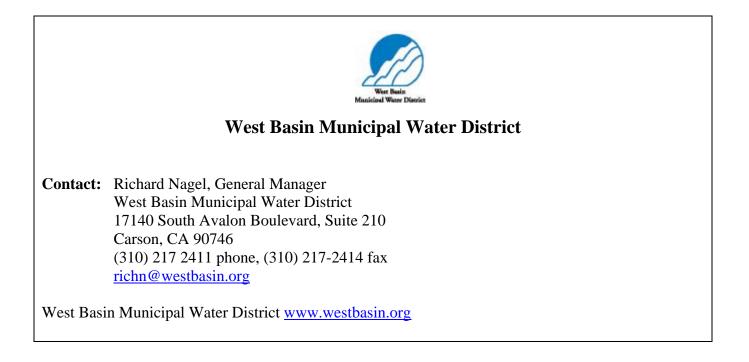
Analysis of the Energy Intensity of Water Supplies for West Basin Municipal Water District

March, 2007

Robert C. Wilkinson, Ph.D.


Note to Readers

This report for West Basin Municipal Water District is an update and revision of an analysis and report by Robert Wilkinson, Fawzi Karajeh, and Julie Mottin (Hannah) conducted in April 2005. The earlier report, *Water Sources "Powering" Southern California: Imported Water, Recycled Water, Ground Water, and Desalinated Water*, was undertaken with support from the California Department of Water Resources, and it examined the energy intensity of water supply sources for both West Basin and Central Basin Municipal Water Districts. This analysis focuses exclusively on West Basin, and it includes new data for ocean desalination based on new engineering developments that have occurred over the past year and a half.

Principal Investigator: Robert C. Wilkinson, Ph.D.

Dr. Wilkinson is Director of the Water Policy Program at the Donald Bren School of Environmental Science and Management, and Lecturer in the Environmental Studies Program, at the University of California, Santa Barbara. His teaching, research, and consulting focuses on water policy, climate change, and environmental policy issues. Dr. Wilkinson advises private sector entities and government agencies in the U.S. and internationally. He currently served on the public advisory committee for California's 2005 State Water Plan, and he represented the University of California on the Governor's Task Force on Desalination.

Contact: wilkinson@es.ucsb.edu

Overview

Southern California relies on imported and local water supplies for both potable and non-potable uses. Imported water travels great distances and over significant elevation gains through both the California State Water Project (SWP) and Colorado River Aqueduct (CRA) before arriving in Southern California, consuming a large amount of energy in the process. Local sources of water often require less energy to provide a sustainable supply of water. Three water source alternatives which are found or produced locally and could reduce the amount of imported water are desalinated ocean water, groundwater, and recycled water. Groundwater and recycled water are significantly less energy intensive than imports, while ocean desalination is getting close to the energy intensity of imports.

Energy requirements vary considerably between these four water sources. All water sources require pumping, treatment, and distribution. Differences in energy requirements arise from the varying processes needed to produce water to meet appropriate standards. This study examines the energy needed to complete each process for the waters supplied by West Basin Municipal Water District (West Basin).

Specific elements of energy inputs examined in this study for each water source are as follows:

- Energy required to **import water** includes three processes: pumping California SWP and CRA supplies to water providers; treating water to applicable standards; and distributing it to customers.
- **Desalination of ocean water** includes three basic processes: 1) pumping water from the ocean or intermediate source (e.g. a powerplant) to the desalination plant; 2) pre-treating and then desalting water including discharge of concentrate; and 3) distributing water from the desalination plant to customers.
- **Groundwater** usage requires energy for three processes: pumping groundwater from local aquifers to treatment facilities; treating water to applicable standards; and distributing water from the treatment plant to customers. Additional injection energy is sometimes needed for groundwater replenishment.
- Energy required to **recycle water** includes three processes: pumping water from secondary treatment plants to tertiary treatment plants; tertiary treatment of the water, and distributing water from the treatment plant to customers.

The energy intensity results of this study are summarized in the table on the following page. They indicate that recycled water is among the least energy-intensive supply options available, followed by groundwater that is naturally recharged and recharged with recycled water. Imported water and ocean desalination are the most energy intensive water supply options in California. East Branch State Water Project water is close in energy intensity to desalination figures based on current technology, and at some points along the system, SWP supplies exceed estimated ocean desalination energy intensity. The following table identifies energy inputs to each of the water supplies including estimated energy requirements for desalination. Details describing the West Basin system operations are included in the water source sections. Note that the Title 22 recycled water energy figure reflects only the *marginal* energy required to treat secondary effluent wastewater which has been processed to meet legal discharge requirements, along with the energy to convey it to user

Energy Intensity of Water Supplies for West Basin Municipal Water District

	af/yr	Percentage of Total Source Type	kWh/af Conveyance Pumping	kWh/af MWD Treatment	kWh/af Recycled Treatment	kWh/af Groundwater Pumping	kWh/af Groundwater Treatment	kWh/af Desalination	kWh/af WBMWD Distribution	Total kWh/af	Total kWh/year
Imported Deliveries											
State Water Project (SWP) ¹	57,559	43%	3,000	44	NA	NA	NA	NA	0	3,044	175,209,596
Colorado River Aqueduct (CRA) ¹	76,300	57%	2,000	44	NA	NA	NA	NA	0	2,044	155,957,200
(other that replenishment water)											
Groundwater ²											
natural recharge	19,720	40%	NA	NA	NA	350	0	NA	0	350	6,902,030
replenished with (injected) SWP water ¹	9,367	19%	3,000	44	NA	350	0	NA	0	3,394	31,791,598
replenished with (injected) CRA water ¹	11,831	24%	2,000	44	NA	350	0	NA	0	2,394	28,323,432
replenished with (injected) recycled water	8,381	17%	205	0	790	350	0	NA	220	1,565	13,116,278
Recycled Water											
West Basin Treatment, Title 22	21,506	60%	205	NA	0	NA	NA	NA	285	490	10,537,940
West Basin Treatment, RO	14,337	40%	205	NA	790	NA	NA	NA	285	1,280	18,351,360
Ocean Desalination	20,000	100%	200	NA	NA	NA	NA	3,027	460	3,687	82,588,800

