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The classical books on this subject are Hampel et al. (1986); Huber (1981), with somewhat
simpler (but partial) introductions by Rousseeuw & Leroy (1987); Staudte & Sheather (1990).
The dates reflect the development of the subject: it had tremendous growth for about two
decades from 1964, but failed to win over the mainstream. I think it is an important area that
is used a lot less than it ought to be.

Univariate statistics

Outliers are sample values that cause surprise in relation to the majority of the sample. This
is not a pejorative term; outliers may be correct, but they should always be checked for tran-
scription errors. They can play havoc with standard statistical methods, and many robust and
resistant methods have been developed since 1960 to be less sensitive to outliers.

The sample mean y can be upset completely by a single outlier; if any data value yi → ±∞,
then y → ±∞. This contrasts with the sample median, which is little affected by moving any
single value to ±∞. We say that the median is resistant to gross errors whereas the mean is
not. In fact the median will tolerate up to 50% gross errors before it can be made arbitrarily
large; we say its breakdown point is 50% whereas that for the mean is 0%. Although the
mean is the optimal estimator of the location of the normal distribution, it can be substantially
sub-optimal for distributions close to the normal. Robust methods aim to have high efficiency
in a neighbourhood of the assumed statistical model.

Why will it not suffice to screen data and remove outliers? There are several aspects to con-
sider.

1. Users, even expert statisticians, do not always screen the data.
2. The sharp decision to keep or reject an observation is wasteful. We can do better by

down-weighting dubious observations than by rejecting them, although we may wish to
reject completely wrong observations.

3. It can be difficult or even impossible to spot outliers in multivariate or highly structured
data.

4. Rejecting outliers affects the distribution theory, which ought to be adjusted. In partic-
ular, variances will be underestimated from the ‘cleaned’ data.

1Parts are also c©1994, 1997, 1999, 2002 Springer-Verlag.



For a fixed underlying distribution, we define the relative efficiency of an estimator θ̃ relative
to another estimator θ̂ by

RE(θ̃; θ̂) =
variance of θ̂

variance of θ̃

since θ̂ needs onlyRE times as many observations as θ̃ for the same precision, approximately.
The asymptotic relative efficiency (ARE) is the limit of the RE as the sample size n → ∞.
(It may be defined more widely via asymptotic variances.) If θ̂ is not mentioned, it is assumed
to be the optimal estimator. There is a difficulty with biased estimators whose variance can
be small or zero. One solution is to use the mean-square error, another to rescale by θ/E(θ̂).
Iglewicz (1983) suggests using var (log θ̂) (which is scale-free) for estimators of scale.

We can apply the concept of ARE to the mean and median. At the normal distribution
ARE(median; mean) = 2/π ≈ 64%. For longer-tailed distributions the median does bet-
ter; for the t distribution with five degrees of freedom (which is often a better model of error
distributions than the normal) ARE(median; mean) ≈ 96%.

The following example from Tukey (1960) is more dramatic. Suppose we have n observations
Yi ∼ N(µ, σ2), i = 1, . . . , n and we want to estimate σ2. Consider σ̂2 = s2 and σ̃2 = d2π/2
where

d =
1

n

∑
i

|Yi − Y |

and the constant is chosen since for the normal d → √
2/π σ. The ARE(σ̃2; s2) = 0.876.

Now suppose that each Yi is from N(µ, σ2) with probability 1 − ε and from N(µ, 9σ2) with
probability ε. (Note that both the overall variance and the variance of the uncontaminated
observations are proportional to σ2.) We have

ε (%) ARE(σ̃2; s2)

0 0.876
0.1 0.948
0.2 1.016
1 1.44
5 2.04

Since the mixture distribution with ε = 1% is indistinguishable from normality for all practical
purposes, the optimality of s2 is very fragile. We say it lacks robustness of efficiency.

There are better estimators of σ than d
√
π/2 (which has breakdown point 0%). Two alterna-

tives are proportional to

IQR = X(3n/4) −X(n/4)

MAD = median
i

{|Yi − median
j

(Yj)|}

(Order statistics are linearly interpolated where necessary.) At the normal,

MAD → median {|Y − µ|} ≈ 0.6745σ

IQR → σ[Φ−1(0.75) − Φ−1(0.25)] ≈ 1.35σ
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(We refer to MAD/0.6745 as the MAD estimator, calculated by function mad in S-PLUS.)
Both are not very efficient but are very resistant to outliers in the data. The MAD estimator
has ARE 37% at the normal (Staudte & Sheather, 1990, p. 123).

