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1. INTRODUCTION 
Symmetric spinning top is a case studied by Lagrange in 1788 
[1]. After 110 years, in 1897-1898 Klein and Sommerfeld [2,3] 
published two volumes, whereas in 1897 Klein separately 
published a shorter monograph on the mathematical theory of 
the top [4]. In the eastern world literature, one of the oldest 
papers is probably due to Appel’rot (1894) [5]. Historical books 
of general interest are [6,7], whereas another book by Gould [8] 
includes 367 references until early 1970s. Explicit integration 
of motion equations, to give the nutation in terms of elliptic 
integrals is cited in the aforementioned books at the end of 
nineteenth century [3,4] as well as in Whittaker [9]; some 
useful explanations are due to Zaroodny [10].  

Older standard books of physics and classical dynamics 
[11-14] include analytical formulas for nutation, whereas recent 
physics standard textbooks [15,16] limit their discussion only 
to the case of regular precession. There is no doubt that the 
spinning top, as a toy, keeps its fascination from little children 
to adults. A simple internet search reveals many references 
concerning the spinning tops and gyros as if they were 
“magical” instruments that defy gravity. Even the renowned 
mathematician Michèle Audin has used the term “mysterious 
(?)” when referring to Kowalevski case in the introduction of 
her book [17]. It is worth-mentioning that, in 1889, 
Kovalevskaya showed that the rigid body motion was 
integrable under certain conditions concerning the ratio (1:2) of 
the principal momenta between other parameters; her work was 
so remarkable that it won her the Bordin prize (1888) 
[12,34-37]. Besides the toy, there are many industrial 

 
 

applications such as navigation of the closely related gyroscope. 
However, a detailed literature survey on the gyroscope and its 
applications is outside the scope of this paper.  

The integrability of Euler’s equations describing the motion 
of a spinning top has become a matter of intensive research 
within the last fifteen years. In brief, the numerical solution 
may sometimes not fulfill the law of energy conservation or 
may suffer from “gimbal lock” singularities concerning the 
Euler angles [17-19]. In the regime of numerical analysis, the 
first paper in the western literature referring (among others) to 
the numerical integration of the differential equations of a 
spinning top is probably due to Gorn [20,p.79]. Later, McGill 
and Long [21] studied the case of an unsymmetrical rigid body. 
Simo and associates have developed numerical schemes to 
preserve energy and momentum [22,23] and papers therein. 
Ratiu and Moerbeke [24] have discussed the same matter with 
main emphasis put on the symplectic structure of the motion. 
Historical references have been recently given by Romano [25], 
whereas most recent publications are [26-31].  

Despite the abovementioned progress, the applicability of 
general purpose numerical integration schemes remains an 
open issue. This paper contributes in this direction by 
developing two variations of the differential equations and then 
implementing standard MATLAB functions such as ODE45, 
which is a code based on a pair of one-step explicit 
Runge-Kutta formulas. The study investigates the performance 
of this time-integrator for the conservation of the energy and 
the angular momentum. For the sake of briefness, the study 
reduces to the symmetrical spinning top. 

2. EQUATIONS OF MOTION 
2.1. Euler’s equations 
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The top is a rigid body fixed at the point O. Its position 
(orientation) at any instant can be fully described by three Euler 
angles. Following Targ [13], the fixed co-ordinate system 
(space axes) is denoted by (xR1R,yR1R,zR1R) whereas the rotating 
system (body axes) is denoted by (x,y,z). The unit vectors for 
the space and body systems are denoted by  1 1 1, ,i j k  and 

 , ,i j k , respectively. According to the original definition, 
first we define the line of nodes (ON) as the intersection 
between the OxR1RyR1R and the Oxy coordinate planes; in other 
words, the line of nodes is the line perpendicular to both zR1R and 
z axis and therefore it always lies on the fixed horizontal plane 
OxR1RyR1R. The unit vector along (ON) is denoted by nR0 Rand it is 
chosen so as the system (kR1R,k,n R0R) is right-handed. As usual, we 
define the Euler angles as: 
   is the azimuthal angle between the xR1R-axis and the line 

of nodes (ON). 
   is the inclination (lean) angle between the zR1R-axis and 

the z-axis. 
   is the spin angle between the line of nodes (ON) and 

the x-axis. 
Different authors may use different sets of angles to describe 

these orientations, or different names for the same angles, 
leading to different conventions (see, for example, Berry and 
Shukla [32] or the textbook by Hay [33]).  

Let C be the center of mass of the spinning top, which is 
taken along the z-axis at a distance l from the fixed origin O. 
The two first Euler angles (4 T  and 

4T

) are directly related to the 

polar angles 4T p  and p
4T

 (known as two of the usual spherical 

coordinates: , ,p p cr l   ) of the axis, whose direction is the 

unit vector k R1R, as follows: 2p   
4T

 and 4T p  . The 
angle 4 T  describes the rotation of a material rotation of a 
material point P about the axis of the top, measured relative to 
the intersection of the top with the instantaneous constant 

p –plane. The latter is better understood if at time t = 0 we 
assume the body x-axis to coincide with 4 Tthe line of nodes (ON); 
at this case the plane (Oyz) is perpendicular to the plane (OxR1RyR1R) 
and it intersects the circular cross section at the point PR0R 
(Figure 1). Irrelevant to a possible nutation, it is obvious that at 
a later instant t, the material point P will have rotated along the 
circle (transverse to the body z axis) exactly by the Euler angle 
4T .  

Since the spinning top has a fixed point at O, at every instant 
the motion of the rigid body is a pure rotation about the 
instantaneous vector of the angular velocity ω  (along a line 
OΩ, not shown), which can be expressed  in terms of the Euler 
angles as follows:    ,    ,    . In more details, 

  is along the space zR1 Raxis,   is along the line of nodes 

(ON), while   is along the body z axis. As known [1; 12 
p.174], adding these components of the separate angular 

velocities, the components  , ,x y z    of ω  with respect to 
the rotating body axes Oxyz are given by: 

 
sin sin cos ,

sin cos sin ,

cos .

x

y

z

     

     

   

 

 

 

 

 

 

     (1) 

 
If now the body axes (xyz) are taken as the principle axes 

(123) relative to the reference point O, with moments of inertia 
(IR1R, IR2R, IR3R), the abovementioned components of ω are now 
denoted by ( 1 2 3, ,   ). Then, the totality of Euler equations 
(kinematic and dynamical) is given as follows: 

 
i) Kinematic Euler equations 
 

1 sin sin cos ,             (2a) 

2 sin cos sin ,             (2b) 

3 cos .            (2c) 
 
ii) Dynamical Euler equations 

 
 1 1 2 3 2 3 1 ,I I I M          (3a) 

 2 2 3 1 3 1 2 ,I I I M          (3b) 

 3 3 1 2 1 2 3 .I I I M          (3c) 
 

A rigorous proof of Equations (3) is given in Appendix A. 
The transformation of the angular velocities from the body to 
the space (fixed) system is given in Appendix B.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Euler angles of a spinning top. 
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Equations (2) and (3) provide the general mathematical 
formulation for the motion of the rigid body having one fixed 
point. In the general case of unsymmetrical shape, their solution 
constitutes a difficult mathematical problem [13].  