Notes:

NA Not applicable

¹ Imported water based on percentage of CRA and SWP water MWD received, averaged over an 11-year period. Note that the figures for imports do not include an accounting for system losses due to evaporation and other factors. These losses clearly exist, and an estimate of 5% or more may be reasonable. The figures for imports above should therefore be understood to be conservative (that is, the actual energy intensity is in fact higher for imported supplies than indicated by the figures).

² Groundwater values include entire basin, West Basin service area covers approximately 86% of the basin. Groundwater values are specific to aquifer characteristics, including depth, within the basin.

Energy Intensity of Water

Water treatment and delivery systems in California, including extraction of "raw water" supplies from natural sources, conveyance, treatment and distribution, end-use, and wastewater collection and treatment, account for one of the largest energy uses in the state.¹ The California Energy Commission estimated in its 2005 Integrated Energy Policy Report that approximately 19% of California's electricity is used for water related purposes including delivery, end-uses, and wastewater treatment.² The total energy embodied in a unit of water (that is, the amount of energy required to transport, treat, and process a given amount of water) varies with location, source, and use within the state. In many areas, the energy intensity may increase in the future due to limits on water resource extraction, and regulatory requirements for water quality, and other factors.³ Technology improvements may offset this trend to some extent.

Energy intensity is the total amount of energy, calculated on a whole-system basis, required for the use of a given amount of water in a specific location.

The Water-Energy Nexus

Water and energy systems are interconnected in several important ways in California. Water systems both provide energy – through hydropower – and consume large amounts of energy, mainly through pumping. Critical elements of California's water infrastructure are highly energy-intensive. Moving large quantities of water long distances and over significant elevation gains, treating and distributing it within the state's communities and rural areas, using it for various purposes, and treating the resulting wastewater, accounts for one of the largest uses of electrical energy in the state.⁴

Improving the efficiency with which water is used provides an important opportunity to increase related energy efficiency. (*"Efficiency"* as used here describes the useful work or service provided by a given amount of water.) Significant potential economic as well as environmental benefits can be cost-effectively achieved in the energy sector through efficiency improvements in the state's water systems and through shifting to less energy intensive local sources. The California Public Utilities Commission is currently planning to include water efficiency improvements as a means of achieving energy efficiency benefits for the state.⁵

Overview of Energy Inputs to Water Systems

There are four principle energy elements in water systems:

- 1. primary water extraction and supply delivery (imported and local)
- 2. treatment and distribution within service areas
- 3. on-site water pumping, treatment, and thermal inputs (heating and cooling)

4. wastewater collection, treatment, and discharge

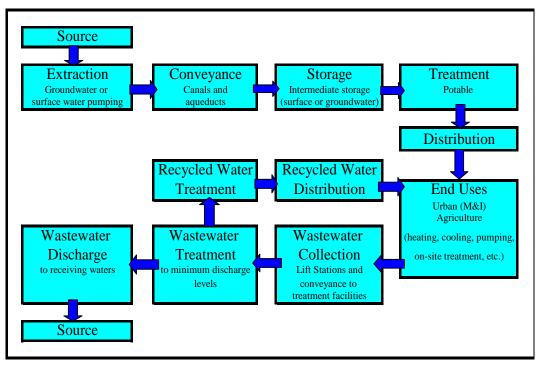
Pumping water in each of these four stages is energy-intensive. Other important components of embedded energy in water include groundwater pumping, treatment and pressurization of water supply systems, treatment and thermal energy (heating and cooling) applications at the point of end-use, and wastewater pumping and treatment.⁶

1. Primary water extraction and supply delivery

Moving water from near sea-level in the Sacramento-San Joaquin Delta to the San Joaquin-Tulare Lake Basin, the Central Coast, and Southern California, and from the Colorado River to metropolitan Southern California, is highly energy intensive. Approximately 3,236 kWh is required to pump one acre-foot of SWP water to the end of the East Branch in Southern California, and 2,580 kWh for the West Branch. About 2,000 kWh is required to pump one acre foot of water through the CRA to southern California.⁷ Groundwater pumping also requires significant amounts of energy depending on the depth of the source. (Data on groundwater is incomplete and difficult to obtain because California does not systematically manage groundwater resources.)

2. Treatment and distribution within service areas

Within local service areas, water is treated, pumped, and pressurized for distribution. Local conditions and sources determine both the treatment requirements and the energy required for pumping and pressurization.


3. On-site water pumping, treatment, and thermal inputs

Individual water users use energy to further treat water supplies (e.g. softeners, filters, etc.), circulate and pressurize water supplies (e.g. building circulation pumps), and heat and cool water for various purposes.

4. Wastewater collection, treatment, and discharge

Finally, wastewater is collected and treated by a wastewater authority (unless a septic system or other alternative is being used). Wastewater is often pumped to treatment facilities where gravity flow is not possible, and standard treatment processes require energy for pumping, aeration, and other processes. (In cases where water is reclaimed and re-used, the calculation of total energy intensity is adjusted to account for wastewater as a *source* of water supply. The energy intensity generally includes the additional energy for treatment processes beyond the level required for wastewater discharge, plus distribution.)

The simplified flow chart below illustrates the steps in the water system process. A spreadsheet computer model is available to allow cumulative calculations of the energy inputs embedded at each stage of the process. This methodology is consistent with that applied by the California Energy Commission in its analysis of the energy intensity of water.

