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ABSTRACT

A simplified procedure is described for computation of equivalent potential temperature which remains
valid in situations such as in the tropics where a term which is omitted in the derivation of the conventional
formula can lead to an error of several degrees absolute. The procedure involves new empirical formulas
which are introduced for the saturated vapor pressure of water, the lifting condensation level temperature
and the equivalent potential temperature. Errors are estimated for each of these, and results are compared
with those obtained by the similar, but more complicated procedures of Betts and Dugan (1973) and

Simpson (1978).

1. Introduction

- The equivalent potential temperature (also known
as pseudo-equivalent potential temperature) will be
taken, as in Holton (1972), to be the final temperature
0z which a parcel of air attains when it is lifted dry
adiabatically to its lifting condensation level, then
pseudo-wet adiabatically (with respect to water
saturation) to a great height (dropping out condensed
water as it is formed), then finally brought down
dry adiabatically to 1000 mb.

The first two processes are examined by Simpson
(1978), the first by Betts and Miller (1975) and the
second by Betts and Dugan (1973), hereafter referred
to as SS, BM and BD, respectively. SS shows that
a term normally neglected in the pseudo-adiabatic
ascent can lead to errors ofup to 3 K in the computed
value of 6; which would, for instance, result in a
significant underestimate of the height to which
penetrative convection can reach. Both SS and BD
give approximate empirical formulas for correcting
this error. .

In this paper the formulas of SS and BD are
examined and compared with simpler empirical
formulas which are proposed, and which are found
to permit a better fit to values computed by numeri-
cal integration. Estimates are made of the errors
introduced at each of the stages for attaining the
equivalent potential temperature, including the
final dry adiabatic descent.

It should be noted that the definition of equivalent
potential temperature given above is not the only
possible one, since account could have been taken
of heat retained by condensed water, and of latent
heat of ice formation, which can affect the value by
several degrees, as shown in Saunders (1957). In-
clusion of these effects, however, would require a

0027-0644/80/071046-08$06.00 )
© 1980 American Meteorological Society

detailed study of cloud microphysics, which is
beyond the scope of this paper and, therefore, they
have been omitted in keeping with common practice.

2. Constants and empirical formulas

Based on List (1951), using the conversion 1 IT
cal = 4.18684 J where necessary to convert to SI
units, the following constants and empirical formu-
las will be used as giving best values for the tempera-
ture range —35°C < T =< 35°C, and pressure range
200 mb < p < 1000 mb. For some constants, the
error over this range is negligible; for the specific
heats, however, there is an appreciable variation
with temperature and pressure, and maximum errors
are estimated. '

a. Temperature

Absolute temperature: Tx =T + 273.15, )}

where T is the temperature in degrees Celsius. For
all temperatures apart from the above, a capital
subscript will be used to denote absolute, a small
subscript Celsius; e.g., for the lifting condensation
level temperature, T, = T, + 273.15.
b. Dry air
Gas constant:

R, = 287.04 J kg1 K.
Specific heat at constant pressure:

Cpa = 1005.7 = 2.5 J kg™ K1,

Kg = —R—d- = 0.2854 + 0.0007.
Cpd .
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c. Water
Specific heat:

Co = 4190 £ 30 J kg~ K™t (for T = 0°C only).
Latent heat of vaporization: -

L, = (2.501 — 0.00237 T) x 10°J kg™. (2)

d. Water vapor
Gas constant:
R, = 461.50 J kg™' K1,
Specific heat at constant pressure:
Cop = 1875 = 25T kgt K1,
- Ry

€ =

= 0.6220.

v

e. Potential temperature for moist air

An unsaturated parcel moving adiabatically
satisfies

eon 5 1 R, P g, )
Tk p
where
Rn =~ Ra(1 + 0.608 x 1072 7), @
Com = Cpa(p, Ty)[1 + 0.887 x 1073 r], (&)

the latter being obtained as the best fit to the tabu-
lated data of List (1951); r here is the mixing ratio
(expressed in g kg™1).