In the particular case of a symmetrical spinning top, it is 
convenient to choose the z-axis to be the axis of symmetry, so 

as 1 2 3I I I  . In this case the solution becomes easier. In fact, 

the position vector for the center of gravity C is given as 
follows: 

 
Space system (OxR1RyR1RzR1R):  

 1, sin sin cos sin cos T

C l      r       (4a) 

 
Body system (Oxyz):            

 0 0 T

C lr                            (4b) 
Therefore, the components of the moment (MR1R, MR2R, MR3R) in 

the right-hand-side of Eq(3abc) are produced by the moments 
of the weight with respect to the origin O [cross product 

 C m r g ], which is then projected onto the body x-, y-, and 

z-axes, respectively. In the particular case of a spinning top in a 
constant gravitational field, with respect to the world system 
the weight mg (acting at the center C) is the vector 

 0 0 1 Tmg  . Considering the transformation matrix A 

obtained after the abovementioned three rotations about the zR1R, 
ON and z axes, respectively [12, p.153]: 

cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos sin sin cos cos cos sin cos

sin sin cos sin cos

           

           

    

 

    



 
 
  
 

A  ,     (5) 

 
 

the projections of the weight onto the axes of the body system 

are given by the matrix product  0 0 1 Tmg   A , 
whence the torques appearing in (3) are expressed by 

 

1

2

3

sin cos
sin sin

0

M
M mgl
M

 

  
   
   
   
      

     (6) 

 
Remarks 
   
1)  We notice that the Euler angle   appears in both the 

kinetic and dynamical expressions (2) and (3) as well as in 
(6). 

2)   Since 3 0M  , by virtue of the condition 1 2I I  Eq(3c) 

implies that 3 0  , which means that the component 3  
is a constant.  

3)   A torque with components 1M  or 2M  will cause both 1  

and 2  to change without affecting 3 .  
4)   Whatever the external loading is, the initial conditions at 

the instant t = 0 are the following six quantities: 

   0 0 0 0, , ,     and  0 0,  ,    (7) 

from which the angles 0  
and 0  are needed only for 

reference (they do not affect the visual orientation of the 
symmetrical spinning top). In other words, the mechanical 
behavior is determined by the four initial conditions: 

 0 0 0 0, , ,      , which determine the energy (see below 
Eq(18)). 
5) The measure of the vector of the angular velocity 

 1 2 3, ,  ω  is given by: 

 
 

1 22 2 2
1 2 3

1 22 2 2 2 cos

  

    

  

   

ω

   
   (8) 

6) The angle   between the abovementioned vector ω  
and the body z axis is determined by the direction 

cosine 3 ω , which by virtue of Eqs(2c) and (8) 

becomes: 
 

 
 1 22 2 2

cos
cos

2 cos

  


    




  

 

   
  (9) 

2.2. Lagrange’s equations 
In terms of the instantaneous angular velocity ω of the rigid 
body that moves about the fixed point O, the kinetic energy can 

be computed according to the formula 21 2 OT I  , where 

OI   is the variable moment of inertia with respect to the 

instantaneous axis of rotation OΩ. In terms of the components 
of the angular velocity  1 2 3, ,  ω  in the body system, the 

kinetic energy is given according to the formula 

 2 2 2
1 1 2 2 3 3

1
2

T I I I    
 

    (10) 
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Substituting (2) into (10) and considering a symmetrical top, 

i.e. 1 2I I , the latter takes the form: 

 2 2 2 231
3sin

2 2
II

T            (11) 

 
Also, the potential energy is given by 

cosV mgl         (12) 
 

Following Targ [13, pp. 518-519], the Lagrange’s equations 
are written as follows: 

d T T
Q

dt

d T T
Q

dt
d T T

Q
dt







 

 

 

 
 

 

 
 

 

 
 

 

 
 
 
 
 
 
 
 
 







     (13) 

 
Alternatively, we can consider the Lagrangian L T V   

and take the equivalent form: q

d L L
M

dt q q
 

 
 

 
 
 

. 

Substituting (11) into (13) and assuming that the only load is 
due to the weight W=mg of the spinning top, the right-hand 
sides ( Q , Q , Q ) of Eq(13) correspond to the moments 

1
0zM  , sinONM Wl   (ON= line of nodes) and 0zM  , 

respectively. As a result, Eq(13) becomes: 
 

 2
1 3 3sin cos 0

d
I I

dt
      ,    (14a) 

2
1 1 3 3sin cos sin sinI I I mgl             (14b) 

3
3 0

d
I

dt


           (14c) 

 
One can notice that Eq(14a) and Eq(14b) do not include the 
Euler angle  .  

It is worth-mentioning that (14a) dictates that the value of 
the component of the angular momentum towards the space 
zR1R-axis is a constant (first invariant of the system), i.e 

 
2

1 3 3 1sin cosp L I I c             ,   (15a) 
 
where the constant value cR1R in (15a) is directly determined 

in terms of three initial conditions ( 0 0 0, ,    ), mentioned in 
(7), as follows: 

 2
1 1 0 0 3 0 0 0 0sin cos cosc I I           ,   (15b) 

Equation (14c) depicts that 3  is a constant, which can be 

calculated in terms of three initial conditions ( 0 0 0, ,    ) using 
the kinematic Euler equation (2c), i.e. 

 

3 0 0 0cos             (16) 
 

Obviously, for any instant t > 0 the component 3  is given 
by Eq(2c). Equation (2c) depicts that the aforementioned 
material point P undertakes a relative rotation around the 
rotating z-axis and it also undertakes the transport rotation 1k  

(namely its projection cos   along the z-axis).  

Since 3  is a constant, the second invariant of the system 
(angular momentum towards the body z axis) is: 

3 3

L
p I 




 
 

        (17) 

Unlike Euler’s equations, these equations define the 
motion only of a symmetrical body for which 1 2I I . 
However, they are simpler than the totality of Euler’s dynamic 
and kinematic equations [13, p. 519].  

Usually, a criterion to test the accuracy of the numerical 
integration is the energy conservation, which is given by the 
form (E = T + V) as follows: 

 

 2 2 2 2

1 3 3 2

1 1
sin cos

2 2
E I I mgl c            (18) 

 
As previously, the value cR2R in (18) is directly determined in 

terms of the initial conditions (7) and particularly it requires 
four of them ( 0 0 0 0, , ,      ). 

3.  A CRITICAL REVIEW ON THE MOTION 
OF THE SPINNING TOP 

In the general motion of the spinning top the inclination (lean) 
angle   varies in time. The latter motion is defined as 
“nutation”. However, the case of “no nutation”, which is also 
called “regular precession”, appears a particular interest. At this 
point it is worth-mentioning that given the six initial conditions 
[Eq(7)] the time history in the orientation of the spinning top 
can be calculated in an deterministic way. It was previously 
mentioned that two of the initial conditions, that is the initial 
angles 0  and 0  do not play any significant role since they 
are only reference values. In other words, the history in the 
position of the spinning top depends on the four initial 
conditions 0 0 0 0, , ,      . The aforementioned four initial 
conditions determine the three system invariants, which are the 
component of the angular momentum along the zR1R axis 
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( 1p c  ), the component of the angular momentum along the 

z axis ( 3 3p I  ) and the total energy ( 2E c ).  