Simplified Flow Diagram of Energy Inputs to Water Systems

Source: Robert Wilkinson, UCSB⁸

Calculating Energy Intensity

Total energy intensity, or the amount of energy required to facilitate the use of a given amount of water in a specific location, may be calculated by accounting for the summing the energy requirements for the following factors:

- imported supplies
- local supplies
- regional distribution
- treatment
- local distribution
- on-site thermal (heating or cooling)
- on-site pumping
- wastewater collection
- wastewater treatment

Water pumping, and specifically the long-distance transport of water in conveyance systems, is a major element of California's total demand for electricity as noted above. Water use (based on embedded energy) is the next largest consumer of electricity in a typical Southern California home after refrigerators and air conditioners. Electricity required to support water service in the typical home in Southern California is estimated at between 14% to 19% of total residential energy demand.⁹ If air conditioning is not a factor the figure is even higher. Nearly three quarters of this energy demand is for pumping imported water.

Interbasin Transfers

Some of California's water systems are uniquely energy-intensive, relative to national averages, due to the pumping requirements of major conveyance systems which move large volumes of water long distances and over thousands of feet in elevation lift. Some of the interbasin transfer systems (systems that move water from one watershed to another) are net energy producers, such as the San Francisco and Los Angeles aqueducts. Others, such as the SWP and the CRA require large amounts of electrical energy to convey water. On *average*, approximately 3,000 kWh is necessary to pump one AF of SWP water to southern California,¹⁰ and 2,000 kWh is required to pump one AF of water through the CRA to southern California.

Total energy savings for reducing the full embedded energy of *marginal* (e.g. imported) supplies of water used indoors in Southern California is estimated at about 3,500 kWh/af.¹² Conveyance over long distances and over mountain ranges accounts for this high marginal energy intensity. In addition to avoiding the energy and other costs of pumping additional water supplies, there are environmental benefits through reduced extractions from stressed ecosystems such as the delta.

Imported Water: The State Water Project and the Colorado River Aqueduct

Water diversion, conveyance, and storage systems developed in California in the 20th century are remarkable engineering accomplishments. These water works move millions of AF of water around the state annually. The state's 1,200-plus reservoirs have a total storage capacity of more than 42.7 million acre feet (maf).¹³ West Basin receives imported water from Northern California through the State Water Project and Colorado River water via the Colorado River Aqueduct. The Metropolitan Water District of Southern California delivers both of these imported water supplies to the West Basin.

California's Major Interbasin Water Projects

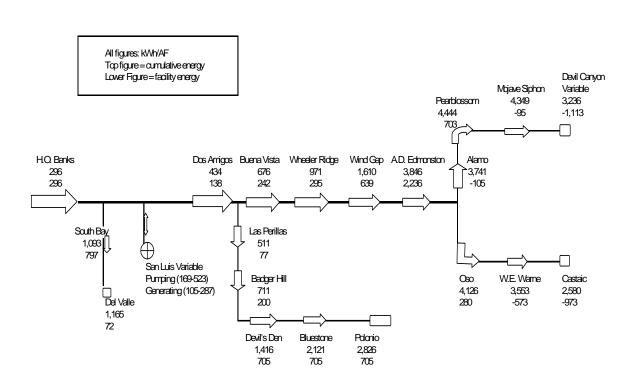
The State Water Project

The State Water Project (SWP) is a state-owned system. It was built and is managed by the California Department of Water Resources (DWR). The SWP provides supplemental water for agricultural and urban uses.¹⁴ SWP facilities include 28 dams and reservoirs, 22 pumping and generating plants, and nearly 660 miles of aqueducts.¹⁵ Lake Oroville on the Feather River, the project's largest storage facility, has a total capacity of about 3.5 maf.¹⁶ Oroville Dam is the tallest and one of the largest earth-fill dams in the United States.¹⁷

Water is pumped out of the delta for the SWP at two locations. In the northern Delta, Barker Slough Pumping Plant diverts water for delivery to Napa and Solano counties through the North Bay

Aqueduct.¹⁸ Further south at the Clifton Court Forebay, water is pumped into Bethany Reservoir by the Banks Pumping Plant. From Bethany Reservoir, the majority of the water is conveyed south in the 444-mile-long Governor Edmund G. Brown California Aqueduct to agricultural users in the San Joaquin Valley and to urban users in Southern California. The South Bay Pumping Plant also lifts water from the Bethany Reservoir into the South Bay Aqueduct.¹⁹

The State Water Project is the largest consumer of electrical energy in the state, requiring an average of 5,000 GWh per year.²⁰ The energy required to operate the SWP is provided by a combination of DWR's own hydroelectric and other generation plants and power purchased from other utilities. The project's eight hydroelectric power plants, including three pumping-generating plants, and a coal-fired plant produce enough electricity in a normal year to supply about two-thirds of the project's necessary power.


Energy requirements would be considerably higher if the SWP was delivering full contract volumes of water. The project delivered an average of approximately 2.0 mafy, or half its contracted volumes, throughout the 1980s and 1990s.²¹ Since 2000 the volumes of imported water have generally increased.

The following map indicates the location of the pumping and power generation facilities on the SWP.

Names and Locations of Primary State Water Delivery Facilities

The following schematic shows each individual pumping unit on the State Water Project, along with data for both the individual and cumulative energy required to deliver an AF of water to that point in the system. Note that the figures include energy recovery in the system, but they do not account for losses due to evaporation and other factors. These losses may be in the range of 5% or more. While more study of this issue is in order, it is important to observe that the energy intensity numbers are conservative (e.g. low) in that they assume that all of the water originally pumped from the delta reaches the ends of the system without loss.

