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Abstract: Dehaene (this volume) articulates a naturalistic approach to the cognitive
foundations of mathematics. Further, he argues that the ‘number line’ (analog
magnitude) system of representation is the evolutionary and ontogenetic foundation of
numerical concepts. Here I endorse Dehaene’s naturalistic stance and also his charac-
terization of analog magnitude number representations. Although analog magnitude
representations are part of the evolutionary foundations of numerical concepts, I argue
that they are unlikely to be part of the ontogenetic foundations of the capacity to represent
natural number. Rather, the developmental source of explicit integer list representations
of number are more likely to be systems such as the object–file representations that
articulate mid–level object based attention, systems that build parallel representations
of small sets of individuals.

1. Introduction

In his précis of The Number Sense (TNS, Dehaene, 1997) Dehaene argues that
the ultimate cognitive foundation1 of mathematics rests on core representations
that have been internalized in our brains through evolution. At the end of
his précis, he mentions several distinct core representations that may play a
foundational role: ‘number line’ representations of number, representations of
space (which may ground geometrical understanding), representations of con-
tinuous quantities such as length, distance, and time, iterative capacities, logical
capacities—and I would add—the capacity to represent ordered relations, the
syntactic/semantic representation of number in natural language, and the sys-
tem of parallel indexing of small sets of individuals in mid–level attentional
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systems. Dehaene suggests that language and the human capacity to build
explicit symbolic representational systems allows for the extension of these
core representational systems, and for the drawing of links between them, thus
creating mathematical knowledge.

However, in most of his précis, Dehaene describes one core representational
system, the number line system he calls the number sense, as the evolutionary
and ontogenetic foundation of the human capacity to represent number and
to create arithmetical understanding. I endorse Dehaene’s naturalistic approach
to the cognitive foundations of arithmetical knowledge, as well as his charac-
terization of the number line representation of number as evolutionarily
ancient, available to prelinguistic infants, automatically activated in adult
numerical reasoning, and encoded in the human brain by a dedicated neural
circuit. These are signature properties of any core representational system (see
Carey and Spelke, 1994, 1996; Leslie, 1994; Spelke, Breinlinger, Macomber
and Jacobson, 1992, for characterizations of core knowledge). Dehaene’s won-
derful book, TNS, as well as his précis of the book, pulls together massive
evidence, much of it collected by Dehaene and his collaborators, for these
properties of number line representations. I shall not review this evidence here.
In my commentary, I refer to what Dehaene calls ‘number line representations’
as ‘analog magnitude representations.’

In analog magnitude number representations, each number is represented
by a physical magnitude that is proportional to the number of individuals in
the set being enumerated. The neural underpinnings of analog magnitude re-
presentations are unknown, but the idea can be conveyed by examination of
an external analog magnitude representational system for number. Such a
system might represent 1 as ‘—’, 2 as ‘——’, 3 as ‘———’, 4 as ‘————’,
5 as ‘—————’, %7 as ‘———————’, 8 as ‘————————’, etc.
In such systems, numerical comparisons are made by processes that operate
over these analog magnitudes, in the same way that length or time comparisons
are made by processes that operate over underlying analog magnitude represen-
tations of these continuous dimensions of experience. Importantly, there is a
psychophysical Weber–fraction signature of analog magnitude representations:
the discriminability of two numbers is a function of their ratio. Examining the
external analogs above, it is easy to see that it is easier to discriminate 1 from
2 than 7 from 8, (what Dehaene calls the magnitude effect), and it is easier
to discriminate 1 from 3 than 2 from 3 (what Dehaene calls the distance effect).
This Weber–fraction signature applies to discrimination of continuous quan-
tities as well, such as representations of lengths (as can be experienced directly
by examining the above lengths), distances, time, and so forth, and is the
primary evidence that number is being represented by a quantity that is linearly
related to the number of individuals in the set.

In spite of my agreement with Dehaene on all the above points, I consider
it extremely unlikely that analog magnitude models of number are the ontogen-
etic foundation of human arithmetical abilities. First, human arithmetical abili-
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ties derive from the integer list representation of number ‘one, two, three,
four, five%’, for this representational system, including the counting routine,
is built on the successor function in a way that analog magnitude represen-
tations are not. Second, the integer list representation of number is not itself
a core representational system; it is a cultural construction that is most likely
built not from analog magnitude representations but from a different core sys-
tem of representation—the individual indexing mechanisms of mid-level
vision. It is still possible that Dehaene will turn out to be right that analog
magnitude representations underpin, developmentally, explicit integer list rep-
resentations. I agree that the analog magnitude system of number represen-
tation is one of the evolutionarily given representational systems that ground
numerical understanding, but I suggest that it is integrated with the integer
list representation only after the latter has been constructed as a representation
of number. If this is so, the integer list representation itself must be constructed
from other building blocks.

