 for a square-
based indenter and � � 1.034 for a triangular punch. The
latter value has widely been adopted for instrumented
indentation testing with a Berkovich indenter (a triangu-
lar pyramid). Vlassak and Nix later conducted indepen-
dent numerical calculations for the flat-ended triangular
punch using a more precise method and found a higher
value, � � 1.058.60 Hendricks, noting that the pressure
distribution for elastic deformation by a flat punch is not
representative of the real elastic–plastic problem,
adopted another approach to estimate �.61 Assuming the
pressure profile is perfectly flat, he used simple elastic
analysis procedures to show that � � 1.0055 for a Vick-
ers indenter (square-based pyramid) and � � 1.0226 for
the Berkovich.

Finite element simulations have also been used to
evaluate � and explore the factors that influence
it.25,26,29,30,32 Finite element simulations have the advan-
tage of including the effects of plasticity, but are subject
to inaccuracies caused by inadequate meshing and con-
vergence. Larson et al.32 conducted full 3D finite element
calculations of true Berkovich indentation for a purely
elastic material and for four different elastic–plastic ma-
terials that simulate the behavior of aluminum alloys. For
the purely elastic material, they found that � is slightly
dependent on Poisson’s ratio, �, through the relation

� = 1.2304 �1 − 0.21� − 0.01�2 − 0.41�3� . (20)
Assuming � � 0.3, this gives � � 1.14. Note, how-

ever, that this solution applies to indentation of a flat,
elastic half-space and thus inherently ignores the fact that
plasticity severely distorts the surface during the forma-
tion of the hardness impression. Because of this, one

might expect better results from the elastic–plastic simu-
lations because they account for plasticity. For the four
elastic–plastic materials examined, the value � � 1.034
suggested by King was found to work well, producing
errors of no more than 6.5% in the contact area and
hardness.

Recent studies have shown that even for perfectly elas-
tic contact by a rigid cone, � may deviate from unity due
to departures from the small strain approximation. Hay
et al.26 used both finite element simulation and analytical
techniques to examine indentation of an elastic half-
space by a rigid conical indenter. They showed that the
derivation used to obtain Eq. (6) with � � 1 is not
strictly valid for the conical indenter geometry because it
improperly accounts for radial material displacements in
the region of contact (note: Hay et al. originally desig-
nated this correction factor as ). They developed an
approximate correction for the effect that gives

� = �

��

4
+ 0.1548 cot �

�1 − 2��

4�1 − ���
��

2
− 0.8312 cot �

�1 − 2��

4�1 − ���2 , (21)

where � is the half included angle of the indenter. For
� � 0.3 and � �70.3°, this expression gives � � 1.067.
Although these observations provide physical insight
into another important reason why � should be greater
than unity, it is not clear that values derived from
Eq. (21) are particularly meaningful as they apply only to
a flat elastic half-space. However, the results do point out
that there may be a dependence of � on the cone angle,
with smaller cone angles giving greater �s.

A thorough finite element study of elastic–plastic in-
dentation with a 68° cone has been conducted by Cheng
and Cheng.29,30 Their calculations encompassed a wide
range of materials characterized by different E/
y ratios,
Poisson’s ratios, �, and work-hardening exponents, n.
The results are reported in two separate publications.29,30

The first, which focuses on nonhardening materials, finds
that � � 1.05, independent of E/
y and �.30 In the sec-
ond, both hardening and nonhardening materials are con-
sidered, and it is reported that � � 1.085, independent of
E/
y and n.29 Note that there is a slight inconsistency in
the two papers in that the non-work-hardening results in
the second paper give a different value of � from those in
the first. Therefore, which of these results is better, if
either, is not clear. We have conducted similar finite
element simulations ourselves for a 70.3° cone25 and find
that � ≅ 1.07 for most materials, but may rise to higher
values in materials with large E/
y. Also, � could be
slightly higher in materials that work harden.