State Water Project Kilowatt-Hours per Acre Foot Pumped (Includes Transmission Losses)

Source: Wilkinson, based on data from: California Department of Water Resources, State Water Project Analysis Office, Division of Operations and Maintenance, Bulletin 132-97, 4/25/97.

The Colorado River Aqueduct

Significant volumes of water are imported to the Los Angeles Basin and San Diego in Southern California from the Colorado River via the Colorado River Aqueduct (CRA). The aqueduct was built by the Metropolitan Water District of Southern California (MWD). Though MWD's allotment of the Colorado River water is 550,000 afy, it has historically extracted as much as 1.3 mafy through a combination of waste reduction arrangements with Imperial Irrigation District (IID) (adding about 106,000 afy) and by using "surplus" water.²² The Colorado River water supplies require about 2,000 kWh/af for conveyance to the Los Angeles basin.

The Colorado River Aqueduct extends 242 miles from Lake Havasu on the Colorado River to its terminal reservoir, Lake Mathews, near Riverside. The CRA was completed in 1941 and expanded in 1961 to a capacity of more than 1 MAF per year. Five pumping plants lift the water 1,616 feet, over several mountain ranges, to southern California. To pump an average of 1.2 maf of water per year into the Los Angeles basin requires approximately 2,400 GWh of energy for the CRA's five pumping plants.²³ On average, the energy required to import Colorado River water is about 2,000 kWh/AF. The aqueduct was designed to carry a flow of 1,605 cfs (with the capacity for an additional 15%).

The sequence for CRA pumping is as follows: The Whitsett Pumping Plant elevates water from Lake Havasu 291 feet out of the Colorado River basin. At "mile 2," Gene pumping plant elevates water 303 feet to Iron Mountain pumping plant at mile 69, which then boosts the water another 144 feet. The last two pumping plants provide the highest lifts - Eagle Mountain, at mile 110, lifts the water 438 feet, and Hinds Pumping Plant, located at mile 126, lifts the water 441 feet.²⁴

MWD has recently improved the system's energy efficiency. The average energy requirement for the CRA was reduced from approximately 2,100 kWh /af to about 2,000 kWh /af "through the increase in unit efficiencies provided through an energy efficiency program." The energy required to pump each acre foot of water through the CRA is essentially constant, regardless of the total annual volume of water pumped. This is due to the 8-pump design at each pumping plant. The average pumping energy efficiency does not vary with the number of pumps operated, and MWD states that the same 2,000 kWh/af estimate is appropriate for both the "Maximum Delivery Case" and the "Minimum Delivery Case."

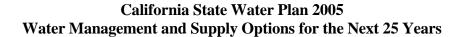
It appears that there are limited opportunities to shift pumping off of peak times on the CRA. Due to the relatively steep grade of the CRA, limited active water storage, and transit times between plants, the system does not generally lend itself to shifting pumping loads from on-peak to off-peak. Under the Minimum Delivery Case, the reduced annual water deliveries would not necessarily bring a reduction in annual peak load, since an 8-pump flow may still need to be maintained in certain months.

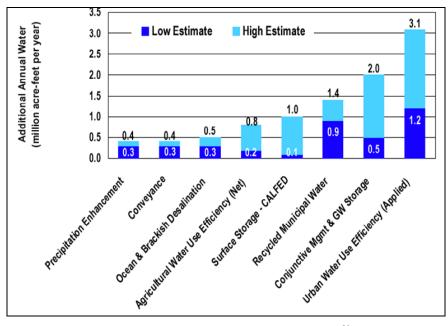
Electricity to run the CRA pumps is provided by power from hydroelectric projects on the Colorado River as well as off-peak power purchased from a number of utilities. The Metropolitan Water District has contractual hydroelectric rights on the Colorado River to "more than 20 percent of the firm energy and contingent capacity of the Hoover power plant and 50 percent of the energy and capacity of the Parker power plant."²⁶ Energy purchased from utilities makes up approximately 25 percent of the remaining energy needed to power the Colorado River Aqueduct.²⁷

Minimizing the Need for Inter-Basin Transfers

For over 100 years, California has sought to transfer water from one watershed for use in another. The practice has caused a number of problems. As of 2001, California law requires that the state examine ways to "*minimize the need to import water from other hydrologic regions*" and report on these approaches in the official State Water Plan.²⁸ A new focus and priority has been placed on developing *local* water supply sources, including efficiency, reuse, recharge, and desalination. The law directs the Department of Water Resources as follows:²⁹

The department, as a part of the preparation of the department's Bulletin 160-03, shall include in the California Water Plan a report on the development of regional and local water projects within each hydrologic region of the state, as described in the department's Bulletin 160-98, to improve water supplies to meet municipal, agricultural, and environmental water needs and *minimize the need to import water from other hydrologic regions*.


(Note that Bulletin 160-03 became Bulletin 160-05 due to a slip in the completion schedule.)


The legislation set forth the range of local supply options to be considered:

The report shall include, but is not limited to, regional and local water projects that use technologies for desalting brackish groundwater and ocean water, reclaiming water for use within the community generating the water to be reclaimed, the construction of improved potable water treatment facilities so that water from sources determined to be unsuitable can be used, and the construction of dual water systems and brine lines, particularly in connection with new developments and when replacing water piping in developed or redeveloped areas.

This law calls for a thorough consideration in the state's official water planning process of work that is already going on in various areas of the state. The significance of the legislation is that for the first time, local supply development is designated as a priority in order to minimize inter-basin transfers.

The Department of Water Resources State Water Plan (Bulletin 160-05) reflects this new direction for the state in its projection of water supply options for the next quarter century. The following graph clearly indicates the importance of local water supplies from various sources in the future.