Though I disagree with Dehaene on this issue of detail, I share his basic
approach to the subject. Thanks to TNS, and other work by such pioneers as
Gelman and Gallistel (1978), Gallistel (1990), Butterworth (1999), and Meck
and Church (1983), we are embarked on a program of research that holds the
promise of characterizing the representational primitives from which math-
ematical concepts are built, as well as the processes through which these primi-
tives are enriched and extended.

2. The Natural Numbers

One natural position concerning the cognitive foundations of arithmetic is
inspired by Leopold Kronecker’s famous remark: ‘The integers were created
by God; all else is man-made’ (quoted in Weyl, 1949, p. 33). I don’t know
exactly what Kronecker meant, but I am concerned with conceptual primi-
tives, not ontological ones. If we replace ‘God’ with ‘evolution,’ the position
would be that evolution provided us with the capacity to represent the positive
integers, the natural numbers, and that the capacity to represent the rest of
arithmetic concepts, including the rest of the number concepts (rational, nega-
tive, 0, real, imaginary, etc.) was culturally constructed by human beings. I
assume that the rest of arithmetic is built upon a representation of the natural
numbers; I shall not argue for this here. Rather, my goal is to convince you
that God did not give man the positive integers either. Rather, the capacity
to represent the positive integers is also a cultural construction that transcends
core knowledge.

The extent of my disagreement with Dehaene depends upon what he con-
siders the relation to be between the analog magnitude representations of num-
ber and the natural numbers. He does not explicitly consider this question in
his précis or in TNS. Sometimes he writes as if he thinks they are identical,
as when he says that the verbal system merely provides external lexical symbols
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that map onto states of the analog magnitude system. If this were true, the
analog magnitude system would be the cognitive foundation of the capacity
to represent the natural numbers in the strongest of senses (see Gallistel and
Gelman, 1992, for a defence of this position). More weakly, he could hold
that even though historically the capacity to represent the natural numbers
came into being only when cultures constructed an explicit integer list system,
and ontogenetically only when the child masters this cultural construction,
nonetheless, the analog magnitude system could be the system of core knowl-
edge of which this cultural construction is an extension, and thus its evolution-
ary foundation.

The burden of my commentary is that analog magnitude representations
are unlikely to be the cognitive foundation of the capacity to represent the
natural numbers in either the strong sense or the weaker sense.

The historically and ontogenetically earliest explicit representational system
with the potential to represent natural number are integer list systems. Most,
but not all, cultures have explicit ordered lists of words for successive integers
(‘one, two, three, four, five, six%’ in English; body parts in some languages,
see Butterworth, 1999, and Dehaene, 1997, for examples of body part integer
lists). Integer lists are used in conjunction with counting routines to establish
the number of individuals in any given set. In a very important work, Gelman
and Gallistel (1978) argued that if young toddlers understand what they are
doing when they count (i.e., establishing the number of individuals there are
in a given set), then, contra Piaget (1952), they have the capacity to represent
number. Gelman and Gallistel (1978) analyzed how integer list representations
work: there must be a stably ordered list of symbols (the stable order principle).
In counting, the symbols must be applied in order, in 1–1 correspondence to
the individuals in the set being enumerated (1–1 correspondence principle).
The cardinal value of the set is determined by the ordinal position of the last
symbol reached in the count (cardinality principle). While these principles
indeed characterize counting, they fail to make explicit another central feature
of integer list representations, namely that they embody the successor function:
For any symbol in an integer list, if it represents cardinal value n, the next
symbol on the list represents cardinal value n + 1. It is the successor function
(together with some productive capacity to generate new symbols on the list)
that makes the integer list a representation of natural number.

3. Why Analog Magnitude Representations are not
Representations of Positive Integers

Analog magnitude representational systems do not have the power to represent
natural number. This fact alone defeats the proposal that the analog magnitude
system of numerical representation is the ontogenetic foundation of explicit
numerical representations on the strong reading of the claim. That is, learning
an explicit integer list representation is not merely learning words for symbols
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already represented. To see this, let us consider Gallistel and Gelman’s (1992)
arguments for the strong proposal and the problems that arise.