The wide range of �s reported in these studies makes
it difficult to settle in on a single preferred value. What
can be concluded, however, is that there are valid reasons
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to expect that � for the Berkovich indenter should be
slightly greater than unity. The deviation from circular
cross-section appears to play an important role, as does
the fact that the original analysis from which Eq. (6) was
derived ignores the radial displacements of the surface
for a conical indenter. If we discard the values derived
from elastic analyses of flat half-spaces, which do not
consider the formation of the hardness impression, the
remaining values fall in the range 1.0226 � � � 1.085.
Thus, � � 1.05 is probably as good a choice as any, with
a potential for error of approximately ±0.05. Carefully
performed experiments and 3D finite element simula-
tions that take care to assure good convergence and ac-
curacy could help to resolve this issue.

IV. REFINEMENTS TO THE METHOD

A. Difficulties with the original method

The ease of use of the method in a well-calibrated
testing system has proven to be one of its great advan-
tages. On the other hand, the method we originally pro-
posed for calibrating the load frame compliance, Cf, and
the area function of the indenter has proven to be cum-
bersome and sometimes difficult to implement. We have
thus worked over the last several years to develop a
simpler, more accurate calibration procedure.

System calibrations are generally based on the relation

C = Cf +
��

2Eeff

1

�A
, (22)

which simply states that the total measured compliance,
C (i.e., the inverse of the measured stiffness), is the sum
of the compliance of the load frame (the first term) and
the contact (the second term); that is, the two act like
springs in series. This assumes that the load frame com-
pliance is a constant independent of load. If Cf is known,
the area function can then be determined from measure-
ments of compliance as a function of depth. Alterna-
tively, if the area function is known, the load frame com-
pliance can be determined as the intercept of a plot of C
versus A−1/2. To determine these quantities simulta-
neously, we originally suggested an iterative procedure
in which simple assumptions are made about the starting
values of Cf and the area function. Under certain circum-
stances, however, problems are encountered with this
procedure.

At shallow depths, corresponding to small contact ar-
eas at the beginning of an indentation experiment, the
contact compliance is high and dominates the total meas-
ured compliance (Eq. 22). However, as the contact depth
(and area) increases, the contact compliance decreases,
and at some point, the load frame compliance becomes
the more dominant factor. Hence, for measurements at

large depths, the load frame compliance must be known
with great accuracy. The situation is reverse for the area
function. The macroscopic shape of the indenter at large
depths can be controlled very precisely during its manu-
facture. The uncertainty in the area function is due to
difficulties in producing a perfectly sharp tip, which are
most important at small depths.

If the load frame compliance is low and the tip is
relatively sharp, there is an intermediate depth range in
which uncertainties in Cf and the area function are in-
consequential. In this case, the iterative process for de-
termining the area function and load frame compliance
converges after a few cycles, and our original calibration
method works well, albeit through a fairly tedious cal-
culation process. However, if the tip is not sharp or the
load frame compliance is high, the iterative process con-
verges very slowly and sometimes does not converge to
a unique solution. Noise in the data compounds this prob-
lem. The method we have developed to circumvent these
problems is detailed in Sec. IV. E.

B. The indenter area function

One aspect of the original method that has produced a
great deal of confusion concerns the mathematical form
of the area function. The form we originally proposed
was

A = �
n=0

8

Cn�hc�
2−n

= C0h2 + C1h + C2h1�2 + C3h1�4 + … + C8h1�128 ,
(23)

where C0 . . . C8 are constants determined by curve-
fitting procedures. We wish to make it perfectly clear
here that this function was selected strictly for its ability
to fit data over a wide range of depths and not because it
has any physical significance. This being said, the equa-
tion is, in fact, quite convenient in describing a number of
important indenter geometries. A perfect pyramid or
cone is represented by the first term alone. The second
term describes a paraboloid of revolution, which approxi-
mates to a sphere at small penetration depths, and a per-
fect sphere of radius R is described by the first two terms
with C0 � −� and C1 � 2�R.57 The first two terms also
describe a hyperboloid of revolution, a very reasonable
shape for a tip-rounded cone or pyramid that approaches
a fixed angle at large distances from the tip. One other
form with physical significance is that suggested by Lou-
bet et al.,62 which describes a pyramid with a small flat
region on its tip, the so-called tip defect. This geometry
is described by the addition of a constant to the first two
terms in Eq. (23). In each case, the experimentally de-
termined constants can be compared with the appropriate
geometric description to verify the geometry. The higher
order terms in Eq. (23) are generally useful in describing
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deviations from perfect geometry near the indenter tip
and give the experimenter some flexibility in developing
an area function that is accurate over several orders of
magnitude in depth.