Potential temperature 6 is defined as the tempera-
ture an unsaturated parcel would attain if taken
adiabatically to 1000 mb. Taking account of the vari-
ation of c,, with pressure and temperature, ¢ may
be found approximately by the iterative formula

1000 ) [Ralcpd(5, TN 1~0.28X 10-37)

0=TK(
p

6

\

where c,q is evaluated at p = (1000 + p), Ty
= 12(0 + Tx) in order to minimize error. Setting ¢4
to its value at 1000 mb, 0°C gives

1000 0.2854(1-0.28X10-37)
6= TK( )

p

with an error of up to 0.2 K from neglecting
variation of ¢pq. )

f. Saturated vapor pressure of water

BM and SS both make use of the formula of
Tetens (1930) in which the saturated vapor pressure
(mb) of water is given by
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es(T) = 6.11 X 1Q7-5THT+237.3) (8)

As remarked by Murray (1967), this is acceptable for
most meteorological purposes, except when extreme
accuracy is required at low temperatures where, for
example, there is a 2% error at T = —30°C, as
compared with the value obtained using the formu-
lation of Goff and Gratch (1946). In what follows,
unfortunately, an accuracy of better than 0.5% is
necessary at low temperatures in order that the
lifting condensation level temperature, found by in-
verting the formula for e,(7T), may be sufficiently
accurately determined. A modified formula has
therefore been derived, based on values obtained
using the more recent formula of Wexler (1976).
According to Wexler, the saturated vapor pressure
_(mb) of water for 0°C < T < 100°C s given to better
than 0.005% by

6
Ine; = Y g Tk? + g7 InTy,
i=0
where the coefficients g; take the following values:

go = —2.9912729 x 103, g, = 1.7838301 x 10~°

)

g1 = —6.0170128 x 103, g; = —8.4150417 x 10~
g: = 1.887643854 x 10!, g¢ = 4.4412543 x 1073
g3 = —2.8354721 x 1072, g, = 2.858487 x 10°,

The following formula was fitted to Wexler’s results,
extrapolated for T < 0°C, to an accuracy of 0.1% for
—-30°C =T = 35°C:

" 17.67T )
T +2435)

For T < 0°C, owing to the lack of accurate experi-
mental data, there is some uncertainty about the
validity of extrapolating Wexler’s formula. The
values of List (1951), obtained by extrapolating the
formula of Goff and Gratch (1946) were therefore
also taken into account, and the formula fits both
sets of data to 0.3% for —35°C < T = 35°C.
Inverting (10) gives

243.5 Ine, — 440.8
19.48 — Ine,

which gives temperatures accurate to 0.03°C for
this range. :

A similar empirical formula is required for
TiV*ee(T). Taking 1/k; = 3.504, the following
formula fits Wexler’s data to 0.2% for —30°C < T
=< 35°C, and fits both Wexler’s and List’s data to
'0.4% for —35°C < T =< 35°C:

es(T)

le Kd

e, (T) = 6.112 exp( (10)

, an

12.992 T

= 1.7743 x 10°® exp(————
T + 217.8

). (12)

Inverting this gives temperatures accurate to 0.05°C.
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TABLE 1. Saturated vapor pressure of water calculated from
Wexler's formula (9), and percentage errors 8;, 8; and & in
Tetens’ formula (8), and in (10) and (12), respectively.

ei(T)
T°C (mb) LA Oz 8y
~40 0.1905 ~3.2 -0.47 ~0.91
~-30 0.5106 ~1.7 -0.05 -0.07
-20 1.2563 ~0.77 0.09 0.20
~10 2.8657 ~0.26 0.07 0.15
0 6.1121 -0.03 -0.00 ~0.00
10 12.279 0.04 -0.06 —0.14
20 23.385 0.02 —0.07 —-0.16
30 42.452 —0.02 0.01 —-0.01
40 73.813 -0.05 0.18 0.34

Table 1 gives values of saturated vapor pressure
obtained using Wexler’s formula (9), and the per-
centage errors obtained when Tetens’ (1930) formula
(8) and the new formulas (10) and (12) are compared
with Wexler’s values. The superiority of (10) over
Tetens’ formula for T < 0°C can be clearly seen,
while for T > 0°C, the loss in accuracy is un-
important.