There are many different ways analog magnitude representations of number
might be constructed. The earliest proposal was Meck and Church’s (1983)
accumulator model. The idea is simple—suppose the nervous system has the
equivalent of a pulse generator that generates activity at a constant rate, and
a gate that can open to allow energy through to an accumulator that registers
how much as been let through. When the animal is in a counting mode, the
gate is opened for a fixed amount of time (say 200 msec.) for each individual
to be counted. The total energy accumulated then serves as an analog represen-
tation of number. Meck and Church’s model seems best suited for sequentially
presented individuals, such as bar presses, tones, light flashes, or jumps of a
puppet. Gallistel (1990) proposed, however, that this mechanism functions as
well in the sequential enumeration of simultaneously present individuals.

Gallistel and Gelman (1992) argue that the accumulator model is formally
identical to the integer list representational system of positive integers, with
the successive states of the accumulator serving as the successive integer values,
the mental symbols that represent numerosity. They point out that the
accumulator model satisfies all the principles that support verbal counting:
States of the accumulator are stably ordered, gate opening is in 1–1 correspon-
dence with individuals in the set, the final state of the accumulator represents
the number of items in the set, there are no constraints on individuals that
can be enumerated, and individuals can be enumerated in any order. Thus,
Gelman and Gallistel (1992) argue that the Meck and Church (1983) analog
magnitude system is continuous with and is likely to be the ontogenetic under-
pinnings of an explicit integer list representational system and counting. This
is the strong position Dehaene (TNS, précis) seems to endorse when he says
that the verbal system provides a list of words to express the numerical mean-
ings captured by states of the analog magnitude representations.

Unfortunately for this proposal, there is considerable evidence that suggests
that the Church and Meck model is false, and that analog magnitude represen-
tations of number are not constructed by any iterative process. In particular,
the time that subjects require to discriminate two numerosities depends on the
ratio difference between the numerosities but not on their absolute value
(Barth, Kanwisher and Spelke, under review). In contrast, time should increase
monotonically with N for any iterative, counting process. Moreover, subjects
are able to discriminate visually presented numerosities under conditions of
stimulus size and eccentricity in which they are not able to attend to individual
elements in sequence (Intrilligator, 1997). Their numerosity discrimination
therefore could not depend on a process of counting each entity in turn, even
very rapidly.

Problems such as these led Church and Broadbent (1990) to propose that
analog magnitude representations of number are constructed quite differently,
through no iterative process. Focusing on the problem of representing the
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numerosity of a set of sequential events (e.g., the number of tones in a
sequence), they proposed that animals perform a computation that depends on
two timing mechanisms. First, animals time the temporal interval between the
onsets of successive tones, maintaining in memory a single value that approxi-
mates a running average of these intervals. Second, animals time the overall
duration of the tone sequence. The number of tones is then estimated by
dividing the sequence duration by the average intertone interval. Although
Church and Broadbent did not consider the case of simultaneously visible
individuals, a similar non-iterative mechanism could serve to compute numer-
osity in that case as well, by measuring the average density of neighboring
individuals, measuring the total spatial extent occupied by the set of individuals,
and dividing the latter by the former. Dehaene and Changeux (1989) described
an analog magnitude model that could enumerate simultaneously presented
visual individuals in a different manner, also through no iterative process.

The analog magnitude representational system of Church and Broadbent
(as well as that of Dehaene and Changeux) differs from the original Meck and
Church accumulator model in a number of important ways. Because the pro-
cesses that construct these representations are not iterative, the analog magni-
tudes are not formed in sequence and therefore are less likely to be experienced
as a list. Moreover, the process that establishes the analog magnitude represen-
tations does not require that each individual in the set to be enumerated be
attended to in sequence, counted, and then ticked off (so that each individual
is counted only once). These mechanisms do not implement any counting pro-
cedure.

Furthermore, none of the analog magnitude representational systems, even
Church and Meck’s accumulator system, has the power to represent natural
number in the way an integer list representational system does. For one thing,
analog magnitude systems have an upper limit, due to the capacity of the
accumulator and/or the discriminability of the individuals in a set, whereas
base system integer list systems do not (subject to the coining of new words for
new powers of the base). But the problem is much worse than that. Consider a
finite integer list, like the body counting systems. Because it is finite, this
system is also not a representation of the natural numbers, but it is still more
powerful than analog magnitude representations, for it provides an exact rep-
resentation of the integers in its domain.