Source: California Water Plan Update 2005.³⁰

Energy Requirements for Treatment of State Water Project and the Colorado River Aqueduct Supplies

Imported SWP and CRA supplies require an estimated 44 kWh/af for treatment before it enters the local distribution systems. Water pressure from MWD's system is sufficient to move supplies through the West Basin distribution system without requiring additional pressure.

Groundwater and Recycled Water at West Basin MWD

Nearly half of the water used in the service area of the Metropolitan Water District of Southern California (from Ventura to Mexico) is secured from *local* sources, and the percentage of total supplies provided by local sources is growing steadily.³¹ This figure is up from approximately one-third of the supply provided by local resources in the mid-1990s.³² MWD has encouraged local supply development through support for recycling, groundwater recovery, conservation, groundwater storage, and most recently, ocean desalination.

Groundwater and recycled water are important and growing supply sources for West Basin. Water flows through natural hydrologic cycles continuously. The water we use today has made the journey many times. In water recycling programs, water is treated and re-used for various purposes including recharging groundwater aquifers. The treatment processes essentially short-circuit the longer-term process of natural evaporation and precipitation. In cities around the world water is used and then returned to natural water systems where it flows along to more users down stream. It is often used again and again before it flows to the ocean or to a terminal salt sink.

Groundwater at West Basin MWD

Groundwater reservoirs in West Basin are replenished with four water sources; natural recharge, SWP supplies, CRA supplies, and recycled water supplies. The largest portion (approximately 40%) of groundwater supplies is derived from natural recharge. The energy associated with recovering this naturally recharged supply is estimated at 350 kWh/af for groundwater pumping.

Imported water, from both the SWP and CRA, is injected into the groundwater supply in West Basin. The imported water remains at sufficient pressure for injection, so no additional energy is required. The energy requirements for importing water are significant, however, primarily due to the energy associated with importing the water from northern California and the Colorado River. The imported water also passes through MWD's treatment plant, incurring additional energy requirements. The total energy intensity for West Basin's imported water used for recharge of groundwater storage from the SWP is 3,394 kWh/af and from the CRA is 2,394 kWh/af.

Recycled water is also used to recharge groundwater in the basin. West Basin replenishes groundwater by injecting RO treated recycled water from the West Basin Water Recycling Facility (WBWRF). The total energy use is 1,565 kWh/af. Details for the recycled water energy are described in the next section.

Recycled Water at West Basin MWD

Many cities in California are using advanced processes and filtering technology to treat wastewater so it can be re-used for irrigation, industry, and other purposes. In response to increasing demands for water, limitations on imported water supplies, and the threat of drought, West Basin has developed state-of-the-art regional water recycling programs. Water is increasingly being used more than once within systems at both the end-use level and at the municipal level. This is because scarce water resources (and wastewater discharges) are increasing in cost and because cost-effective technologies and techniques for re-using water have been developed that meet health and safety requirements. At the end-use, water is recycled within processes such as cooling towers and industrial processes prior to entering the wastewater system. Once-through systems are increasingly being replaced by re-use technologies. At the municipal level, water re-use has become a significant source of supplies for both landscape irrigation and for commercial and industrial processes. MWD of Southern California is supporting 33 recycling programs in which treated wastewater is used for non-potable purposes.³³

West Basin provides customers with recycled water used for municipal, commercial and industrial applications. Approximately 27,000 AF of recycled water is annually distributed to more than 210 sites in the South Bay. These sites use recycled water for a wide range of non-potable applications. Based in El Segundo, California, the WBWRF is among the largest projects of its kind in the nation, producing five qualities of recycled water with the capacity at full build-out to recycle 100,000 AF per year of wastewater from the Los Angeles Hyperion Treatment Plant.

In 1998, West Basin began to construct the nation's only regional high-purity water treatment facility, the Carson Regional Water Recycling Facility (CRWRF). A pipeline stretching through five South Bay communities connects the CRWRP to West Basin's El Segundo facility. At the CRWRF, West Basin ultra-purifies the recycled water it gets from the El Segundo facility. From the CRWRF, West Basin uses service lines to transport two types of purified water to the BP Refinery in Carson. The West Basin expansion also includes a new disposal pipeline to carry brine reject water from the CRWRF to a Los Angeles County Sanitation District's outfall.

In order to provide perspective on the energy requirements for the WBWRF, two water qualities and associated energy intensity are presented. "Title 22" water, produced by a gravity filter treatment system, requires conveyance pumping energy from Hyperion to WBWRF at 205 kWh/af. The water flows through the filters via gravity, thus no additional energy is required for treatment. The final energy requirement is 285 kWh/af for distribution with a total energy requirement of 490 kWh/af. This is the lowest grade of recycled water that WBWRF produces. Contrasting the Title 22 water, WBWRF produces RO water with a total energy requirement of 1,280 kWh/af. This includes 205 kWh/af for conveyance from Hyperion, 790 kWh/af for treatment with RO, and 285 kWh/af for distribution.

More than 210 South Bay sites use 9 billion gallons of West Basin's recycled water for applications including irrigation, industrial processes, indirect potable uses, and seawater barrier injection. West Basin has been successful in changing the perception of recycled water from merely a conservation tool with minimal applications to a cost-effective business tool that can reduce costs and improve reliability.

Local oil refineries are major customers for West Basin's recycled water. The Chevron Refinery in El Segundo, the Exxon-Mobile refinery in Torrance, and the BP refinery in Carson use recycled water for cooling towers and in the boiler feed systems.

Ocean Water Desalination Development

Desalination technologies are in use around the world. A number of approaches work well and produce high quality water. Many workable and proven technology options are available to remove salt from water. During World War Two, desalination technology was developed as a water source for military operations.³⁴ Grand plans for nuclear-driven desalination systems in California were drawn up after the war, but they were never implemented due to cost and feasibility problems.