One other important aspect of the area function is the
depth range over which it is to be used. There are a
number of choices that can be made during the curve-
fitting process that affect the applicable range of the
function. If the function is to be applied at depths greater
than the data used to construct it, one must be concerned
about how the function extrapolates. By assigning the
constant C0 associated with the quadratic term to a value
determined by the face angles of the pyramid and re-
stricting the remaining constants to positive values, the
resulting function will approach the description of the
perfect pyramid at large depths and have no local
maxima or minima. This forces the results to be reason-
able at all depths. The alternative is to allow all of the
parameters to be fit and weight the fitting process to the
particular depth range of interest. This procedure often
yields a function that fits the specified data better than the
first approach, but such functions may be highly inaccu-
rate outside the depth range used to construct them. This
approach may be preferable when the function is to be
used for repetitive measurements; for instance, in quality
control applications. Each of these approaches is dem-
onstrated in Sec. IV. E.

C. Load divided by stiffness squared, P/S2

One of the most important improvements to the cali-
bration procedures is based on an observation originally
reported by Joslin and Oliver that the ratio of the load to
the stiffness squared, P/S2, is a directly measurable ex-
perimental parameter that is independent of the penetra-
tion depth or contact area provided the hardness and
elastic modulus do not vary with depth.63 In a manner
similar to Eq. (19), this follows by combining Eqs. (5)
and (6) to obtain

P

S2 =
�

�2��2

H

E2 . (24)

The utility of the parameter stems from its indepen-
dence of the contact area. Joslin and Oliver took advan-
tage of this to evaluate comparatively the mechanical
properties of materials in which surface roughness led to
uncertainties in the contact area. The area-independence
of P/S2 also makes it valuable in the determination of
load frame compliances. Stone et al.64 have developed
one such procedure, and the procedure we describe
shortly is also based on this principle. The basic idea is
that since P/S2 is not influenced by the area, the machine
compliance can be determined in a manner that does
require a priori knowledge of the area function. This

decouples the measurement of load frame compliance
from the area function and eliminates the need for an
iterative procedure.

Another useful feature of P/S2 is that it does not
depend on the pile-up or sink-in behavior. Hence, if
the modulus of the material is known, Eq. (24) can
be used to calculate accurately the hardness, even when
there is significant pile-up. Conversely, if the hardness
is known (e.g., by direct measurement of the contact
area), then the modulus can be determined. Unfortu-
nately, this expression does not allow one to calculate the
effect of pile-up on both the hardness and the modulus
simultaneously, unless, perhaps, the method proposed by
Cheng and Cheng is proven to be experimentally viable31

(Sec. III. C).
Several other useful applications of P/S2 as a charac-

terizing parameter have been recognized in experimental
studies. Saha and Nix have shown that Eq. (24) is accu-
rate for even films on substrates provided the modulus of
the film and substrate are similar.20 With a known modu-
lus, this facilitates the measurement of film hardness in a
manner that fully accounts for pile-up, which can be
quite large in many film–substrate systems.14 In a similar
manner, Page et al.22 have shown that P/S2 can directly
be correlated to the tribological performance of coated
systems.

D. Continuous stiffness measurement

Improvements to measurement and calibration proce-
dures have also been facilitated by advances in testing
techniques and apparatus. One of the most important of
these is the “continuous stiffness measurement” tech-
nique (CSM), in which stiffness is measured continu-
ously during the loading of the indenter by imposing a
small dynamic oscillation on the force (or displacement)
signal and measuring the amplitude and phase of the
corresponding displacement (or force) signal by means
of a frequency-specific amplifier.1,24,65,66 As this tech-
nique has matured over the last 10 years, it has dramati-
cally reduced our reliance on unloading curves and offers
several distinct advantages. First, it has the clear advan-
tage of providing continuous results as a function of
depth. Second, the time required for calibration and test-
ing procedures is dramatically reduced because there is
no need for multiple indentations or unloadings. Third, at
high frequencies, CSM allows one to avoid some of the
complicating effects of time-dependent plasticity and
thermal drift, which caused so much consternation in our
original calibration method. Fourth, the CSM technique
allows one to measure the effects of stiffness changes as
well as damping changes at the point of initial contact.
This facilitates an important new technique for precisely
identifying the point of initial contact of the indenter with
the sample.
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Defining the point of initial contact is the critical start-
ing point in the analysis of almost all instrumented in-
dentation data. The resolution in the load and displace-
ment signals as well as the data acquisition rates clearly
affect how well one can determine the location of the
surface. However, it is also important to be able to re-
solve and detect near-surface forces, as these often have
an important bearing on the interpretation of the surface
location. Even in the simple case of sharp Berkovich
diamond contact with the surface of fused silica tested in
laboratory air, there is at least one important surface
force—water meniscus formation. Another important
surface effect is adhesion between the tip and the sample.
Because of these, techniques that use preloads or back-
extrapolation of the data to determine the point of initial
contact can be misleading. The approach we prefer is to
observe the entire mechanical response of the system
before, during, and after the point of initial contact and
identify the point of contact by examining the overall
observed behavior. As shown in the next section, infor-
mation gleaned from CSM measurements has proven in-
valuable in this regard and has helped significantly in
identifying the point of first surface contact.