Thus, all analog magnitude representations differ from any representation
of the natural numbers, including integer list representations, in two crucial
respects. Because analog magnitude representations are inexact and subject to
Weber fraction considerations, they fail to capture small numerical differences
between large sets of objects. The distinction between 7 and 8, for example,
cannot be captured reliably by the analog magnitude representations found in
adults. Also, non-iterative processes for constructing analog magnitude rep-
resentations, such as those proposed by Dehaene and Changeux (1989) and
by Church and Broadbent (1990), include nothing that corresponds to the

 Blackwell Publishers Ltd. 2001



Cognitive Foundations of Arithmetic 43

successor function, the operation of ‘adding one.’ Rather, all analog magnitude
systems positively obscure the successor function. Since numerical values are
compared by computing a ratio, the difference between 1 and 2 is experienced
as different from that between 2 and 3, which is again experienced as different
from that between 3 and 4. And of course, the difference between 7 and 8 is
not experienced at all, since 7 and 8, nor any higher successive numerical
values, cannot be discriminated.

In sum, analog magnitude representations are not powerful enough to re-
present the natural numbers and their key property of discrete infinity, do not
provide exact representations of numbers larger than 4 or 5, and they do not
support any computations of addition or multiplication that build on the suc-
cessor function.

4. A Second Core System of Number Representation: Parallel
Individuation of Small Sets

In Section 3, I argued that analog magnitude representations are not powerful
enough to represent the natural numbers, even the finite subset of natural
numbers within the range of numbers these systems handle. A second reason
to doubt that analog magnitude representations are the cognitive foundation
of integer list representation is that they are unlikely to underlie most of the
spontaneous representations of number that have been found in infancy.
Rather, a distinct system of core knowledge is likely to do so, and this system
is a better candidate to be the number-relevant cognitive foundation of the
explicit integer list representational system.

In TNS and the précis, Dehaene reviews data from habituation and
violation of expectancy looking time paradigms that demonstrate that infants
distinguish small sets on the basis of number of individuals in them. He writes
as if these data provide evidence for number line (analog magnitude) represen-
tations in preverbal infants. However, before we draw that conclusion, we
need evidence that analog magnitude representations underlie the infant’s per-
formance in these number discrimination tasks. Many researchers (Scholl and
Leslie, 1999; Simon, 1997; Uller, Carey, Huntley-Fenner and Klatt, 1999)
have suggested that a very different representational system might support
infants’ number sensitivity in these experiments. In the alternative represen-
tational system, number is only implicitly encoded; there are no symbols for
number at all, not even analog magnitude ones. Instead, the representations
include a symbol for each individual in an attended set. Thus, a set containing
one apple might be represented: ‘0’ or ‘apple,’ and a set containing two apples
might be represented ‘0 0’ or ‘apple apple,’ and so forth. Because these rep-
resentations consist of one symbol (file) for each individual (usually object)
represented, they are called ‘object-file’ representations. Furthermore, several
lines of evidence identify these symbols with the object–file representations
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studied in the literature on object-based attention (see Carey and Xu, in press,
and Scholl and Leslie, 1999).

For reasons of space limitations, here I present just one knock-down argu-
ment in favor of object-file representations over analog magnitude represen-
tations as underlying performance in most of the infant number studies (see
Uller et al., 1999, for a review of several other lines of evidence). Success on
many spontaneous number representation tasks do not show the Weber–frac-
tion signature of analog magnitude representations; rather they show the set-
size signature of object file representations. That is, the number of individuals
in small sets (1 to 3 or 4) can be represented, and numbers outside of that
limit cannot, even when the sets to be contrasted have the same Weber–
fraction as those small sets where the infant succeeds.

The set-size signature of object-file representations is motivated by evidence
that even for adults there are sharp limits on the number of object-files open
at any given moment, that is, the number of objects simultaneously attended
to and tracked. The limit is around 4 in human adults. The simplest demon-
stration of this limit comes from Pylyshyn and Storm’s (1988) multiple object
tracking studies. Subjects see a large set of objects on a computer monitor (say
15 red circles). A subset is highlighted (e.g., 3 are turned green) and then
become identical again with the rest. The whole lot is then put into motion
and the observer’s task is to track the set that has been highlighted. This task
is easy if there are 1, 2 or 3 objects, and performance falls apart beyond four.
Trick and Pylyshyn (1994) demonstrate the relations between the limit on
parallel tracking and the limit on subitizing—the capacity to directly enumerate
small sets without explicit internal counting.

If object-file representations underlie infants’ performance in number tasks,
then infants should succeed only when the sets being encoded consist of small
numbers of objects. Success at discriminating 1 vs. 2, and 2 vs. 3, in the face
of failure with 3 vs. 4 or 4 vs. 5 is not enough, for Weber–fraction differences
could equally well explain such a pattern of performance. Rather, what is
needed is success at 1 vs. 2 and perhaps 2 vs. 3 in the face of failure at 3 vs.
6—failure at the higher numbers when the Weber fraction is the same or even
more favorable than that within the range of small numbers at which success
has been obtained.