3.1. Constant inclination angle 
When the inclination angle is constant, we then refer to the 
abovementioned “regular” or “steady” or “smooth” precession.  

The investigation of motions under gravity in which the axis 
of the top makes a constant angle with the vertical has been 
reported for example by Hay [33, pp. 91-94]. However, since 
Hay [33] uses a different body-fixed coordinate system, it 
makes sense to adapt his approach to our traditional xyz body 
system.  

The assumption of a constant angle  , whence 0  , 
causes Eq(2a), (2b) and (2c) to give: 

1 sin sin ,      2 sin cos ,     3 cos .     
                      (19) 

For this particular case, we designate p    for the 
precession, and s    for the spin.  

Multiplying (3a) by cos  and (3b) by sin , then 
subtracting by parts and assuming that (IR1 R= IR2R), one obtains: 

  2
3 1 3cos sin 0,I I p I sp mgl           

(20a) 

Substituting (20a) into the abovementioned (3b) already 
having been multiplied by sin , one obtains: 

 1 cos sin 0I p          (20b) 
Lastly, Eq(3c) becomes: 

cos 0.p s           (20c) 
 

Equations (20a), (20b) and (20c) are identical with those 
obtained by Hay [33] in a different way.  

Again, the totality of Equation (3) is given by equations 
(20). Below, we distinguish two cases. 
1) One solution of Eq(20) is 0  . In this case the axis of the 

top is vertical, and the top is said to be “sleeping”. Then, 
(20c) becomes 0p s   , which means that the precession 
is equal and opposite to the spin.  

2) If   is not equal to zero, then sin  can be eliminated in 
(20a,b). Therefore, (20b) yields 0p   whereas (20c) then 
yields 0s  . In other words, p = constant, s =  constant. 
Equation (20a) is a relation among the three constants p, s 
and  . Hence it appears that we may assign arbitrarily 
values for two of these constants and there will exist a 
corresponding motion of the top with   a constant. 
Following Hay [33,p.94], Eq(20a) can be solved in s: 

 3 1

3 3

cosI I pmgl
s

I p I


      (21a) 

Equation (21a) offers the dependency of the spin (s) of the 
precession (p) and the inclination angle ( ). In particular, the 
precession appears in both the denominator and the nominator. 
If the precession is small (p<<), we note from (18a) that the 

second term vanishes whereas the first one becomes large and it 
is approximated by the value 

3

mgl
s

I p
         (21b) 

Moreover, whatever the value of the precession is, if the long 
z axis of the top is horizontal ( 2  , i.e. cos 0  ), 
equation (21b) is not an approximation but an exact solution 
and, if solved in p we obtain: 

For  2  :       
3

mgl
p

I s
        (21c) 

which is the well-known from textbooks of physics [15,16]. 
While Eq(21c) is valid for a horizontal top under any conditions, 
for any other inclination it may hold under the abovementioned 
conditions.  

Although Eq(20a) is a quadratic equation in p, it is not 
offered to determine the precession angular velocity p as is, 
because s depends on p according to Eq(2c). Therefore, 
substituting Eq(2c) into Eq(20a) one finally obtains: 

  
   2

1 3 3cos 0, 2I p I p mgl      
  

(22) 
 

Equation (22) constitutes the sufficient and necessary 
condition to achieve regular precession (no nutation). It is 
mentioned that Eq(22) can be also obtained from Eq(14b) 
putting 0   and eliminating sin  in both left and right 
parts.  

In more details, when 2  , the quadratic equation (22) 
is valid and its discreminant is 

 

 2

3 3 14 cosD I I lmg        (23) 
 

As a real solution requires 0D  , a “conditio sine qua non” 

for the axial angular velocity 3  to achieve an inclination 
angle   is: 

2 1
3 2

3

4 cosI lmg
I


        (24) 

Provided Eq(24) is valid ( 0D  ), the two roots of (22) are 
given by 

 
2

3 3 3 3

1 1 12 cos 2 cos cos

I I lmg
p

I I I

 

  
  

 
 
 

   (25a) 

 
Therefore, the plus and minus sign in (25a) produce two 

solutions: the so-called “fast” precession and the “slow” 
precession solutions.  

In more details, equation (25a) can be rewritten as follows: 
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 3 3

1

1 1
2 cos

I
p x

I




        (25b) 

where 

 
1

2

3 3

4 coslmgI
x

I



        (25c) 

Under certain circumstances, Eq(25b) can be further 
simplified. In fact, if it is not only 1x   but the rotational 
speed of the spinning top is very large ( 1x  ), i.e.  

 

3 3 14 cosI lmgI   ,      (25d) 
 

the root in (25b) is approximated by 
 

1
1 1

2
x x           (25e) 

In such a case, (25b) implies that the fast and slow precession 
is approximated by: 

 

Fast precession:   3 3

1 cosfast

I
p

I



     (25f) 

Slow precession:   
3 3

slow

mgl
p

I 
      (25g) 

 
Remarks 
1)   One can notice that while the slow precession does not   

depend on the inclination of the axis of the top (lean angle 
 ) the same does not hold for the fast precession.  

2)   The slow precession is the one most commonly used 
experimentally. “In principle, however, one can also obtain 
a fast precession, although it is difficult to start the 
gyroscope off with just the right motion to achieve it. In 
practice, …, the possibility of the fast precession can be 
ignored” [11, p.683].   

3)   In the case of slow precession (25g), the value of p 
corresponding to the negative sign of the radicand in Eq(25a) 
is very small. Therefore the measure of the angular velocity 
  ω  is very close to either of ωR3R and   (cf. Eq(2c) 
and Eq(9): cos 1  ).  Therefore, the direction of the 
vector ω  is very close to the axis of symmetry k of the 
ellipsoid (body z axis). 

3.2. Nutzation 
Nutation is the case according to which the inclination angle 

varies in time ( 0  ).  
At this point, we closely follow Klein and Sommerfeld [3, 

p.222] and Goldstein et al. [12, p.213].  
Using the two invariant angular momenta ( p  and p  

towards space zR1R and body z axis, respectively), the total energy 
can be written as follows: 

 

 22
2

1 22
3 1

cos 1
cos

2 2 sin 2

p pp
E I mgl c

I I
  

 



       (26) 

 

Solving (26) in  , then using the transformation 
cosu  , it can be easily verified that the critical (extreme) 

values of the angle   at which the derivative vanishes ( 0  : 
“turning angles”) is given by the roots of the following cubic 
polynomial: 
 

  3 2 0f u au bu cu d     ,     (27a) 
 
with  

 
 

1

2 2

3 3 1 3 1 2

1 3 3 1

2 2

1 2 3 3 1

2

2

2

1
2

2

a I mgl

b I I I I c

c c I I mgl

d I c I c









   

 

   
 
 

   (27b) 

 
Dividing  by a , (27a) can be also written as follows: 
 

3 2
1 2 3 0u a u a u a    ,    (27c) 

where 
 

1 2 3, , .a b a a c a a d a       (27d) 
 
Equation (27c) is easily solved by introducing the auxiliary 
variables: 
 