Desalination techniques range from distillation to "reverse osmosis" (RO) technologies. Current applications around the world are dominated by the "multistage flash distillation" process (at about 44% of the world's applications), and RO, (at about 42%).³⁵ Other desalting technologies include electrodialysis (6%), vapor compression (4%), multi-effect distillation (4%), and membrane softening (2%) to remove salts.³⁶ All of the ocean desalination projects currently in place or proposed for municipal water supply in California employ RO technology.

Reverse Osmosis Membranes

A recent inventory of desalination facilities world-wide indicated that as of the beginning of 1998, a total of 12,451 desalting units with a total capacity of 6.72 afy³⁷ had been installed or contracted worldwide. ³⁸ (Note that *capacity* does not indicate actual operation.) Non-seawater desalination plants have a capacity 7,620 af/d³⁹, whereas the seawater desalination plant capacity reached 10,781af/d.⁴⁰

Desalination systems are being used in over 100 countries, but 10 countries are responsible for 75 percent of the capacity.⁴¹ Almost half of the desalting capacity is used to desalt seawater in the Middle East and North Africa. Saudi Arabia ranks first in total capacity (about 24 percent of the world's capacity) followed by the United Arab Emirates and Kuwait, with most of the capacity being made up of seawater desalting units that use the distillation process.⁴²

The salinity of ocean water varies, with the average generally exceeding 30 grams per liter (g/l).⁴³ The Pacific Ocean is 34-38 g/l, the Atlantic Ocean averages about 35 g/l, and the Persian Gulf is 45 g/l. Brackish water drops to 0.5 to 3.0 g/l.⁴⁴ Potable water salt levels should be below 0.5 g/l.

Reducing salt levels from over 30 g/l to 0.5 g/l and lower (drinking water standards) using existing technologies requires considerable amounts of energy, either for thermal processes or for the pressure to drive water through extremely fine filters such as RO, or for some combination of thermal and pressure processes. Recent improvements in energy efficiency have reduced the amount of thermal and pumping energy required for the various processes, but high energy intensity is still an issue. The energy required is in part a function of the degree of salinity and the temperature of the water.

West Basin is in the process of developing plans to construct an ocean desalinating plant. Estimated energy requirements have been calculated by Gerry Filteau of Separation Processes, Inc for each step in the process.⁴⁵ The values presented for desalination are based on his work. Since the proposed plant will tap the source water at the power plant, there is no ocean intake pumping required. The source water is estimated to require 200 kWh/af this energy will bring ocean water from the power plant to the desalination system, approximately one quarter of a mile in distance. Pre-treatment of the source water is estimated at 341 kWh/af. This figure includes microfiltration and transfer to the RO units via a 5-10 micron cartridge filter. The RO process requires 2,686 kWh/af if operated at the most energy-efficient level. A slightly less efficient but more cost-effective level of operation would require 2,900 kWh/af, or 214 kWh/af additional energy input according to Filteau. Finally, an estimated 460 kWh/af is required to deliver the product water to the distribution system, including elevation gain, conveyance over distance, and pressurization to 90 psi. No additional energy is required to discharge the brine, as it flows back to the ocean outfall line by gravity.

The energy intensity figures presented here for desalination are lower than previous estimates. This is mainly due to improved membrane technologies, efficiency improvements for high pressure pumps, and pressure recovery systems. It should be noted that the figures provided here are based on engineering estimates, not on actual plant operations.

The total energy required to desalinate the ocean water, including each of the steps above, is estimated to be 3,687 kWh/af. If the energy intensity is increased slightly to improve cost-effectiveness, the total figure increases to 3,901 kWh/af.

Summary

This study examined the energy intensity of imported and local water supplies (ocean water, groundwater, and recycled water) for both potable and non-potable uses for West Basin. All water sources require pumping, treatment, and distribution. Differences in energy requirements arise from varying pumping, treatment, and distribution processes needed to produce water to meet appropriate standards for different uses.

The key findings of this study are: 1) the marginal energy required to treat and deliver recycled water is among the *least* energy intensive supply options available, 2) naturally recharged groundwater is low in energy intensity, though replenishment with imported water is not, and 3) current ocean desalination technology is getting close to the level of energy intensity of imported supplies.

Further refinement of the data in this study, such as applying an agency's own energy values, may provide a more accurate basis for decision-making tailored to a unique water system. The information presented, however, provides a reasonable basis for water managers to explore energy (and cost) benefits of increased use of local water sources, and it indicates that desalination of ocean water is getting close to the energy intensity of existing supplies.

Sources

² California Energy Commission, 2005. Integrated Energy Policy Report, November 2005, CEC-100-2005-007-CMF.

³ Franklin Burton, in a recent study for the Electric Power Research Institute (EPRI), includes the following elements in water systems: "Water systems involve the transportation of water from its source(s) of treatment plants, storage facilities, and the customer. Currently, most of the electricity used is for pumping; comparatively little is used in treatment. For most surface sources, treatment is required consisting usually of chemical addition, coagulation and settling, followed by filtration and disinfection. In the case of groundwater (well) systems, the treatment may consist only of disinfection with chlorine. In the future, however, implementation of new drinking water regulations will increase the use of higher energy consuming processes, such as ozone and membrane filtration." Burton, Franklin L., 1996, *Water and Wastewater Industries: Characteristics and Energy Management Opportunities*. (Burton Engineering) Los Altos, CA, Report CR-106941, Electric Power Research Institute Report, p.3-1.

⁴ Wilkinson, Robert C., 2000. *Methodology For Analysis of The Energy Intensity of California's Water Systems, and an Assessment of Multiple Potential Benefits Through Integrated Water-Energy Efficiency Measures*, Exploratory Research Project, Ernest Orlando Lawrence Berkeley Laboratory, California Institute for Energy Efficiency.