This set–size signature of object–file representations is precisely what is
found in some infant habituation studies—success at discriminating 2 vs. 3 in
the face of failure at discriminating 4 vs. 6 (Starkey and Cooper, 1980).
Although set-size limits in the infant addition/subtraction studies have not
been systematically studied, there is indirect evidence that these too show the
set-size signature of object file representations. Robust success is found on 1
+ 1 = 2 or 1 and 2 - 1 = 2 or 1 paradigms (Koechlin, Dehaene and Mehler,
1998; Simon, Hespos and Rochat, 1995; Uller et al., 1999; Wynn, 1992a).
In the face of success in these studies with Weber fraction of 1:2, Chiang and
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Wynn (2000) showed repeated failure in a 5 + 5 = 10 or 5 task, also a Weber
fraction of 1:2.

Two parallel studies (one with rhesus macaques; Hauser, Carey and Hauser,
2000; one with 10- to 12-month-old infants; Feigenson and Carey, under
review) provide a vivid illustration of the set-size signature of object–file rep-
resentations. Both studies also address a question left open by the infant
addition/subtraction studies and by the infant habituation studies, and both
studies address an important question about object–file models themselves. The
question about infant number representation: is it the case that nonverbal crea-
tures merely discriminate between small sets on the basis of number, or do
they also compare sets with respect to which one has more? The question
about object–file models themselves: Is the limit on set sizes a limit on each
set represented, or a limit on the total number of objects that can be indexed
in a single task?

In these studies, a monkey or an infant watches as each of two opaque
containers, previously shown to be empty, is baited with a different number
of apple slices (monkeys) or graham crackers (babies). For example, the
experimenter might put two apple slices (graham crackers) in one container
and three in the other. The pieces of food are placed one at a time, in this
example: 1 + 1 in one container and then 1 + 1 + 1 in the other. Of course,
whether the greater or less number is put in first, as well as whether the greater
number is in the leftmost or rightmost container, is counterbalanced across
babies/monkeys. Each participant gets only one trial. Thus, these studies tap
spontaneous representations of number, for the monkey/baby does not know
in advance that different numbers of pieces of food will be placed into each
container, or even that they will be allowed to choose. After placement, the
experimenter walks away (monkey) or the parent allows the infant to crawl
toward the containers (infant). The dependent measure is which container the
monkey/baby chooses.

Figures 1 and 2 show the results from adult free-ranging rhesus macaques
and 10- to 12-month-old human infants, respectively. What one sees is the
set-size signature of object–file representations. Monkeys succeed when the
comparisons are 1 vs. 2; 2 vs. 3, and 3 vs. 4, but they fail at 4 vs. 5, 4 vs. 8,
and even 3 vs. 8. A variety of controls ensured that monkeys were responding
to the number of apple slices placed in the containers, rather than the total
amount of time apple was being placed into each container, the differential
attention being drawn to each container, or even the total volume of apple
placed into each container (even though that surely is what monkeys are
attempting to maximize). For instance, performance is no different if the com-
parison is 2 apple slices and a rock into one container vs. 3 apple slices, even
though now the total time placing entities into each container and the total
amount of attention drawn to each container is equal. Also, monkeys go to
the container with 3 when the choice is one large piece (. apple) vs. three
small pieces (which sum to . apple). We assume that although the monkeys
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Figure 1 Adult Rhesus Macaques. Percent choice of the box with more apple
slices.
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Figure 2 10- and 12- month-old infants. Percent choice of the box with more
graham crackers.
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are trying to maximize the total amount of apple stuff, they are making an
equal volume assumption and using number to estimate amount of stuff. (From
10 feet away and with the slices shown briefly as they are placed into the
container, apparently monkeys cannot encode the volume of each piece).

These data show that rhesus macaques spontaneously represent number in
small sets of objects, and can compare them with respect to which one has
more. More importantly to us here, they show the set-size signature of object-
file representations; monkeys succeed if both sets are within the set-size limits
on parallel individuation (up to 3 vs. 4), and fall apart if one or both of the
sets exceeds this limit. Also, it is of theoretical significance to the object-file
literature that monkeys succeed in cases where the total number represented
(7, in 3 vs. 4) exceeds the limit on parallel individuation. Apparently, monkeys
can create two models, each subject to the limit, and then compare them
in memory.