3.' The lifting condensation level

The first stage in computing the equivalent poten-
tial temperature of a parcel of air is to find the

temperature T, which it would attain if lifted ad1—~

abatically to its condensation level.
By eliminating z from the equations

' daT, . —8Tp? dTy- _ 8
dz

dz €L, (Tp)Tk

for the lapse rate of dew point and the dry adiabatic
lapse rate, respectively, and integrating making use
of (2), it can be shown that T, is given by

Lo 1266 x 103ln(TL)
TL TD TD

(13)

Cpd

= 0.514 x 103 ln<ﬂ-). (14)
Tp

This, however, can only be solved iteratively for
T,. By approximating the T, and T, dependence
by rational functions, a direct formula may be
obtained '

T, = + 56, (15)

1 + In(T/Tp)
T, ~ 56 800

where temperatures are all absolute. This gives
agreement with (14) to within a tenth of a degree and
is therefore adequate. :

However, since subsequent work makes use of the

mixing ratio r, it is more convenient (rather than.
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working in terms of the dew point) to derive a
formula directly which uses mixing ratio, or rather,
water vapor pressure e, related to it by
, or
€et+r

I
622 + r

The starting point in deriving such a formula is
the relationship

) TL es(TL) Ka(1—0.28X10-37)
Pl

which follows from conservation of potential
temperature. SS uses this relationship to derive an
implicit formula for T, which, making use of (10)

instead of Tetens’ formula and taking natural logs
rather than logs to base 10 as in SS, gives

1ﬂ(6.112) + In(Tx/T})
e 0.2854(1 — 0.28 x 103 r)
+ 17.67(T, — 273.15)
T, — 29.65

Such a formula involves the inconvenience of
solving iteratively for T, so a direct formula will
be derived instead, and will be shown to be equally
accurate.

Eq. (17) may be rewritten

e(T,)) _ e Tk
Ty T ("—

Making use of (12) and taking logarithms gives
12992 T, _

T, + 217.8 -

e =

(16)

, (17)
e

=0. (18)

(19)

)o.zsx 10-37/kq

In(1.7743 x 107%) +

— 3.504 InTy + 0.981 x 10~ r ln(—?f-) (20)

L

(writing T; on the left since temperature here is in
°C). Now, since r is never greater than 40 g kg™!,
the last term on the right is considerably smaller than
Ine, and will be neglected (whereas SS includes it).
Hence, with slight adjustment of the coefficients,
T, = ‘ 2840 + 55.
3.5InTx — Ine — 4.805
An equally straightforward formula, which makes
use of percentage relative humidity U can be derived
in a similar way:

€3]

1
T, = + 55.
1 In(U/100)

Tx — 55 2840
The main errors in (21) and (22) are those which

arise from the empirical formula (12), and those from
neglecting r and the variation of ¢, (and hence k;) in

22
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TaBLE. 2. Lifting condensation level temperature T, found using the modified Simpson formula (18), and eITOrS €, €, € and ¢, in
the original Simpson formula, and in the approximate formulas (15), (21) and (22), respectively.

T U p T,

C) (%) (mb) ()] € € € €4
20 75 1000 14.383 -0.003 0.000 ~0.006 0.008
20 75 700 14.381 —-0.003 0.001 -0.004 0.009

-20 75 1000 & 500 -23.903 0.037 -0.001 -0.027 0.004
20 . 25 1000 —4.797 0.039 -0.015 ~0.016 -0.004
20 25 700 —-4.799 0.039 ~0.013 -0.013 -0.002

-20 25 1000 & 500 -37.522 0.188 0.008 0.020 0.047

(17); these are less than 0.05 K, 0.03 K and 0.03 K
respectively, so it can be concluded that (21) and
(22) determine T, correct to 0.1 K.