32
1 2 3 12 1 9 27 23

,
9 54

a a a aa a
Q R

 
   (27e) 

 
The solution is determined by the sign of the discreminant 

3 2D Q R   .       (27f) 
If 0D  , the roots are given by: 

1 1

2 1

3 1

1 1

3 3

1 2 1

3 3 3

1 4 1

3 3 3

2 cos

2 cos

2 cos

u Q a

u Q a

u Q a



 

 

  

   

   

 
 
 
 
 
 
 
 
 

   ,   (27g) 

with 
3cos R Q         (27h) 

 
Therefore, we obtain one or two roots between the interval 

[-1,1] and another non-physical root  1u  . The two 
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physically meaningful roots 1 2,u u  will yield the span of angles 

of the nutation ( 1 2cosu u  ). Obviously, when the roots 

1 2,u u  are coincident, there is no nutation.  
The above analysis can be further simplified if at time t = 0 

we consider the following initial conditions: 0  , and  

0 0 0    . In this case, the first solution of Eq(27a) is the 

initial point  1 0cosu  , whereas it can be easily proven that 
for the next solution uR2R Eq(27a) becomes: 

 

         
2
12 2

1 1 12
1

1
b d c

f u u u aI u u u
I

 
    

 
 
  

 

  (27i) 
Setting 1x u u   and 1 1 2x u u  , the quadratic equation 

within the brackets in the right hand side of Eq(27i) takes the 
form: 

2
1 1 0x px q   ,       (27k) 

where 
2

02cosp p a      and    2
0sinq  ,   (27l) 

 
Thus the realistic solution is one root of the quadratic 

polynomial as follows: 
 

2

1

4
2

p p q
x

  
       (27m) 

 
Following Goldstein [12, pp. 215-217], if the kinetic energy 

of rotation about the body z axis is very large compared to the 
maximum change in potential energy: 

 

2
3 3

1
2

2
I mgl  ,       (28) 

 
we speak of the top as being a “fast top”. With this assumption 
we can obtain expressions for the extent of the nutation, the 
nutation frequency, and the average of the frequency of 
precession.  

Since 
2 2

3 3 3

1 2

p I I
a I mgl
 

 
 
 

, the condition (28) for the fast top 

gives: 
 

2
3

1

2
p I
a I
  

 
 

          (29a) 

 
Therefore, except in the case that 3 1I I , it holds p q , 

and therefore the solution of eq(27m) is approximated by: 

1

q
x

p
            (29b) 

Neglecting the term 02 cos  compared to 2p a , Eq(29b) 
can approximate the extent of nutation by the simple formula: 

21
2 1 02

3 3 3

2
sin

I mgl
u u

I I



  ,     (29c) 

where 0  is the initial condition. Thus, the higher the angular 

velocity 3  is the smaller the nutation.  

Since the amount of nutation is small, the term  21 u  in 

Eq(27i) can be replaced by its initial value, 2
0sin  . By virtue 

of Eq(29c), and considering the variable transformation 

1 2y x x   for   0f u  , Eq(27i) finally becomes: 
  

3
3

1

I
y y

I
 

 
 
 

      (29d) 

 
From elementary mechanics Eq(29d) dictates that, for the 

fast top, the frequency of the nutation, in terms of its angular 
velocity k, is given by: 

3
3

1

I
k

I
 ,        (30) 

and therefore it increases the faster the top is spun initially.  
Based on the calculated extent 2 1 2 1cos cosu u u       , 
we can determine the extent of the inclination angle 

2 1     . Then, the variation of the inclination angle is 
approximated by: 

   1 1 cos
2

t kt


 


   .    (31) 

 
According to French [11, p.694], “if the initial conditions are 

varied, different types of nutational motion may occur, but they 
are all understandable in terms of the principles underlying the 
above analysis”.  

Due to the nutation, the angular velocity of precession is 
harmonic of the form: 

 
3 3

1 cos
mgl

kt
I




        (32a) 

 
of which the amplitude is recognized as the slowp  [Eq(25g)]. 

Although the rate of precession varies harmonically with time, 
with the same frequency as the nutation, the average precession 
frequency is: 

3 3
slow

mgl
p

I



       (32b) 
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4. THREE MAIN ALTERNATIVE 
FORMULATIONS AND THEIR 
NUMERICAL INTEGRATION  

4.1. Based on the totality of dynamic Euler’s   
equations 

Since the right-hand side of (3) includes terms in Euler angles, 
it becomes necessary to solve in these angles (primary variables) 
instead of the angular velocities. It will be shown that the 
system of equations takes the standard form 

 
  ,f ty y ,         (33) 

 
where y  denotes the vector of five variables.  
Actually, substituting (2) and (6) into (3) we obtain a 

second-order system of three differential equations in the three 
Euler angles ( , ,   ). Although the standard Runge-Kutta 
procedure would normally lead to six equations of first-order, 
however, since 3 0M   and due to the symmetry  1 2I I , 

Eq.(3c) implies 3 0  . Therefore, as Eq(2c) suggests, a 
linear dependency between the rotation about the z-axis and the 
rest two Euler angles: 3 cos      . 

Therefore, by choosing the auxiliary variables as: 
 

1 2 3 4 5, , , ,y y y y y          ,     (34) 
 

the final system to be solved becomes: 
 

1 2

2 2

3 4

4 4

5 3 2 3cos

y y
y r
y y
y r
y y y





   
   
      
   
   
   
      







      (35) 

 
The functions rR2R and rR4 Rthat appear in the right-hand side of 

(35) are derived from the solution of the linear system: 
 

11 12 2 1

21 22 4 2

a a r b
a a r b

 
     
     
            

(36) 

 
In (36) the four matrix elements are given by: 

11 1 5 3

12 1 5

21 2 5 3

22 2 5

sin sin

cos

cos sin

sin

a I y y
a I y
a I y y

a I y







 
       

(37) 

 
Also, the right-hand sides of (36) are given by: 

 

1 3 5 13 2 6 14 2 4

15 4 6 16 2 17 4

2 3 5 23 2 6 24 2 4

25 4 6 26 2 27 4

sin cos

sin sin

b mgl y y a y y a y y

a y y a y a y

b mgl y y a y y a y y
a y y a y a y

  

  

   

  
,  

(38) 

with 

 
 

6 3 2 3

13 1 5 3

14 1 5 3

15 1 5

16 3 2 3 5 3

17 3 2 3 5

cos

cos sin

sin cos

sin

cos sin

sin

y y y

a I y y
a I y y

a I y

a I I y y

a I I y







 





 

  

 

     
(39) 

and also: 

 
 

23 2 5 3

24 2 5 3

25 2 5

26 3 3 1 5 3

27 3 3 1 5

sin sin

cos cos

cos

sin sin

cos

a I y y

a I y y
a I y

a I I y y

a I I y





 



 

  

  

     
(40) 

 
It is noted that in the system (34) the Euler angle   is an 

integral part because it is involved in (37) and (38). 

4.2. Based on Lagrange’s equations 
It will be shown that the system of equations takes the standard 
form  ,f ty y , where now y  denotes the vector of four 
variables.  