As can been seen from Figure 2, the infant data tell the same story exactly,
except that the upper limit is 3 instead of 4. The lower limit in human babies
than in adult rhesus macaques is not surprising, given maturational consider-
ations. The set-size signature of object-file representations rules out the possi-
bility that analog magnitude representations of number underlie the baby’s
choices. It is not ratio differences between the sets that is determining success
(success at 1 vs. 2, 1:2; 2 vs. 3; 2:3; in the face of failure at 3 vs. 6, 1:2), but
rather the absolute size of the largest set (performance falls apart when one of
the sets exceeds the limits on object-file representations).

Object-file representations are numerical in five senses. First, the opening
of new object files requires principles of individuation and numerical identity;
models must keep track of whether this object, seen now, is the same one as
that object seen before. Spatio-temporal information must be recruited for this
purpose, because the objects in many experiments are physically indistinguish-
able from each other, and because, in many cases, property/kind changes
within an object are not sufficient to cause the opening of a new object file
(Kahneman, Triesman and Gibbs, 1992; Pylyshyn, in press; Xu and Carey,
1996). Second, the opening of a new object file in the presence of other active
files provides a natural representation for the process of adding one to an array
of objects. Third, object-file representations provide implicit representations
of sets of objects; the object-files that are active at any given time as a perceiver
explores an array determine a set of attended objects. Fourth, if object-file
models are compared on the basis of 1–1 correspondence, the computations
over object file representations provide a process for establishing numerical
equivalence and more/less. Fifth, object files represent numerosity exactly for
set sizes up to about 4 and are not subject to Weber’s Law.

Notice also that object-file representations are a system of core knowledge
in all the senses analog magnitude number representations are. They are evol-
utionarily ancient, available to preverbal infants, have a dedicated neural sub-
strate (involving, interestingly, the inferior parietal cortex, just as analog magni-
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tude representations do; e.g., Culham et al., 1998), and continue to underlie
object-based attention throughout the life span.

Unlike the analog magnitude system of number representations, the object-
file system is not dedicated to number representations. Number is only
implicitly represented in it, as it contains no symbols for numbers. It does not
have the power to represent natural numbers, for two reasons. Most
importantly, object-file models contain no symbols for cardinal values. The
only symbols in such models represent the individual objects themselves.
Second, object file models have an upper bound at very low set sizes indeed.

Object-file representations cannot account for all the evidence from studies
of number representations in infants. In particular, such representations cannot
account for infants’ successful discrimination of 8 from 16 dots (Xu and Spelke,
1999). These numbers are out of the range of object-file representations, and
as mentioned above, infant discrimination of large numbers is subject to
Weber-fraction constraints; the infants in Xu and Spelke’s studies failed to
distinguish 8 from 12 dots. Also, object-file representations cannot account for
infants’ success at discriminating sets of events (e.g., jumps of a puppet; Wynn,
1996) or sounds (e.g., syllables in words; Bijeljac–Babic, et al., 1991) on the
basis of number, although it is not yet known whether such stimuli also are
subject to the set-size limitations of parallel individuation. Like Xu and Spelke,
I conclude that infants have two systems of number-relevant representations;
the object-file representations that are deployed with small sets of individual
objects and analog magnitude representations that are deployed with large sets
of objects, and perhaps with sequences of events or sounds.

5. On the Use of the Term number in TNS

To summarize the argument so far: The analog magnitude representational
system is unlikely to be the core knowledge system that underlies the ontogen-
esis of arithmetical concepts for two distinct reasons. First, representations of
natural numbers are the most likely candidate for this role, and analog magni-
tude systems do not have the power to represent natural numbers. Second,
analog magnitude representational systems are unlikely to underlie infants’
behaviors in most of the studies taken to show that infants represent number.
Thus, there are other candidates, namely object-file representations, for the
ontogenetic underpinning of the explicit integer list representations, the devel-
opmentally earliest system for representing natural numbers.

When we say that infants or non-verbal animals represent number, it is very
important to be clear on what we are claiming. It is necessary to specify the
precise nature of the symbol systems that underlie the number sensitive
behavior, and ask in what senses they are representations of number—what
numbers do they have the capacity to represent and what number-relevant
computations do they support? I have argued above that neither of the candi-
date representational systems that underlie the behavior on nonlinguistic num-
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ber tasks represent number in the sense of natural number or positive integer. None-
theless, both systems support number-relevant computations, and the analog
magnitude system contains symbols for approximate number, so they deserve
to be called representations of number, as long as one does read too much
into the term ‘representation of number.’

In sum, even if the infant is endowed with both analog magnitude and
object file systems of representation, the infant’s capacity to represent number
will be markedly weaker than that of the child who commands the integer-
list representation. Evolution did not make the positive integers. Neither object
files nor analog magnitudes can serve to represent large exact numerosities:
object files fail to capture number concepts such as ‘seven’ because they exceed
the capacity limit of four, and analog magnitude representations fail to capture
such concepts because they exceed the limits on their precision (for infants, a
1:2 ratio; Xu and Spelke, 1999).