Table 2 gives values (°C) of T, as calculated by the
modified version (18) of the formula of SS. The errors
for the original formula of SS and for (15), (21) and
(22) are also given, the dew-point temperature for
(15) being found using (11). In Eqgs. (15), (21) and
(22), T, does not vary with pressure, whereas it does
in (18) because of inclusion of the term involving r;
such variation, however, can be seen to be negligible,
and all three formulas agree with (18) to within
0.05°C in all realistic cases. The error in the original
formula of SS is significantly larger for low tempera-
tures owing to the error in Tetens’ formula.

For the parcel of air at its lifting condensation.

level, in addition to the temperature, two potential
temperatures will be required. The (moist) potential
temperature 0 is conserved in the lifting, so is given
simply by (7). The potential temperature 6, of dry
air, given by

1000

Kd
0D=TK( >,
p—e

is not conserved, however. Making use of conserva-
tion of 6, it can be shown that the value 6, of 6, at
the lifting condensation level is given by

IOOO 0.2854 TK 0.28Xx10-3r
p—e ) (f) ’

23

6 = TK( 24)

where Ty, p and ¢ are evaluated at the initial level.
The extra term (T/T)*?8%1°~*" can make a difference
of up to 0.2 K in 6,;.

4. Equivalent potential temperature

Having brought the air to its lifting condensation
level, it is now necessary to raise it to a great height
along a water-saturation pseudo-adiabat, i.e.,
dropping out condensed water as soom as it is
formed. Such a process satisfies the equation [de-
rived, for example, in Holton (1972)]

coe 28 o oor d(’“L'”) -0, (29

oD K TK

where
L Lty (26)
p — elT)

1000 e
Oy = Ty —o__\* 27
0= T ) @n

The equivalent potential temperature 6 is given as
the value obtained for 6, when (25) is integrated from
the lifting condensation level to a great height. As a
simplification, the middle term of (25) has commonly
been neglected, giving the following approximation
for :

(28)

8, = 6y, exp[ rs(TL)Lw(T,) ]

cpdTL

TaBLE 3. Values of 65 obtained by numerical integration of (25), together with errors s Nes M3s Ma» Ns @0d 7 from the conventional
formula (28), from Simpson’s original formula, and from (33), (35), (38) and (39), respectively, assuming a parcel initially saturated

at pressure p; (mb), temperature 7; (°C).

8 (K) h

p: (mb) T, O N2 s Na s Ne
1000 30 386.28 -3.90 -0.33 0.08 0.39 0.01 -0.018
1000 20 33s5.61 ~1.56 0.04 -0.08 0.18 -0.02 ~0.005
1000 0 283.60 —0.27 0.09 0.02 -0.02 0.04 -0.003
1000 -30 244,01 ~-0.02 0.02 0.02 -0.01 0.01 —-0.001

700 20 394.71 -2.83 ~0.39 -0.04 -0.10 -0.04 0.015
700 0 319.13 ~0.45 0.05 0.02 -0.09 0.03 -0.002
700 =30 270.57 ~0.02 0.02 0.03 -0.03 0.02 ~0.001
200 -30 391.82 -0.13 -0.06 0.09 —0.19 0.03 —0.006
200 -50 354.11 -0.01 0.01 0.03 -0.03 0.01 -0.002
Maximum error -4 -0.4 0.1 0.4 0.05 0.02




1050

275

270

2675

250 300 350

Fi1G. 1. Plot of (T./r) In(8:/6) against 8, for various values
of T;; the best fit for 8z is shown dashed.