If Eq(15a) is solved in   it gives: 

 1 3 3
2

1

cos
sin

c I
I
 





        (41) 

Substituting (41) into Eq(14b) one receives: 
 

 

 

2

1 3 3
2

1

1 3 33 3
2

1 1 1

cos
sin cos

sin

cos
sin sin

sin

c I
I

c II mgl
I I I

 
  



 
 







 

 
 
 
   
   
   



 (42) 

 
As previously, the last equation of the system is: 

 

3 cos      ,        (43) 
 

which when combined with (41) gives the following: 
 

 1 3 3
3 2

1

cos
cos

sin
c I

I
 

  



 

 
 
 

 ,     (44) 
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Therefore, the vector of the four variable is chosen as 

 1 2 3 4, , , Ty y y yy , where: 
 

1 2 3 4, , ,y y y y            (45) 
 
The system  ,f ty y

 
is produced when considering (i) 

Eq(41) for 1y , (ii) 2 3y y , (iii) Eq(42) for 3y , and (iv) Eq(44) 

for 4y .  

Remarks 

1)   Since the Lagrange equations (14) do not directly include 
the Euler angle   (it appears indirectly in 14c), the 
position of the center of mass and the estimation of the total 
energy can be found in terms of four variables only, i.e. 

, , ,     . 

2)   Since   is calculated from Eq(41), the conservation of the 

angular momentum 1p c   is taken for granted. 

3)   Equation (42) includes only the Euler angle  , therefore it 
is an ordinary differential equation of second order that 
could be separately solved. The numerical integration of the 
latter could be performed using any known scheme such as 
Runge-Kutta or Crank-Nicolson algorithms. Afterwards, 

the calculation of   through Eq(41) and of   through 

Eq(43) or Eq(44) will follow. The integration of   and   
could be separately performed.  

4.3. Based on two system invariants 
Without details, it has been written in several textbooks that, 
theoretically, one equation in the system that describes the 
motion of the spinning top could be replaced by the energy 
conservation [12,13]. In the same framework, it is well known 
that in one-dimensional problems the conservation of energy 
can be used to derive the derivative of the motion variable 
(displacement or angle) and then analytically integrate the 
equations [15, p.354 (Wiley-Toppan, 1966)].  

In our case, substituting Eq(41) in Eq(18), and then solving 
in  , one obtains: 

 
1 22

2 1 3 3
2 3 3

1 1

cos2 1
cos

2 sin
c I

c I mgl
I I

 
  




    

    
         



   (46) 
The analytical integration of Eq(46) has been previously 

obtained using elliptic integrals [1-4]. Under certain 
circumstances, Eq(46) can be also integrated in a numerical 
way. One difficulty is that the sign preserves its value only 
between two successive “turning” points of the nutation 
provided the initial derivative is different than zero. In 
particular, when the initial condition is 0 0  , the 

Runge-Kutta method is not applicable. To make this point clear, 
without loss of generality, let us consider the simplest forward 
Euler method (not applied in this paper): 

 1 ,n n n nt t        . Since Eq(46) fulfils the initial 

condition 0 0  , the aforementioned 1 Trecurrence formula will 

always vanish (1T 1 2 0n      ). The same conclusion 
holds for Crank-Nicolson and Runge-Kutta schemes. But even 
if the initial conditions are different than zero, Eq(46) is 
applicable only until the next “turning point” at which 0turn  . 
At the latter point, the numerical solution crashes and always 
leads to the same stable value (exactly as happen when the 
initial point was 0 0  ).  
4.3.1 Scenario 1 
Again, the abovementioned scenario of considering a system of 

three equations of first order  ,f ty y , i.e. Eq(41) for  , 

Eq(46) for  , and eq(44) for  , is applicable for only a small 
period of time (less than one-quarter of the nutation period).  
4.3.2 Scenario 2 
Alternatively, we propose the use of Eq(42), which is a second 
order ODE that can be easily solved using either of the 
Runge-Kutta or Crank-Nicolson methods. For every time step, 
we accept the calculated value 1n   “as is” and then we modify 

the value of 1n 
  according to Eq(46). Then, we perform the 

next step based on the corrected value of 1n  , and so on.  
In both above scenarios, due to the calculation of   

according to Eq(41), not only the energy (cR2R) but also the 
angular momentum (cR1R) are preserved. 

5. SUPPORT FORCES  
Applying second Newton’s law with respect to the Cartesian 
space system, the three components of the support force at the 
fixed point (axis origin O) are given by: 

support, 1,x CF mx  ,        (47a) 

support , 1,y CF my  ,        (47b) 

 support , 1,z CF m g z        (47c) 
 

By virtue of Eq(4a), the components of the acceleration at the 
center of mass C, in the space axes, are given by: 

 

 
1,

2 2

cos sin sin cos

sin sin 2 cos cos

Cx l      

      

 

  




  

    ,     (48a) 

 
1,

2 2

sin sin cos cos

cos sin 2 sin cos

Cy l      

      

 

  




 

    , (48b) 

 2
1 sin cosz l                   (48c) 
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In addition, the two components on the horizontal plane can 
be split in the radial and circumferential direction (with 

direction cosines  sin cos T
r   e  and 

 0 cos sin T
   e n , respectively) as follows: 

 

support, support,

support, support,

sin cos
cos sin

r x

y

F F
F F

 
 

    
    
    

   

 (49) 
Substituting (47) and (48) into (49), one finally obtains: 

 

 2 2
support , cos sinrF ml         

   ,    (50a) 

 support, sin 2 cosF ml        ,      (50b) 

 2
support, sin coszF m g l        

      (50c) 

 
Although the derivative of the Euler angle   and the relevant 

component 3  influence the numerical solution, it can be 
noticed that they are not included in the above expressions. 

6. NUMERICAL RESULTS 
The theory will be validated by two numerical examples, the 
first taken from literature whereas the second is of practical 
mechanical engineering importance. In addition to ODE45 
(MATLAB), in house Runge-Kutta and Crank-Nicolson 
methods have been used.  

The accuracy of the numerical solution has been tested either 
by the degree of approximating (i) the conservation of energy 
or (ii) the conservation angular momentum. Since Eq(2c) is the 
standard one that always participates in the system of equations, 
it will be completely fulfilled. Moreover, Equations (2a) and 
(2b) are by-products and there is no apparent measure to 
evaluate their accuracy. Consequently, two apparent residuals 
 1 2,R R  are those appearing in the first two dynamical Euler 
equations [(3a) and (3b)], which are given below: 

 

 1 1 1 2 3 2 3 sin cos ,R I I I mgl              (51a)
  2 2 2 3 1 3 1 sin sin ,R I I I mgl         

    
(51b) 

where 

1

2

sin sin cos cos sin

sin sin cos

sin cos sin cos cos

cos sin sin

        

    

        

    

  

 

  

 

   
  
   
  

      

 
Also, the residuals for the violation in the conservation of space 
zR1R-momentum (RR3R) and the conservation of energy (R R4R) are 
given by: 
 

2

3 1 3 3 1sin cosR I I c         ,                      (51c)
 

 2 2 2 2

4 1 3 3 2

1 1
sin cos

2 2
R I I mgl c         

  
      (51d) 

6.1. Example 1: A slow top 
For reasons of comparison, we closely follow the data 
previously used in literature [30, pp.138-139]. In addition, we 
also present many comments related to the mechanics involved 
and the auxiliary use of the available closed form analytical 
solutions.  