Consider n independent observations Yi from a location family with pdf f(y−µ) for a function
f symmetric about zero, so it is clear that µ is the centre (median, mean if it exists) of the
distribution of Yi. We also think of the distribution as being not too far from the normal. There
are a number of obvious estimators of µ, including the sample mean, the sample median, and
the MLE.

The trimmed mean is the mean of the central 1−2α part of the distribution, so αn observations
are removed from each end. This is implemented by the function mean with the argument trim
specifying α. Obviously, trim=0 gives the mean and trim=0.5 gives the median (although it
is easier to use the function median). (If αn is not an integer, the integer part is used.)

Most of the location estimators we consider are M-estimators. The name derives from ‘MLE-
like’ estimators. If we have density f , we can define ρ = − log f . Then the MLE would
solve

min
µ

∑
i

− log f(yi − µ) = min
µ

∑
i

ρ(yi − µ)

and this makes sense for functions ρ not corresponding to pdfs. Let ψ = ρ′ if this exists. Then
we will have

∑
i ψ(yi − µ̂) = 0 or

∑
iwi (yi − µ̂) = 0 where wi = ψ(yi − µ̂)/(yi − µ̂). This

suggests an iterative method of solution, updating the weights at each iteration.

Examples of M-estimators

The mean corresponds to ρ(x) = x2, and the median to ρ(x) = |x|. (For even n any median
will solve the problem.) The function

ψ(x) =
{
x |x| < c
0 otherwise

corresponds to metric trimming and large outliers have no influence at all. The function

ψ(x) =

{−c x < −c
x |x| < c
c x > c

is known as metric Winsorizing2 and brings in extreme observations to µ± c. The correspond-
ing − log f is

ρ(x) =

{
x2 if |x| < c
c(2|x| − c) otherwise

and corresponds to a density with a Gaussian centre and double-exponential tails. This esti-
mator is due to Huber. Note that its limit as c → 0 is the median, and as c → ∞ the limit is
the mean. The value c = 1.345 gives 95% efficiency at the normal.

Tukey’s biweight has

ψ(t) = t
[
1 −

(
t

R

)2 ]2

+

2A term attributed by Dixon (1960) to Charles P. Winsor.
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Figure 1: The ψ-functions for four common M-estimators.

where [ ]+ denotes the positive part of. This implements ‘soft’ trimming. The valueR = 4.685
gives 95% efficiency at the normal.

Hampel’s ψ has several linear pieces,

ψ(x) = sgn(x)

⎧⎪⎪⎨⎪⎪⎩
|x| 0 < |x| < a
a a < |x| < b
a(c− |x|)/(c− b) b < |x| < c
0 c < |x|

for example, with a = 2.2s, b = 3.7s, c = 5.9s. Figure 1 illustrates these functions.

There is a scaling problem with the last four choices, since they depend on a scale factor (c, R
or s). We can apply the estimator to rescaled results, that is,

min
µ

∑
i

ρ

(
yi − µ

s

)
for a scale factor s, for example the MAD estimator. Alternatively, we can estimate s in a
similar way. The MLE for density s−1f((x− µ)/s) gives rise to the equation∑

i

ψ

(
yi − µ

s

) (
yi − µ

s

)
= n
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which is not resistant (and is biased at the normal). We modify this to∑
i

χ

(
yi − µ

s

)
= (n− 1)γ

for bounded χ, where γ is chosen for consistency at the normal distribution, so γ = E χ(N).
The main example is “Huber’s proposal 2” with

χ(x) = ψ(x)2 = min(|x|, c)2 (1)

In very small samples we need to take account of the variability of µ̂ in performing the Win-
sorizing.

If the location µ is known we can apply these estimators with n− 1 replaced by n to estimate
the scale s alone.

Examples

We give two datasets taken from analytical chemistry (Abbey, 1988; Analytical Methods Com-
mittee, 1989a,b). The dataset abbey contains 31 determinations of nickel content (µg g−1) in
SY-3, a Canadian syenite rock, and chem contains 24 determinations of copper (µg g−1) in
wholemeal flour. These data are part of a larger study that suggests µ = 3.68.

> sort(chem)
[1] 2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90 3.03

[10] 3.03 3.10 3.37 3.40 3.40 3.40 3.50 3.60 3.70
[19] 3.70 3.70 3.70 3.77 5.28 28.95
> mean(chem)
[1] 4.2804
> median(chem)
[1] 3.385
> location.m(chem)
[1] 3.1452

....
> location.m(chem, psi.fun="huber")
[1] 3.2132

....
> mad(chem)
[1] 0.52632
> scale.tau(chem)
[1] 0.639
> scale.tau(chem, center=3.68)
[1] 0.91578
> unlist(huber(chem))

mu s
3.2067 0.52632

> unlist(hubers(chem))
mu s

3.2055 0.67365
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The sample is clearly highly asymmetric with one value that appears to be out by a factor of
10. It was checked and reported as correct by the laboratory. With such a distribution the var-
ious estimators are estimating different aspects of the distribution and so are not comparable.
Only for symmetric distributions do all the location estimators estimate the same quantity, and
although the true distribution is unknown here, it is unlikely to be symmetric.