For a more accurate integration of (25) it is neces-
sary to state rather carefully the process by which
the water is condensed out; were this carried out
maintaining the parcel at a constant temperature, the
middle term would vanish and (28) would be exactly
the potential temperature attained. However, for a
pseudo-adiabatic process as defined earlier, no such
simplification exists, and it is necessary to integrate
(25) numerically. For this purpose, the following
variables will be introduced.

- L(TyrdT) ’ (29)
cpalx
0, = 6p exp(x)- (30)
Thus (25) becomes

d0: , v ar—u. 31

Eliminating p and r, from (26)-(30) gives

€ L,(Me,(T)

IKg) = ~———— fQlxe 2107 (32
XRD(YR) = oo B0 ST L ()

This may be used to solve for x, and hence to
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integrate (31) from the lifting condensation level,
where 0, takes the value 65 [given by (28)] to a great
height, where 65 is now the value obtained for 4,.
Results are given in Table 3, where they are com-
pared with those obtained from the various approx-
imate formulas; 7,, the error in 6%, can be seen to
be as large as 4 K, thus confirming the results of SS.

SS derived a correction to (28) by making a linear
approximation in the integration of (25). The errors
as compared with the numerical results, given as 7,
in Table 3, can be seen to be significant at lower
levels for large values of 8. For consistency in com-
parison, the errors here and in subsequent formulas
were adjusted to give minimax best fits to the nu-
merical results for the range 200 mb < p < 1000 mb,

fz = 400 K. The formula of SS thus becomes

B = 0 explexp(3.0 nf;.

+ 13.5InT, — 99.55)], (33)-
where 6 is given by (28). The errors, 7; in Table 3,
are now everywhere less than 0.1 K. However, it
should be noted that SS overlooks an additional er-
ror of up to 0.2 K in assuming that &, is conserved
when bringing air to its lifting condensation level;
this extra error can be avoided by making use of (24),
but the procedure by this stage is becoming rather
cumbersome. ’

The formula of BD makes use of # not 6, and hence
avoids this additional source of error. They fit nu-
merically computed values to a formula of the form

L

)

where A(8g) is a linear function of 6z; the occur-
rence of 6z on the right-hand side means that the
formula is iterative. However, plotting (T,/r) In(6:/6)
against 6; for different T, (Fig. 1), using results of
the numerical integration, it can be clearly seen that
the inclusion of 8; dependence in A makes negligible
improvement to the formula. A best fit to the numeri-
cal results is thus given simply by

(dashed line in Fig. 1), with errors (ny4 in Table 3)
which can be as large as 0.4 K.

As neither of the formulas of SS and BD was
entirely satisfactory, even when modified, new
formulas were fitted to the numerical results, which
gave negligible error for 200 mb < p < 1000 mb,
0z = 400 K. The formula of BD was vused as a start-
ing point as it has the advantage of using 6, not 6p.
A graph was plotted of (CpaTL/L,, X 1072 r) In(6:/6)

ABg) r (34)

O = 6 exp[

2.675r 35)

0z = 0 exp[

L
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Fic. 2. Plots of Qy = (cpaTL/L, X 1073 r) In(6;/6) (upper graph), and Qp
= (cpgTL/Ly, X 107° r) In(8:/6,,) (lower graph) against r for various values of 7;
the error bars and best fit for 6; (dashed) are shown for the upper graph.

against r for different T, (Fig. 2); it showed very little
dependence on T,, so a formula of the type

Cpa TL

m ln(BE/O) = f(r)

(36)

could be fitted. Error bars are drawn for an error of
+0.05 K in 6g; they vary in length because f(r) is
multiplied by r in computing 6;. Hence, although
f(r) shows a rapid fall near r = 0, a linear fit to f(r)
(dashed) was found to be sufficient to determine
P to an accuracy of 0.05 K. The best fit thus ob-
tained was

f(r) = 1.0784(1 + 0.810 x 10%7), (37

giving

[ LT
0: = 6 exp| 1.0723 X 10‘6-—(—i)

L L

x r(l + 0.810 x 1073 r)]