It is reminded that in matrix form (see Appendix A), the 
relationship between the transformation matrix A and the 
matrix of angular velocities Ω  is as follows: 

 

T T A A Ω ,   where   
3 2

3 1

2 1

0
0

0

 

 

 



 



 
 
 
  

Ω

   

 

 
The matrix A includes only the Euler angles whereas the 
angular velocity includes their derivatives. Therefore, the initial 
conditions must include data from both matrices. In more detail, 
the initial data where 0 00, 0   , 0 016, 0    , and 

0 016, 1    , whence 
 

   
   

0 0 0

0 0

1.0 0.0 0.0

0.0 cos sin
0.0 sin cos

 

 





 
 
 
  

A  and   

3,0 2,0

0 3,0 1,0

2,0 1,0

0 0.0 1.0 0.0

0 1.0 0.0 0.0
0 0.0 0.0 0.0

 

 

 

 

  



   
   
   
     

Ω , 

Following [30], the inertia tensor J, the center of mass Cr  with 
respect to the body system were given as 
 

1

2

3

0 0 7 0 0
1

0 0 0 7 0
8

0 0 0 0 2

I
I

I
 
   
   
   
      

J  (kg.mP

2
P), 

0
0C

l

 
 
 
  

r ,  

with 3 2l  m.   
Moreover, with respect to the space (global) system, the 

vector of the external torque is taken to be produced by the 
weight mg of the spinning top at the center of mass C, which for 
the fixed (space) system is: 

0
0

9.81
m m



 
 
 
  

g  (m.sP

-2
P), with m = 1 kg.    



- 81 - 

 

As was previously mentioned, the right-hand side of 
dynamic Euler’s equations (3) is given by Eq (6), which 
considers the projection of the vector representing the external 
torque onto the body axes.  

This case appears a much extended nutation. The numerical 
results are valid only if the top is mechanically supported by a 
stand that allows it to dip below the horizontal level. In more 
details, the topology of the stand must be so that it is capable of 
exerting either compressive (above the horizontal) or tensile 
(below the horizontal) support forces. The latter (below the 
horizontal) is crucial because otherwise the top will detach 
from its support point.  
6.1.1 Analytical calculations 
A first observation is that the major initial condition 

0 016, 0     is concerned with instantaneous stillness of 
the body z axis, which is equivalent with a turning point of 
nutation ( 1 16u  ). The immediately next turning point is 
accurately calculated by Eq(27g), which provides two feasible 
solutions, i.e. 1u 0.9808 (corresponds to 11.25 degrees, being 

the initial angle 0 16  ) and 2u  -0.9958 (corresponds to 

turn   174.8 degrees). Therefore, it is anticipated that the 
spinning top will perform large scale nutation in the interval 

 11.25, 174.8   degrees.  
Concerning the angular velocity of precession, it varies 

between zero (at 0 11.25   deg) and a maximum value max = 

67.97 rad/s (appearing at the lowest position turn   174.8 

deg). It is noted that if we try to take the first derivative of   in 
Eq(41) and equalize to zero, it leads to a quadratic polynomial 

with negative determinant, a fact that proves that   is 
permanently positive until the lowest point thus no other local 
maximum exists in between 0 11.25   and turn   174.8 
deg.  
It is also noted that in this example, since 

2
3 31 2 I  0.125<< 2mgl  19.62, Eq(27m) must be applied 

and taking the positive sign we obtain 1 1.967x  , which 
corresponds to 84.8 degrees below the horizontal, a fact 
verified with the numerical solution presented below. As it will 
be validated in the next Section, the set of simple formulas from 
Eq(29c) to Eq(32b) induce tremendous error and therefore are 
not applicable.  
6.1.2 Numerical computations 
In the sequence we present the numerical solution obtained 
using several schemes: Euler [Eq(35)], Lagrange [Eq(45)] and 
two energy conservation schemes. In order to avoid the use of 
elliptical integrals, as an “exact” solution we have taken the 
ODE45 MATLAB solution using an extremely small tolerance 
of order 10 P

-14
P. For a better evaluation, we present the response 

for three cycles of precession (   3×360 degrees of 
azimuthal angle), which here corresponds to almost three 

cycles of nutation. For the data of this example, the invariants 
of the mechanical systems are 1c   0.245 and 2c   8.46.  

In Euler formulation (Section 4.1), the first two residuals (R R1R 
and R R2 Rin Eq(51)) are zero whereas the last two (R R3R and RR4R) 
vary in time (Figure 2). It can be noticed that the period is 
about 2.22 seconds. MATLAB ODE45 was applied using the 
default accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Calculated residuals (RR1R, RR2R, RR3R, RR4R) based on Eq(51), using 
ODE45 for the Euler formulation (336 unequal steps). 

In Lagrange formulation (Section 4.2), as previously, the 
first two residuals are zero. In addition, no variation of cR1R was 
observed (RR3R=0). Moreover, not only the energy is not 
preserved (RR4R ≠ 0) but it also appears singularities when the 
center of mass passes through the horizontal. Concerning the 
angular momentum, both R R1R and RR2R vary in time (Figure 3). 
MATLAB ODE45 was applied using the default accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Calculated residuals (RR1R, RR2R, RR3R, RR4R) based on Eq(51), using 
ODE45 for the Lagrange formulation (248 unequal steps). 

In house standard RK2 and RK4 Runge-Kutta algorithms 
using a constant step (Appendix C) during the whole procedure 
leads to extremely high singularities (RR1R and R R2R of the order 
10P

-10
P, whereas RR4R of the order 10 P

9
P) when using the same 

number of time steps with the ODE45 (248 steps). However, 
when the number of steps was increased by a factor of four, i.e. 
from 248 to 992, then the time response using RK4 becomes 
more reasonable as shown in Figure 4. Concerning RK2, 
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similar accuracy is obtained when the number of steps increases 
by a factor of 16 to 3968 (= 16×248 = 4×992).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Calculated residuals (R R1R, RR2R, R R3R, RR4R) based on Eq(51), using 
RK4 (992 equal steps) for the Lagrange. 

Also, the Crank-Nicolson method (Appendix D) based on 
two slightly different schemes leads to similar results than the 
RK4 scheme for the same number of time steps. For both 
schemes (Scheme-1 and Scheme-2), the minimum multiple of 
248 to obtain acceptable results is 4×248=992 steps (very 
similar to RK4). The results are shown in Figure 5 and Figure 
6 for scheme-1 and scheme-2, respectively.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Calculated residuals (R R1R, RR2R, R R3R, RR4R) based on Eq(51), using 
Crank-Nicolson Scheme-1 for the Lagrange formulation (992 equal 
steps). 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Calculated residuals (RR1R, RR2R, RR3R, RR4R) based on Eq(51), using 
Crank-Nicolson Scheme-2 for the Lagrange formulation (992 equal 
steps). 