E. Refined measurement and
calibration procedures

The procedure we now use to calibrate the machine
compliance and indenter area function for a Berkovich
indenter is based on indentation of fused silica using
continuous stiffness measurement. Fused silica is chosen
for many reasons, one of the most important being that it
does not pile-up because of its small E/H value. Here, we
detail the procedure as we apply it to measurements with
the Nano Indenter XP (MTS Systems Corp., Knoxville,
TN). During continuous stiffness measurement with this
instrument, several parameters can be controlled and
measured. These include the harmonic load (the ampli-
tude of the oscillation in the load signal), the harmonic
displacement (the amplitude of the oscillation in the dis-
placement signal), the harmonic frequency (the fre-
quency of the oscillation), the phase angle (the angular
phase shift between the load and displacement oscilla-
tions), and the harmonic stiffness (which is derived from
the other quantities).1,65,66 The Nanoindenter XP is in-
herently a force-controlled device, but methods have
been developed to keep the harmonic displacement con-
stant by means of feedback control.

The basic experiment begins with a slow approach to
the surface to identify carefully the point of first contact
based on measurements of load, displacement, and stiff-
ness. The surface approach velocity is 10 nm/s, with a
3-nm oscillation in the harmonic displacement at a fre-
quency of 80 Hz. Clearly, a small displacement oscilla-
tion is desirable to avoid effects on the total measured

displacement, but larger oscillations improve the signal-
to-noise ratio. A 3-nm oscillation was found to be an
appropriate compromise for fused silica. Once the sur-
face is detected, the indenter is loaded at a constant value
of (dP/dt)/P � 0.3 (the loading rate divided by the load),
which has the advantage of logarithmically scaling the
data density so that there is just as much data at low loads
as high. Constant (dP/dt)/P tests also have the advantage
of producing a constant indentation strain rate, (dh/dt)/h,
provided the hardness is not a function of the depth.42

For the first 400 nm of displacement, the harmonic dis-
placement is kept constant by feedback control at 3 nm.
However, when the displacement reaches 400 nm, the
experiment is paused for 10 s during which the harmonic
displacement is increased and stabilized at 8 nm to re-
duce the noise levels in subsequent measurements (Note:
The interruption and increase in harmonic displacement
has advantages in hard materials like fused silica, but
may lead to measurement inaccuracies in soft materials
like aluminum). The loading is then continued until the
maximum load is achieved (approximately 630 mN), af-
ter which the indenter is unloaded at a constant loading
rate dP/dt � 19 mN/s to 10% of the maximum load.
After holding for 200 s to establish the thermal drift rate
for correction of the displacement data using the tech-
nique described in the original method, the indenter is
completely unloaded. During the experiment, the load on
the sample, the displacement into the surface, the har-
monic load, the harmonic displacement, and the phase
angle are all measured at a data acquisition rate of 5 Hz.
For the results reported here, the experiment was re-
peated 10 times for statistical averaging.