= g exp

’(3.376

L

- 0.00254)

x r(l + 0.81 x 1073 r)], (38)

where the coefficients in the last line have been
adjusted so as to minimize rounding errors. Errors
in the computed 6 are given as m; in Table 3.
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Fig. 2 also shows a plot of (c,qTL/L, X 1073 1)
X In(6g/6p.), with 8y, now replacing 6, against r.
There is now a dependence on T3, but this and the
dependence on r are both very nearly linear. Hence
with a formula similar to (38) but with L (T,) re-
placed by another linear function of T, it is possible
to evaluate 6; to an accuracy better than 0.02 K,
the appropriate formuia being

3.036

L

OE == 0DL eXp[( - 0-00178)

x r(l + 0.448 x 1073 r)]. 39

The errors are given as 7q in Table 3. ‘

For most purposes, Eq. (38) is probably to be pre-
ferred, since it makes use of 6. As a basis for very
accurate work, however, Eq. (39) with 6,, given by
(24) is suggested. Either is simpler and more accurate
than the formulas of SS and BD.

Eq. (38), as it makes use of 6, also provides a
relationship between 6; and the wet-bulb potential
temperature 6, which is attained when a parcel is
brought down to 1000 mb from its lifting condensa-
tion level along a pseudo-adiabat. This is due to the
fact that a saturated parcel at T, = 6 = ) at
1000 mb, when taken pseudo-adiabatically to a great
height and then returned adiabatically to 1000 mb,
will attain a temperature g, so that

3.376

w

O = O eX]p{( - 0.00254)

x rg(1 + 0.81 x 1072 rs)], (40)

where

- 622 X e,(6,,) ’ @D
1000 — e,(6,,)

and e,(0,,) is given by (10).

Apart from the errors arising in the fit to the
numerically computed results (i.e., those listed in
Table 3), all the approximate formulas are subject to
the following errors:

e The most serious computational error is from
neglect of the variation of ¢, with temperature and
pressure. This affects not only taking a parcel from
its lifting condensation level to a great height, but
also raising it initially to its lifting condensation level
and, most importantly, returning it from a great height
to the surface, processes for which the potential
temperatures which are conserved should be defined
by formulas similar to (6). The cumulative effect of
these errors is that the assumed value 1005.7 of ¢4
should be replaced wherever it occurs by ¢,4(p,Tx),
where now p = 15(1000 + p), Tx = ¥2(6z + Tx)
so that, for instance, Eq. (38) would be replaced by
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1000 \[Ra/cpa®. Tx))(1-0.28X10~3r)
OE = T K ( )

V4
1.0784 x 1073L(T})
cpa(P, T)T,,

X r(1 + 0.81 x 10-3 r)]. 42)

X exp[

The error in assuming a fixed value of ¢, can be as
large as 0.2 K.

e The error from assuming a fixed value of ¢,, in
(25) is by contrast small: less than 0.02 K.

e It was shown in Section 3 that the value of T,
may be in error by 0.1 K, leading to a possible error
of 0.03 K in 6;.

Apart from these errors listed above, it must be
remembered that a water saturation pseudo-adiabatic
process has been assumed throughout this paper. As
mentioned in the Introduction, the answer would
be altered by several degrees were heat retained
by condensed water or latent heat of ice formation
included.

5. Conclusion

The following formula is recommended for com-
putation of equivalent potential temperature for a
water-saturation pseudo-adiabatic process:

1000 \0-28541-0.28x10-37)
>

X eXp [( 3.376
T,

L

GE=TK(

- 0.00254)
x r(l + 0.81 x 1073 r)], 43)

where Tk, p, and r are the absolute temperature,
pressure and mixing ratio at the initial level, and T,
is the absolute temperature at the lifting condensa-
tion level, given by any of (15), (21) or (22). The
maximum error in values thus obtained is 0.3 K, the
main contribution to the error arising from neglect
of variation of the specific heat of dry air with tem-
perature and pressure, an error which also affects
the value of the potential temperature 6.
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