> sort(abbey)
[1] 5.2 6.5 6.9 7.0 7.0 7.0 7.4 8.0 8.0

[10] 8.0 8.0 8.5 9.0 9.0 10.0 11.0 11.0 12.0
[19] 12.0 13.7 14.0 14.0 14.0 16.0 17.0 17.0 18.0
[28] 24.0 28.0 34.0 125.0
> mean(abbey)
[1] 16.006
> median(abbey)
[1] 11
> location.m(abbey)
[1] 10.804
> location.m(abbey, psi.fun="huber")
[1] 11.517
> unlist(hubers(abbey))

mu s
11.732 5.2585

> unlist(hubers(abbey, k=2))
mu s

12.351 6.1052
> unlist(hubers(abbey, k=1))

mu s
11.365 5.5673

Note how reducing the constant k (representing c) reduces the estimate of location, as this
sample (like many in analytical chemistry) has a long right tail.

Robust vs resistant regression

We will see in the section on Linear Models the concept of resistant regression, which is
about non-disastrous behaviour in the presence of incorrect data points. In the terminology
introduced here, resistant regression has a high breakdown point, approaching 50%. We con-
sidered replacing least-squares by one of

LMS Least median of squares: minimize the median of the squared residuals. More generally,
for LQS, minimize some quantile (say 80%) of the squared residuals.

LTS Least trimmed squares: minimize the sum of squares for the smallest q of the residuals.
Originally q included just over 50%, but S-PLUS has switched to 90%.

However, either involves very much more computing than least squares, as the minimands
are not differentiable. Both do show up the effect of multiple outliers, as they concentrate on
fitting just over 50% of the data well. In doing so they are less efficient when there are no
outliers (LMS more so than LTS).

To illustrate some of the problems, consider an example. Rousseeuw & Leroy (1987) give
data on annual numbers of Belgian telephone calls. Figure 2 shows the least squares line, an
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Figure 2: Millions of phone calls in Belgium, 1950–73, from Rousseeuw & Leroy (1987), with three
fitted lines.

M-estimated regression and the least trimmed squares regression. The lqs line is −56.16 +
1.16 year. Rousseeuw & Leroy’s investigations showed that for 1964–9 the total length of
calls (in minutes) had been recorded rather than the number, with each system being used
during parts of 1963 and 1970.

Resistant regression

A succession of more resistant regression estimators was defined in the 1980s. The first to
become popular was

min
b

median
i

|yi − xib|2

called the least median of squares (LMS) estimator. The square is necessary if n is even,
when the central median is taken. This fit is very resistant, and needs no scale estimate. It is
however very inefficient, converging at rate 1/ 3

√
n. Furthermore, it displays marked sensitivity

to central data values: see Hettmansperger & Sheather (1992) and Davies (1993, §2.3).

Rousseeuw suggested least trimmed squares (LTS) regression:

min
b

q∑
i=1

|yi − xib|2(i)

as this is more efficient, but shares the same extreme resistance. The recommended sum is
over the smallest q = �(n + p+ 1)/2� squared residuals. (Earlier accounts differed.)

This was followed by S-estimation, in which the coefficients are chosen to find the solution to

n∑
i=1

χ
(yi − xib

c0 s

)
= (n− p)β
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with smallest scale s. Here χ is usually chosen to be the integral of Tukey’s bisquare function

χ(u) = u6 − 3u4 + 3u2, |u| ≤ 1, 1, |u| ≥ 1

c0 = 1.548 and β = 0.5 is chosen for consistency at the normal distribution of errors. This
gives efficiency 28.7% at the normal, which is low but better than LMS and LTS.

In only a few special cases (such as LMS for univariate regression with intercept) can these
optimization problems be solved exactly, and approximate search methods are used. (Marazzi,
1993 is a good source. Most of these methods work by looking at least-squares fits to around
q of the data points, and more or less randomly try a large sample of such fits.)

Theory for robust regression

In a regression problem there are two possible sources of errors, the observations yi and the
corresponding row vector of p regressors xi. Most robust methods in regression only consider
the first, and in some cases (designed experiments?) errors in the regressors can be ignored.
This is the case for M-estimators, the only ones we consider in this section.

Consider a regression problem with n cases (yi,xi) from the model

y = xβ + ε

for a p-variate row vector x.