⁵ California Public Utilities Commission, Order Instituting Rulemaking Regarding to Examine the Commission's post-2005 Energy Efficiency Policies, Programs, Evaluation, Measurement and Verification, and Related Issues, Rulemaking 06-04-010 (Filed April 13, 2006)

⁶ An AF of water is the volume of water that would cover one acre to a depth of one foot. An AF equals 325,851 gallons, or 43,560 cubic feet, or 1233.65 cubic meters.

⁷ Metropolitan Water District of Southern California, *Integrated Resource Plan for Metropolitan's Colorado River Aqueduct Power Operations*, 1996, p.5.

⁸ This schematic, based on the original analysis by Wilkinson (2000) has been refined and improved with input from Gary Wolff, Gary Klein, William Kost, and others. It is the basic approach reflected in the CEC IEPR and other analyses.

⁹QEI, Inc., 1992, *Electricity Efficiency Through Water Efficiency*, Report for the Southern California Edison Company, p. 24.

¹⁰ Figures cited are *net* energy requirements (gross energy for pumping minus energy recovered through generation).

¹¹ Metropolitan Water District of Southern California, *Integrated Resource Plan for Metropolitan's Colorado River* Aqueduct Power Operations, 1996, p.5.

¹² Wilkinson, Robert C., 2000. *Methodology For Analysis of The Energy Intensity of California's Water Systems, and an Assessment of Multiple Potential Benefits Through Integrated Water-Energy Efficiency Measures*, Exploratory Research Project, Ernest Orlando Lawrence Berkeley Laboratory, California Institute for Energy Efficiency.

¹³ California Department of Finance. California Statistical Abstract. Tables G-2, "Gross Capacities of Reservoirs by Hydrographic Region," and G-3 "Major Dams and Reservoirs of California." January 2001. (http://www.dof.ca.gov/html/fs_data/stat-abs/toc.htm)

¹ Water systems account for roughly 7% of California's electricity use: See Wilkinson, Robert C., 2000. Methodology For Analysis of The Energy Intensity of California's Water Systems, and an Assessment of Multiple Potential Benefits Through Integrated Water-Energy Efficiency Measures, Exploratory Research Project, Ernest Orlando Lawrence Berkeley Laboratory, California Institute for Energy Efficiency.

¹⁴ "The SWP, managed by the Department of Water Resources, is the largest state-built, multi-purpose water project in the country. Approximately 19 million of California's 32 million residents receive at least part of their water from the SWP. SWP water irrigates approximately 600,000 acres of farmland. The SWP was designed and built to deliver water, control floods, generate power, provide recreational opportunities, and enhance habitats for fish and wildlife." California Department of Water Resources, *Management of the California State Water Project*. Bulletin 132-96. p.xix.

¹⁵ California Department of Water Resources, 1996, *Management of the California State Water Project*. Bulletin 132-96.p.xix.

¹⁶ Three small reservoirs upstream of Lake Oroville — Lake Davis, Frenchman Lake, and Antelope Lake — are also SWP facilities. California Department of Water Resources, 1996, *Management of the California State Water Project*. Bulletin 132-96.

¹⁷ California Department of Water Resources, 1996, *Management of the California State Water Project*. Bulletin 132-96. Power is generated at the Oroville Dam as water is released down the Feather River, which flows into the Sacramento River, through the Sacramento-San Joaquin Delta, and to the ocean through the San Francisco Bay.

¹⁸ The North Bay Aqueduct was completed in 1988. (California Department of Water Resources, 1996, *Management of the California State Water Project*. Bulletin 132-96.)

¹⁹ The South Bay Aqueduct provided initial deliveries for Alameda and Santa Clara counties in 1962 and has been fully operational since 1965. (California Department of Water Resources, 1996, *Management of the California State Water Project*. Bulletin 132-96.)

²⁰ Carrie Anderson, 1999, "Energy Use in the Supply, Use and Disposal of Water in California", Process Energy Group, Energy Efficiency Division, California Energy Commission, p.1.

²¹ Average deliveries for 1980-89 were just under 2.0 mafy, deliveries for 1990-99 were just over 2.0 mafy. There is disagreement regarding the ability of the SWP to deliver the roughly 4.2 mafy that has been contracted for.

²² According to MWD, "Metropolitan's annual dependable supply from the Colorado River is approximately 656,000 AF -- about 550,000 AF of entitlement and at least 106,000 AF obtained through a conservation program Metropolitan funds in the Imperial Irrigation District in the southeast corner of the state. However, Metropolitan has been allowed to take up to 1.3 maf of river water a year by diverting either surplus water or the unused portions of other agencies' apportionments." Metropolitan Water District of Southern California, 1999, "Fact Sheet" at: http://www.mwd.dst.ca.us/docs/fctsheet.htm.

²³ Metropolitan Water District of Southern California, 1999, <u>http://www.mwd.dst.ca.us/pr/powres/summ.htm</u>.

²⁴ The five pumping plants each have nine pumps. The plants are designed for a maximum flow of 225 cubic feet per second (cfs). The CRA is designed to operate at full capacity with eight pumps in operation at each plant (1800 cfs). The ninth pump operates as a spare to facilitating maintenance, emergency operations, and repairs. Metropolitan Water District of Southern California, 1999, Colorado River Aqueduct: <u>http://aqueduct.mwd.dst.ca.us/areas/desert.htm</u>, 08/01/99.

²⁵ Metropolitan Water District of Southern California, 1996, "Integrated Resource Plan for Metropolitan's Colorado River Aqueduct Power Operations", 1996, p.5.

²⁶ Metropolitan Water District of Southern California, 1999, "Summary of Metropolitan's Power Operation". February, 1999, p.1, <u>http://aqueduct.mwd.dst.ca.us/areas/desert.htm</u>.