We also generated images of the residual hardness
impressions used in the calibration experiments to com-
pare the areas deduced from the indentation data to the
actual contact areas. To do this, the indenter was raster
scanned across the indented area at 2 �m/s at a small load
P � 5 �N to produce a fully quantitative topographic
image of the deformed surface with a resolution of 512 ×
256 pixels. The scanning was accomplished by a mono-
lithic, piezoelectrically driven nanopositioning stage with
100 × 100 �m of travel and feedback control based on
capacitive displacement sensors. The resolution, accu-
racy, linearity, flatness of travel, and settling time for the
stage are 2 nm, 2 nm, 10 nm, and 2 �s, respectively. The
resulting images, shown in Figs. 4 and 9, do not suffer
from the distortion typically associated with conven-
tional scanning probe microscopy.

A typical load versus displacement curve for the cali-
bration experiment is shown in Fig. 10. The curve, which
has been corrected for thermal drift, exhibits parabolic
loading and power-law unloading. Note that neither the
pause during loading to increase the harmonic displace-
ment amplitude nor the pause during unloading to meas-
ure the thermal drift are apparent in the curves, thus
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demonstrating that these interruptions do not influence
the data. The stiffnesses measured by CSM during load-
ing are shown in Fig. 11. Here again, the brief pause at
400 nm is not evident.

Figure 12 shows a plot of load versus displacement
enlarged to examine the region of first contact. Figures
13 and 14 are the corresponding behavior for the har-
monic displacement and phase angle, respectively. In all
three cases, there is a clear change in behavior corre-
sponding to contact with the surface. Note, however, that
the change is smooth and continuous rather than abrupt,
resulting in some uncertainty in defining the point of first
contact. In contrast, the data in Fig. 15 shows that the
harmonic stiffness rises rapidly when contact is achieved,
thereby providing the best estimate of the surface loca-
tion. The effects of a very thin adsorbed layer (most
likely water) are also apparent; meniscus formation re-
sults in a measurable reduction in stiffness just prior to
contact. What actually constitutes the point of first con-
tact is debatable when such effects occur; however, it can
certainly be identified to within ±2 nm.

Although the harmonic stiffness is the preferred loca-
tor of the surface in this particular situation, it should be
noted that which of the measurements in Figs. 12–15
provides the best surface definition depends on the prop-
erties of the material and the characteristics of the testing
system. The resonant frequency of the testing system is
particularly important (12 Hz for the system used here).
As the stiffness of the contact increases, the resonant
frequency of the combined instrument and contact
sweeps toward higher values. The exact nature of the
changes observed in the dynamic measurements in
Figs. 13–15 then depends on whether the system moves
toward resonance (as in our experiments) or away from it
as contact is made. In fact, it is because the system moves
toward and through resonance that the harmonic dis-
placement in Fig. 13 actually increases rather than de-
creasing when contact is made. Often, the most sensitive
frequency for surface detection is the resonant frequency
of the testing system just prior to contact; however, this
is generally also the frequency at which the system is
most vulnerable to noise (vibration, and so forth).

FIG. 9. An indentation in fused silica made by raster scanning with a
nanopositioning stage. Data obtained from this indentation were used
to calibrate the load frame compliance and area function. (a) The
image on the left shows the borders defining the two contact areas
discussed in the text. (b) The image on the right is included for clarity.

FIG. 10. Typical load versus displacement curve for a calibration
experiment in fused silica.

FIG. 11. A typical stiffness versus displacement curve for the cali-
bration experiment. Stiffnesses were determined using the continuous
stiffness measurement technique.

FIG. 12. An expanded view of the load versus displacement curve at
the point of contact.
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Once the point of contact is determined, the data can
directly be analyzed to determine the load frame compli-
ance. The procedure we now prefer is based on a plot of
P/S2 versus indenter displacement like that shown in

Fig. 16. Note that S in this plot represents the stiffness of
the contact. To determine S, the component due to the
load frame must first be removed (Eq. 22). The basic
principle for the load frame compliance measurement is
that at depths greater than a few hundred nanometers
where the hardness and modulus of fused silica should be
independent of depth, P/S2 should also be constant ac-
cording to Eq. (24). The proper load frame compliance is
then found by changing the value of Cf until one is found
that produces a flat P/S2 versus h curve at large depths. It
is not necessary to know the area function to implement
this procedure, so an iterative process is not required.