6. The Child Constructs an Integer List Representation of the
Natural Numbers

Because analog magnitude representations cannot represent the natural num-
bers, they are not the cognitive foundation of arithmetic knowledge in the
strong sense. But what of the weaker claim? When the child constructs the
integer list representation of number, does he/she build it out of analog magni-
tude representations? This would leave the weaker version of claim that analog
magnitude representations are the cognitive foundation of arithmetical knowl-
edge intact. Or does the child construct the integer list representation from
object-file representations, or from both systems, or neither? In the précis,
Dehaene says that core knowledge is enriched and combined to create new
mathematical knowledge. What exactly are the processes through which such
enrichment and combination takes place?

Answering these questions is far out of the scope of the present commentary
(see Carey and Spelke, in press, for an attempt to do so). I assume that boots-
trapping processes, in the sense of Quine (1960) are required. Quine’s boots-
trapping metaphors (e.g., scrambling up a chimney supported by the sides one
is creating through noting the interrelations among terms of the language;
Quine, 1960) have the essential property that structures are initially built, at
least partially, without being interpreted in terms of antecedently available con-
cepts. Although Quine does not emphasize this, analogical mapping is often
one part of the process through which this happens. Carey and Spelke, in
press, outline four different bootstrapping processes that could, in principle,
accomplish the construction of the integer list system of number represen-
tation. They differ in the primitives, the systems of core knowledge, that they
draw on. In the rest of my comments, I sketch some data that suggest that
two systems of core knowledge not yet considered are part of the bootstrapping
process, and then end with some reasons to expect that object-file represen-
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tations, rather than analog magnitude representations, are the number-relevant
system drawn upon.

7. Linear Order

The problem of how the child builds an integer list representation decomposes
into three related sub-problems. The first: how does the child learn the ordered
list itself, ‘one, two, three, four, five, six%?’ The second: how does the child
learn what each symbol on the list means? The third: how does the child learn
how the list itself represents number, such that the child can infer the meaning
of a newly mastered integer symbol (e.g., ‘eleven’)?

Children have the capacity to learn meaningless ordered lists: ‘eeny, meeny,
miny, mo,’ ‘a, b, c, d, e%’ ‘Sunday, Monday, Tuesday, Wednesday,
Thursday%’ This capacity is part of core knowledge. It is available early in
childhood, and other primates have it as well. For example, Schwartz, Chen
and Terrace (1991) showed that rhesus macaques can be taught to press four
arbitrary symbols, appearing on a touch-screen in random positions on each
trial, in a given order. The capacity to learn meaningless ordered lists obviously
remains available throughout the life cycle. As of now, there is no known
specialized neural substrate for this ability.

There is extensive evidence that initially the list of number words (‘one,
two, three, four, five%’) is learned as a meaningless ordered list (Fuson, 1988).
Children know the list, and can even engage in the counting routine, for over
a year before they learn what the word ‘four’ means, or how the integer list
works (Wynn, 1990, 1992b).

That the initial meaning of the list of number words is exhausted by their
serial order illustrates one feature of Quinian bootstrapping. In learning a new
linguistic structure, initially the terms are sometimes defined only in terms of
each other, and not yet interpreted in terms of any antecedently available con-
cepts.

8. The Semantics of Natural Language Quantification

Natural language syntax/semantics is a system of core knowledge, and natural
language syntax/semantics contains representations of number. That is, all lang-
uages structure sentences, in part, in terms of number. All languages have
syntactic/morphological devices for quantification, although languages differ
in which ones they express. These devices include quantifiers and determiners,
singular/plural distinctions, count/mass subcategorization on nouns, the is of
numerical identity, and so forth. Of course, these numerical representations
do not express the natural numbers. Nonetheless, they may provide some of
the relevant conceptual apparatus from which a representation of natural num-
bers is bootstrapped. The semantics of quantifiers, for example, involves con-
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cepts of set and individual, as does the semantics of the singular/plural distinc-
tion.