In the sequence, in order to include the constraint of constant 
total energy, we apply the two scenarios mentioned in Section 
4.3. The results are as follows.  
Scenario-1: As an initial state we considered the numerical 
solution at the time t = TRnR/8 (T RnR = nutation period), as obtained 
using the ODE45 MATLAB implementation of the Lagrange 
formulation for very small tolerance (RelTol=1e-14, 
AbsTol=1e-14). It is noted that all four residuals were of the 
order 10P

-14
P but numerical solution crashed after TRnR/8 at the first 

turning point.  
Scenario-2: Now the initial conditions were taken again equal 
to 0 00, 0   , 0 016, 0    , and 0 016, 1    . 
For a better control of the computer program, the latter was 
developed in conjunction with the in house RK4. No problem 
was noticed and all residuals were found at the limit of 
computer accuracy as shown in Figure 7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Calculated residuals (RR1R, RR2R, RR3R, RR4R) based on Eq(51), using 
RK4 (992 equal steps) for the Lagrange formulation (Scenario-2: 
Eq(42)) in conjunction with a-posteriori correction for energy 
conservation using Eq(46). 

The time history for the three Euler angles , ,    as well 
as for the level zRcR of the center of mass is shown in the typical 
Figure 8; no visually significant differences were noticed for 
all models. It is worth-mentioning that the numerical solution 
predicts the extreme (turning) point at 174.8, which is identical 
to the aforementioned analytical value mentioned in Section 
6.1.1 [Eq(27g) or Eq(27m)]. It is again noted that Eq(29c) is not 
applicable.  
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Figure 8. Euler angles and distance of the center of mass from the 
horizontal using ODE45 MATLAB solution with 248 steps of variable 
size. 

Moreover, the time history of the components of the support 
forces are shown in Figure 9 where one can notice that the 
vertical is initially upward (positive) until the body z axis 
reaches the horizontal and then it becomes downward (negative) 
until the lowest turning point. In the bottom right of the same 
figure, we also include the total energy and its distribution in 
terms of potential and kinetic components.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Support forces and energy using ODE45 MATLAB solution 
with 248 steps of variable size. 

As previously mentioned, the difference between the 
analytical [Eq(29c) until Eq(32b)] and the numerical solution 
was found to be enormous. In other words, the aforementioned 
analytical solutions are not applicable to a slow top as the case 
of this example. 

6.2 Example 2: The spinning wheel 
The meaning of this example is that it offers the possibility to 
modify parameters in the real world. It refers to a spinning 
flywheel, which is mounted at the end of a massless rigid rod of 
length l as shown in Figure 10. The flywheel is a cylindrical 
body of radius r and thickness h. The rigid rod is connected at 
the center of mass of the aforementioned cylindrical body. 
Under these circumstances, the momenta of inertia with respect 
to the origin O are given by: 
 

 2 2 2 2

1 33 ,
12 2

m m
I r h ml I r         (52) 

 
We choose the following data: 
Length of rod:   l = 1.0 m 
Gravitational acceleration:  g = 9.81 m/secP

2 
Thickness of spinning wheel: h = 0.010 m 
Density:   ρ = 7800 kg/mP

3 
Radius of spinning wheel:  r = 0.10m (see Fig.10) 
Mass of wheel:    m = ρ h π rP

2
P ( 2.45 kg) 

Initial conditions:   0 00, 0   , 0 016, 0    , 

and 0 00, variable   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Spinning wheel. 

According to Eq(28), the characterization of a “fast top” 
occurs when , or equivalently [by virtue of (52)]. 
Therefore:  

Condition for fast top:              .    (53) 
For the particular data, the critical angular velocity of the 

spinning wheel equals to 2
3,CR   7848 sP

-2
P (therefore 

             

                              
sP

-1
P  846 RPM).  

In order to validate the analytical solutions, numerical 
solutions are derived for several multiples and submultiples of 
the critical angular velocity 3,CR  

( 3 3, , 0.1 10CR     ) using ODE45 MATLAB (for 
the default) in conjunction with Lagrange formulation (Section 
4.2). Table 1 presents the comparison of results obtained using 
analytical and numerical solution. Therefore, if the average 

angular velocity   is estimated by Eq(32b), the calculated 
period does not always correspond to azimuthal angle of 360 
degrees. For example, one can notice in Table 1 that at the 
critical condition ( 3 3,CR  ) it corresponds to 428.1 degrees, 
at a double value to 373.1 degrees, whereas at a half value to 
338.2 degrees. It can be also noticed that when the spin velocity 
is smaller than 3, 2CR  the center of mass may travel below 

the horizontal level, whereas when 3 3,CR   the nutation is 
small and for still higher spins it tends to vanish.  
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Table 1: Evaluation of analytical solutions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Let us now check the accuracy of the analytical solutions, i.e.  
 
Eq(29c) up to Eq(32b). Basically, there are four physical 

quantities to calculate: 
1) The change   of the inclination angle   during 

nutation. Equivalently, the range in which the 
z-coordinate of the centroid varies. To this, Eq(29c) is 
applied. 

2) The frequency k of the nutation (Eq(30)).  
3) The average frequency (equivalently, of angular velocity) 

of the precession (Eq(32b)). 
4) The average number of nutations in a whole period of 

precession (360 degrees of  ). The latter equals to the 
ratio of the average frequency of precession over the 
frequency of nutation. Therefore, by virtue of Eq(30) and 
Eq(32b), the number of nutations in a whole period of 
precession are approximated by: 

Number of nutations per period of precession:   

 
 2

3 3

1
nutations

I
N

I mgl


       (54) 

For example, in case of λ=2, Eq(29) gives 2 1 0.0024u u  , 
which is very near to the value 0.0027 that was calculated by 
the ODE45. Also, Eq(54) predicts 31.9 nutations (30.8 when 
using the correcting factor 360/373.1 according to Table 1), 
which is very close to the measured 29 nutations as shown in 
Figure 11. It is noted than calculations concern 373.1 degrees 
of precession, whereas the overlapping of one period of 
nutation can be noticed near the initial point which is located at 
   0 0 0, , 0, 0.195, 0.981x y z   . 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Calculated nutations when the initial spin angular velocity 
is twice larger than the critical value of 88.59 sP

-1
P. 

7. DISCUSSION  
This study focuses on the “spinning top”, which works 
equivalently with a flywheel at the end of a rigid rod. The 
common feature is that in both cases the distance of the centroid 
from the support is different than zero ( 0l  ). Although in 
engineering praxis the so-called “gyroscope” is of higher 
importance, the only essential difference between a spinning 
top and a gyroscope lies on the fact that a gyroscope is usually 
supported at its centroid (thus 0l  ).  

It was shown that, in principle, the ODE45 MATLAB 
function can be safely applied for the numerical integration of 
the differential equations of motion, in all formulations. The 
advantage of this function is that it continuously varies the time 
step so as to locally achieve the given tolerance.   

In general, basic conclusions can be derived on the basis of 
simple closed form analytical solutions provided we carefully 
deal with the slow top and fearless with a fast top in which the 
initial spin is higher than its critical value. In the case of a 
spinning flywheel of cylindrical shape, a simple formula was 
given for the aforementioned critical value in Eq(53). It can be 
noticed than in the latter case the critical spin depends only on 
the length l and the radius r and not on the thickness h of the 
cylindrical wheel.  