The data at shallow depths must be ignored in this
procedure because there can be, and usually is, a real
variation in the measured hardness due to the tip imper-
fection. Tip blunting results in lower mean pressures be-
cause the contact behaves more like a spherical indenter
on a flat surface, for which the mean contact pressure
falls to zero at zero depth. This is a real change in the
mean pressure and not an artifact of an inaccurate area
function. As the load increases from zero, the contact will
at first be elastic; however, at some depth plasticity be-
gins, and at a still larger depth, full plasticity is estab-
lished. At very large depths, geometric similarity of the
Berkovich pyramid together with the homogeneous prop-
erties of fused silica assure that the mean pressure (or
hardness) remains essentially constant as the depth in-
creases. These effects are evident in Fig. 16 as the rise in
P/S2 over the approximately first 500 nm of displace-
ment. The extent of the effect depends on the condition
of the indenter. For severely worn tips, the region of
nonconstant H and P/S2 can extend to much greater
depths.

In Fig. 17, we demonstrate the load frame compliance
measurement procedure for three different assumed val-
ues of Cf. The correct value, Cf � 9.62 × 10−8 m/N,
results in a flat curve for the data between 1000 nm and
2300 nm where the tip rounding is unimportant. How-
ever, increasing or decreasing Cf by as little as 20%

FIG. 13. An expanded view of the harmonic displacement amplitude
versus displacement curve at the point of contact.

FIG. 14. An expanded view of the phase angle versus displacement
curve at the point of contact.

FIG. 15. An expanded view of the harmonic stiffness versus displace-
ment curve at the point of contact. Note the minimum observed prior
to full contact and the steep rise in stiffness at the point of contact.

FIG. 16. A typical load over stiffness squared versus displacement for
the calibration experiment. Note the constant value beyond 1000 nm.

W.C. Oliver et al.: Measurement of hardness and elastic modulus by instrumented indentation

J. Mater. Res., Vol. 19, No. 1, Jan 2004 17



results in a rising or falling curve. From experience, we
have found that the proper value of P/S2 for fused silica
is 0.0015 ± 0.0001 GPa−1. This parameter is quite sen-
sitive to errors in the calibration of load, displacement,
and load frame compliance. Hence, the state of the sys-
tem calibration can quickly be assessed by checking this
parameter.

The value of load frame compliance measured in this
way is applicable to any indentation experiment for
which the contact stiffness does not significantly exceed
the largest stiffness used in the measurements. Note,
however, that the region of applicability cannot be
judged through the depth of the indentation or the load on
the indenter; it must be assessed using the stiffness of the
contact.

With the load frame compliance established and the
measured stiffnesses corrected to remove the load frame
contribution from the displacements, the load–
displacement–stiffness data can be used to deduce the
indenter area function in a fairly straightforward manner.
The procedure begins using Eq. (3) with � � 0.75 to
determine the contact depths corresponding to each data
point on the loading curve. The corresponding contact
areas can be generated in two different ways. If the face
angles of the indenter have precisely been measured, as
we now do routinely, then the constant C0 in the lead
term in the area function can be estimated from the per-
fect pyramidal geometry. Provided the indenter is rela-
tively sharp, the first term will dominate the area function
at large depths and can be used to determine the large-
depth contact area. By means of Eq. (6), the quantity
�Eeff at the largest depth can then be computed from the
stiffness and contact area using

�Eeff =
��

2

S

�A
, (25)

which in turn can be used to generate the contact areas at
all depths from the measured stiffnesses according to

A =
�

4

S2

��Eeff�
2 . (26)

The area function is then determined by fitting the A
versus hc data to the form of Eq. (23).

Alternatively, if the indenter is not sharp or the face
angles have not been measured, an assumed value for �
and Eeff for fused silica can be used in Eq. (26) to gen-
erate the areas. For fused silica, we normally use E �
72.0 GPa and � � 0.17, which in conjunction with the
elastic constants for diamond (E � 1141 GPa; � � 0.07)
gives Eeff � 69.6 GPa. For �, we most often use � �
1.034, although based on the discussion in Sec. III. E, we
may now reconsider this choice. A spherical indenter
could also be calibrated in this way.