M-estimators

If we assume a scaled pdf f(e/s)/s for ε and set ρ = − log f , the maximum likelihood
estimator minimizes

n∑
i=1

ρ

(
yi − xib

s

)
+ n log s (2)

Suppose for now that s is known. Let ψ = ρ′. Then the MLE b of β solves the non-linear
equations

n∑
i=1

xiψ

(
yi − xib

s

)
= 0 (3)

Let ri = yi − xib denote the residuals.

The solution to equation (3) or to minimizing over (2) defines an M-estimator of β.

A common way to solve (3) is by iterated re-weighted least squares, with weights

wi = ψ

(
yi − xib

s

) /(
yi − xib

s

)
(4)

The iteration is only guaranteed to converge for convex ρ functions, and for redescending
functions (such as those of Tukey and Hampel; page 3), equation (3) may have multiple roots.
In such cases it is usual to choose a good starting point and iterate carefully.
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Of course, in practice the scale s is not known. A simple and very resistant scale estimator is
the MAD about some centre. This is applied to the residuals about zero, either to the current
residuals within the loop or to the residuals from a very resistant fit (see the next subsection).

Alternatively, we can estimate s in an MLE-like way. Finding a stationary point of (2) with
respect to s gives ∑

i

ψ

(
yi − xib

s

) (
yi − xib

s

)
= n

which is not resistant (and is biased at the normal). As in the univariate case we modify this to∑
i

χ

(
yi − xib

s

)
= (n− p)γ (5)

An example

Library MASS includes a model-fitting function rlm. By default Huber’s M-estimator is used
with tuning parameter c = 1.345. By default the scale s is estimated by iterated MAD, but
Huber’s proposal 2 can also be used.

> summary(lm(calls ~ year, data=phones), cor=F)
Value Std. Error t value Pr(>|t|)

(Intercept) -260.059 102.607 -2.535 0.019
year 5.041 1.658 3.041 0.006

Residual standard error: 56.2 on 22 degrees of freedom
> summary(rlm(calls ~ year, maxit=50, data=phones), cor=F)

Value Std. Error t value
(Intercept) -102.622 26.608 -3.857

year 2.041 0.430 4.748
Residual standard error: 9.03 on 22 degrees of freedom
> summary(rlm(calls ~ year, scale.est="proposal 2", data=phones), cor=F)
Coefficients:

Value Std. Error t value
(Intercept) -227.925 101.874 -2.237

year 4.453 1.646 2.705
Residual standard error: 57.3 on 22 degrees of freedom

As Figure 2 shows, in this example there is a batch of outliers from a different population in
the late 1960s, and these should be rejected completely, which the Huber M-estimators do not.
Let us try a re-descending estimator.

> summary(rlm(calls ~ year, data=phones, psi=psi.bisquare), cor=F)
Coefficients:

Value Std. Error t value
(Intercept) -52.302 2.753 -18.999

year 1.098 0.044 24.685
Residual standard error: 1.65 on 22 degrees of freedom

This happened to work well for the default least-squares start, but we might want to consider
a better starting point, such as that given by init="lts".
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MM-estimation

It is possible to combine the resistance of these methods with the efficiency of M-estimation.
The MM-estimator proposed by Yohai, Stahel & Zamar (1991) (see also Marazzi, 1993,
§9.1.3) is an M-estimator starting at the coefficients given by the S-estimator and with fixed
scale given by the S-estimator. This retains (for c > c0) the high-breakdown point of the S-
estimator and the high efficiency at the normal. At considerable computational expense, this
gives the best of both worlds.

Function rlm has an option to implement MM-estimation.

> summary(rlm(calls ~ year, data=phones, method="MM"), cor=F)
Coefficients:

Value Std. Error t value
(Intercept) -52.423 2.916 -17.977

year 1.101 0.047 23.366

Residual standard error: 2.13

S-PLUS has a function lmRob in library section robust which implements a slightly different
MM-estimator with similar properties, and comes with a full set of method functions, so can
be used routinely as a replacement for lm. Let us try it on the phones data.

> library(robust, first = T)
> phones.lmr <- lmRob(calls ~ year, data = phones)
> summary(phones.lmr, cor = F)
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) -52.541 3.625 -14.493 0.000

year 1.104 0.061 18.148 0.000

Residual scale estimate: 2.03 on 22 degrees of freedom
Proportion of variation in response explained by model: 0.494

Test for Bias:
Statistics P-value

M-estimate 1.401 0.496
LS-estimate 0.243 0.886

This works well, rejecting all the spurious observations. The ‘test for bias’ is of the M-
estimator against the initial S-estimator; if the M-estimator appears biased the initial S-estimator
is returned.
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