8. CONCLUSIONS  
In this study we successfully applied several numerical 
schemes for the solution of the equations of motion for a 
symmetrical spinning top, which was considered as a rigid 
body with a fixed and frictionless point. It was found that using 
the standard MATLAB ODE45 with default accuracy, the 
Lagrange based formulation requires a smaller number of time 
steps than the Euler equations formulation (about 36 percent 
reduction). It was also found that the same occurs when 
increasing the tolerance variables. Both of the tested 
Crank-Nicolson schemes did not perform better than in house 
Runge-Kutta RK4 when applied in conjunction with an 
invariable size of the time step. Although the ordinary 
differential equation produced by the energy conservation is 
solvable in terms of the inclination Euler angle, it was found to 
be trapped between two “turning points”. In contrast, the 
accuracy was significantly increased when the Lagrange 
solution was combined with a-posteriori correction of the time 
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derivative of the inclination angle for each time step. It was 
clearly shown that although some analytical solutions can be 
applied to both slow and fast tops, the behavior of fast spinning 
tops is predicted by much simpler formulas.  
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APPENDIX A 
 

Derivation of motion Euler equations using matrices 
 

In general, the relation between the co-ordinates of a vector v in 
the local (body) Oxyz system and the global (space) OxR1RyR1RzR1R 
system, is given by the simple formula: 
 

local global v A v ,     (A-1) 
 
where A is the transformation matrix from the space (global) to 
the body (local) system. In our case, the matrix A is given by 
Eq(5).  

Equivalently, it holds: 
 

T
global local v A v ,     (A-2) 

 
where TA  is the transpose of the matrix A (obviously, 

1T  AA AA I ).  
The local Cartesian system may be considered that is 

produced by the global through a rotation θ i  around the 

unit vector i . Since the rotation vector θ  can be a function 

of time, i.e.  tθ θ , then the angular velocity ω  of the rigid 
body (local system) will be: 

 

x

y

z

d
dt





 
    
  

θω       (A-3) 

 
If we redefine the abovementioned angular velocity in a 

tensor from: 
 

0
0

0

z y

local z x

y x

 
 
 

 
 

  
  

Ω ,     (A-4) 

 
it can be easily proved that  
 

T
local A Ω A ,   or equivalently,    T T

local A A Ω  

  (A-5) 
 

It is worth-mentioning that the definition of the matrix Ω  in 
(A-4) has been chosen so as it fulfills the identity: 
  Ω v ω v 

 (matrix product equals to the cross product).  
Therefore, the components of the time derivative of the 

vector v are related by: 

 

 local global global global    v A v Av A v
   .   

 (A-6) 
and 

   T T T
global local local local   v A v A v A v

 
  ,   

 (A-7) 
 

By virtue of (A-5), Eq(A-7) becomes; 
 

T T
global local local local   v A Ω v A v  ,    (A-8) 

 
Let us now designate by L the angular momentum of the 

rigid body and M the external moment (or torque). The second 
Newton’s law for the rotation is written as follows: 

global
global global

d
dt

 
L

M L      (A-9) 

Since both M and L are vectors, they obey the general 
transformation which is given by Eq(A-1) and (A-6). Therefore 
it holds: 

T
global local M A M ,     (A-10) 

T
global local L A L ,     (A-11) 

Substituting (A-10) and (A-11) into (A-9), and considering 
the identity (A-7), one obtains: 

 T T T
local local localL  A M A A L

       (A-12) 

Substituting (A-5) into (A-12) one obtains: 
T T T

local local local local     A M A Ω L A L    
 (A-13) 

Left-multiplying (A-13) by A , considering that T AA I , 
and rearranging the left and right members, we receive: 

local local local local  L Ω L M     (A-14) 
Considering the notation appearing in the main text, i.e.: 

1 1

2 2

3 3

I
I
I





 
   
  

L ,   and   
1 1

2 2

3 3

I
I
I





 
   
  

L


 


     (A-15) 

 

3 2

3 1

2 1

0
0

0
local

 
 
 

 
   
  

Ω ,     (A-16) 

and 

1

2

3

local

M
M
M

 
   
  

M ,        (A-17) 

Equation (A-14) finally becomes: 
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1 1 3 2 1 1 1

2 2 3 1 2 2 2

3 3 2 1 3 3 3

0
0

0

I I M
I I M
I I M

   
   
   

       
               
             





  

 

(A-18) 
 

Equation (A-18) is identical with Eq(3a,b,c), and this 
completes the proof. 

 
APPENDIX B 

 
The angular velocity in the fixed co-ordinate 

system 
Applying (A-2) for the vector  1 2 3

T
local   v , of 

which the components in the fixed system is 

1 1 1

T

global x y z     v , we finally obtain: 

  

1

1

1

cos sin sin ,

sin cos sin ,

cos .

x

y

z

     

     

   

 

 

 

 
 
 

     (B-1) 

 
It is remarkable that the same result will be obtained if we 
transform the tensor localΩ  given in (A-16) to the globalΩ , 
using the formula: 
 

T
global globalΩ A Ω A      (B-2) 

 
APPENDIX C 

Runge-Kutta algorithms as applied 
 
For a first order differential system 
 

 ,ty f y ,      (C-1) 
 
with initial conditions 
 

  00 y y ,      (C-2) 
 
 
the two-point Runge-Kutta (RK2) solution is produced using 
the recursion: 
 
 
 

 
 

3
1 2
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1
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2 2

n n

n n

n n

h

h t

hh t
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     (C-3) 

 
Also, the four-point Runge-Kutta (RK4) solution is produced 
using the recursion:  
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   (C-4) 

 
Both (C-3) and (C-4) restrict to the same (constant) time step h.  
 

APPENDIX D 
 

Crank-Nicolson method as applied 
 
For the problem described by (C-1) and (C-2), the trapezoidal 
rule suggests using: 
 

 
 

1

1

1 ,n n n

n n n t




  

 

  

  

y y y

y y y
    (D-1) 

and 
 

    1, 1n n nt y     f f f       (D-2) 
Therefore, the system (C-1) is solved using the recursion: 
 

 1 11n n n nh        y y f f      (D-3) 
 
According to the choice of the parameter   we distinguish 
four alternative schemes as follows: 
 

0, forward difference / Euler
1 2, Crank-Nicolson (mid-point)
2 3, Galerkin
1, backward difference

 







    (D-4) 

 
In this paper we have tested only the case of 1 2  , which is 
the so-called Crank-Nicolson scheme. Moreover, since the 
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right-hand-side  ,tf y  is a function of the unknown value y , 

we have to start (D-3) for the initial given value 0f  at t=0, and 

then perform some iterations to update 1nf , which is a 

function of 1ny . We distinguish two alternative schemes: 
1) Scheme 1: We use the formula:  

 1 1 2n n n nh   y y f f       (D-5) 

and perform a number of iteration to determine the 

right-hand-side term  1 2n nf f  . 

2) Scheme 2: As an alternative, we use the modified 
formula: 

1
1 ,

2
n n

n n h t 


    
 

y yy y f     (D-6) 

and perform a number of iteration to determine the 

right-hand-side term 1,
2

n nt  
 
 

y yf . 
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