For the experimental data presented here (Figs. 10 and
11), the first approach was taken to determine the area
function. A back-reflection laser goniometer was used to
measure the face angles to within 0.025°, giving C0 �
24.212. In precision work, this must be modified if the
indenter is not aligned with its axis perfectly perpendicu-
lar to the specimen surface, as such misalignments in-
crease the area at a given contact depth. The degree of tilt
can be assessed from measurements of the sides of the
hardness impression if a good image is available. A
simple but effective method is based on the ratio of the
long to short side of the hardness impression. Figure 18
shows how the contact area at a given depth depends on
this ratio when the indenter is tilted slightly toward an
edge or a face. Other tilt directions lie in-between the two

FIG. 17 Load over stiffness squared versus displacement for three
different values for the load frame stiffness. The curve with the correct
load frame stiffness is flat at large depths.

FIG. 18. The change in the projected area of contact for a tilted
Berkovich indenter versus the ratio of the lengths of the longest to the
shortest side.
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curves, and the equation shown in the figure is an ap-
proximation based on the average. From the image in
Fig. 9, the ratio of the lengths of the sides is 1.14, re-
sulting in a 2% increase in the contact area and a cor-
rected lead term of C0 � 24.65. With this value, the area
calculated at the largest depth is 67.0 ± 0.3 �m2, based
on an average of 10 measurements.

It is instructive to compare the calculated areas at the
peak depth with those measured from images of the re-
sidual contact impressions. In Fig. 9(a), the inner white
line traced around the hardness impression encloses ex-
actly the predicted area of 67.0 �m2. Although there is
some ambiguity as to where the true edge of the contact
is, it is clear that the predicted area is very close to that
in the image. The outer white line in Fig. 9(a) is the
triangle defined by the corners of the hardness impres-
sion. The enclosed corner-to-corner area is considerably
larger, about 97.5 �m2, indicating that one must be care-
ful to account properly for the bowing in or out of the
contact edges in the measurement of contact areas.

To complete the area function calibration procedure,
the other coefficients in Eq. (23) must be determined by
curve-fitting the A versus hc data. If the area function is
intended for use over a wide range of depth (e.g., 10–
1500 nm), it is useful to fix the lead term C0 using the
aforementioned procedures based on the face angles of
the indenter and restrict the rest of the coefficients to
positive values. Fixing the lead term in this way assures
that the area function accurately extrapolates at depths
larger than those used in the calibration, and forcing the
other terms positive assures a smooth area function. For
the experimental data in Figs. 10 and 11, the coefficients
for the area function derived in this way are C0 � 24.65,
C1 � 202.7, C2 � 0.03363, C3 � 0.9318, C4 �
0.02827, C5 � 0.03716, C6 � 1.763, C7 � 0.04102, and
C8 � 1.881. The errors resulting from the fit are shown
in Fig. 19, where the fractional difference between the
experimentally measured area and that predicted by the
area function are plotted as a function of the contact
depth. For depths greater than 200 nm, the area function

predictions are well within 1% of the correct values. At
smaller depths, the error increases to as much as 4%. This
can be improved using the second approach for finding
the area function, limiting the range over which the func-
tion is fit, and placing no restrictions on the coefficients
used in the fitting procedures. Letting the depth range
be 10–500 nm, the area function derived in this way as-
suming Eeff � 69.6 GPa has coefficients C0 �
24.261849693995, C1 � 388.715478479561, C2 �
−937.723180561482, C3 � 251.535343527613, C4 �
451.330970778406, C5 � 219.019554856779, C6 �
−157.740285820129, C7 � −98.1240614964975, and
C8 � −72.6226884095761. More significant digits must
be included because the mix of positive and negative
coefficients can produce significant round-off errors.
Figure 20 shows that this function works well over the
contact depth range 10–500 nm, but it should not be used
at larger or smaller depths. In practice, one should care-
fully assess the experimental depth range of interest and
tailor the area function around it.

Finally, the results obtained here give us an opportu-
nity to comment on the value of �. In deriving the area
function by the first method, a value of �Eeff � 69.5 ±
0.14 GPa was obtained by means of Eq. (25). Assum-
ing that Eeff for fused silica indented by diamond is
69.64 GPa, then � � 0.998 ± 0.002. Hence, these experi-
ments suggest that � is unity for all practical purposes,
although the experimental uncertainty is about ±5%.
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FIG. 19. Difference between the areas predicted by the area function
and the data used to obtain the fit. This area function can be used at
large depths.

FIG. 20. Difference between the areas predicted by the area function
and the data used to obtain the fit. This area function works well at
small depths but not at large.
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