²⁷ Metropolitan Water District of Southern California, 1999, <u>http://www.mwd.dst.ca.us/pr/powres/summ.htm</u>. MWD provides further important system information as follows: Metropolitan owns and operates 305 miles of 230 kV transmission lines from the Mead Substation in southern Nevada. The transmission system is used to deliver power from Hoover and Parker to the CRA pumps. Additionally, Mead is the primary interconnection point for Metropolitan's economy energy purchases. Metropolitan's transmission system is interconnected with several utilities at multiple

interconnection points. Metropolitan's CRA lies within Edison's control area. Resources for the load are contractually integrated with Edison's system pursuant to a Service and Interchange Agreement (Agreement), which terminates in 2017. Hoover and Parker resources provide spinning reserves and ramping capability, as well as peaking capacity and energy to Edison, thereby displacing higher cost alternative resources. Edison, in turn, provides Metropolitan with exchange energy, replacement capacity, supplemental power, dynamic control and use of Edison's transmission system.

²⁸ SB 672, Machado, 2001. California Water Plan: Urban Water Management Plans. (The law amended Section 10620 of, and adds Section 10013 to, the Water Code) September 2001.

²⁹ SEC. 2. Section 10013 to the Water Code, 10013. (a) SB 672, Machado. California Water Plan: Urban Water Management Plans. September 2001, (Emphasis added.)

³⁰ California Department of Water Resources, 2005. California Water Plan Update 2005. Bulletin 160-05, California Department of Water Resources, Sacramento, CA.

³¹ Metropolitan Water District of Southern California, 2000. *The Regional Urban Water Management Plan for the Metropolitan Water District of Southern California*, p.A.2-3.

³² "About 1.36 maf per year (34 percent) of the region's average supply is developed locally using groundwater basins and surface reservoirs and diversions to capture natural runoff." Metropolitan Water District of Southern California, 1996, "Integrated Resource Plan for Metropolitan's Colorado River Aqueduct Power Operations", 1996, Vol.1, p.1-2.

³³ MWD estimates that reclaimed water will ultimately produce 190,000 AF of water annually. Metropolitan Water District of Southern California, 1999, "Fact Sheet" at: <u>http://www.mwd.dst.ca.us/docs/fctsheet.htm</u>.

³⁴ Buros notes that "American government, through creation and funding of the Office of Saline Water (OSW) in the early 1960s and its successor organizations like the Office of Water Research and echnology (OWRT), made one of the most concentrated efforts to develop the desalting industry. The American government actively funded research and development for over 30 years, spending about \$300 million in the process. This money helped to provide much of the basic investigation of the different technologies for desalting sea and brackish waters." Buros, O.K., 2000. *The ABCs of Desalting, International Desalination Association*, Topfield, Massachusetts, p.5. This very useful summary is available at http://www.ida.bm/PDFS/Publications/ABCs.pdf

³⁵ Buros, O.K., 2000. *The ABCs of Desalting, International Desalination Association*, Topfield, Massachusetts, p.5. This very useful summary is available at <u>http://www.ida.bm/PDFS/Publications/ABCs.pdf</u> See also; Buros et al.1980. *The USAID Desalination Manual*. Produced by CH2M HILL International for the U.S. Agency for International Development.

³⁶ Wangnick, Klaus. 1998 *IDA Worldwide Desalting Plants Inventory Report No. 15*. Produced by Wangnick Consulting for International Desalination Association; and Buros, O.K., 2000. *The ABCs of Desalting, International Desalination Association*, Topfield, Massachusetts, p.5.

³⁷ Desalination systems with a unit size of 100 m3/d or more. Figures in original cited as 6,000 mgd.

³⁸ Wangnick Consulting GMBH (<u>http://www.wangnick.com</u>) maintains a permanent desalting plants inventory and publishes the results biennially in co-operation with the International Desalination Association, as the IDA Worldwide Desalting Plants Inventory Report. Thus far, fifteen reports have been published, with the latest report having data through the end of 1997; and see Wangnick,Klaus.*1998 IDA Worldwide Desalting Plants Inventory Report No.15*.Produced by Wangnick Consulting for International Desalination Association. The data cited are as of December 31, 1997.

 39 Cited in original as 9,400,000 m3/d.

⁴⁰ Wangnick, Klaus. *1998 IDA Worldwide Desalting Plants Inventory Report No.15*. Produced by Wangnick Consulting for International Desalination Association. (Cited in original in m3d (13,300,000 m3/d).

⁴¹ Wangnick,Klaus.1998 *IDA Worldwide Desalting Plants Inventory Report No.15*.Produced by Wangnick Consulting for International Desalination Association; and Buros, O.K., 2000. *The ABCs of Desalting, International Desalination Association*, Topfield, Massachusetts. The United States ranks second in over-all capacity (16 %) with most of the capacity in the RO process used to treat brackish water. The largest plant, at Yuma, Arizona, is not in use.

⁴² Wangnick, Klaus. 1998. *IDA Worldwide Desalting Plants Inventory Report No.15*. Produced by Wangnick Consulting for International Desalination Association; and Buros, O.K., 2000. *The ABCs of Desalting, International Desalination Association*, Topfield, Massachusetts.

⁴³ Salinity levels referenced in metric units.

⁴⁴ OTV. 1999. "Desalinating seawater." Memotechnique, Planete Technical Section, No. 31 (February), p.1; and Gleick, Peter H. 2000. *The World's Water: 2000-2001*, Island Press, Covelo, p.94.

⁴⁵ Gerry Filteau, Separation Processes, Inc., 2386 Faraday Ave., Suite 100, Calsbad, CA 92008, <u>www.spi-engineering.com</u>