One reason to believe that core semantic knowledge plays such a role is
that in the earliest stages of the learning process, the quantificational distinction
between singular/plural organizes the meanings children assign to number
words. Given a pile of toys (say pigs) and asked to give the experimenter, ‘one
pig,’ young two year olds succeed. But when asked to give ‘two pigs,’ or ‘four
pigs’ or ‘six pigs,’ two-year-olds typically grab a random number (more than
one) and hand them to the experimenter. The number grabbed is not related
to the number asked for, except that it contrasts with one. The number word
is doing some of the work here; the same results obtain if it is ‘two fish’ or
‘four fish’ or ‘six fish’ (Wynn, 1990, 1992b). Conversely, in production, young
two-year-olds use ‘two’ as a generalized plural marker. Shown an array of
consisting of 1 bee, they call it ‘one bee,’ and shown arrays of 2, 3, 4, 5, 6,
7 or 8 bees, they call it ‘two bees.’ Importantly arrays of 8 bees are called
‘two’ just as frequently as are arrays of 2 or 3 (LeCorre, in preparation; Van
de Walle, Le Corre and Brannon, in preparation.) In this earliest stage of the
process then, number words other than one refer to pluralities, and ‘two’ is
produced as if it were a synonym of the plural marker ‘-s’ or the quantifier
‘some.’ Notice, at this point in learning, analog magnitude representations
clearly are playing no role whatsoever. Analog magnitude representations pro-
vide no principled distinction between 1, (—), on the one hand, and 2, 3, 4,
5 %8, etc. (——, ———, ————, —————, % ————————,
etc.), on the other. If lexical items had been mapped onto rough regions of
analog magnitude representations, then words for larger numbers should pick
out bigger sets, even if the mapping were wildly approximate. There is no
hint of such a pattern in the currently available data.

9. Object-file Representations, Analog Magnitude
Representations, Both?

Wynn (1990, 1992b) detailed several steps between this initial stage and the
full mastery of the integer list representation of number. Children next learn
the precise meaning of ‘two,’ as a dual marker, and take all higher number
words to contrast with both 1 and 2, that is, to refer to sets of 3 or greater.
Longitudinal studies found children in that state of knowledge often for several
months. Then children work out ‘three’ as referring to sets with precisely three
individuals, and some take higher number words as synonyms that contrast
with three. At approximately 3 years of age, children learn what ‘four’ means.
Wynn found no children who knew what ‘four’ meant who had not worked
out the meaning of all the numbers in their count list. That is, at 3 years of
age, children made the induction, for any word in the count list that refers to
sets with cardinality n, the next word in the list refers to sets with cardinality
n + 1.
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As of now the data are not available to address whether analog magnitude
representations play a role in the later stages of this process, as the weak form
of the hypothesis that they are the ontogenetic foundation of number represen-
tations requires. There are several reasons to doubt that they do. First, as
stressed earlier, all analog magnitude representations, but especially those cre-
ated by non-iterative processes, obscure the successor ( +1) relation between
adjacent numbers. However, the induction the child makes about how coun-
ting works instantiates this relation. Object-file representations do better in
this regard, for the operation of opening another object-file is a natural analog
of adding one, and infant addition/subtraction studies (Koechlin, et al., 1998;
Simon, et al., 1995; Uller et al., 1999; Wynn, 1992a) and the choice studies
(1 + 1 vs. 1 + 1 + 1; Figure 2) show that infants represent the results of adding
or subtracting an object from a set encoded in memory. Second, in the learning
of number words, representations of small sets (1, 2 and 3) play a privileged
role. As we saw in Section 3, infants spontaneously represent small sets with
object-file representations; analog magnitude representations do not appear to
be drawn upon until the numbers in the set get relatively large. For these (and
other) reasons, I believe that object-file representations are a better candidate
than analog magnitude representations for the system of core knowledge that
underlies the learning of the explicit integer list representation of number (see
Carey and Spelke, in press, for an extended treatment of these issues).

We do not know, as of now, how the child constructs the integer list
representation of number out of the building blocks provided by core knowl-
edge. It may still turn out that analog magnitude representations play a role
in this process. An important empirical issue is whether any evidence can be
found that toddlers who have not yet worked out how ‘1, 2, 3, 4, 5%’ rep-
resents number have mapped later items on the list onto higher regions of
number line representations. The data available to date, from Wynn (1990,
1992b), suggest that the answer is no, but more sensitive probes can be devised.
If this pattern of data holds up, then we can safely conclude that mappings
between regions of the analog magnitude representations and words for posi-
tive integers are constructed only after the child has constructed the latter, and
cannot be part of the cognitive foundation of that construction.

10. Conclusions

Specialized input analyzers ensure that the symbols that articulate core knowl-
edge pick out the relevant entities in the world. Further, innately specified
computations are defined over these symbols. For core knowledge, therefore,
the two components of what specifies the meaning of any given symbol (its
extension and its conceptual role) are at least partially innately given. As
Dehaene convincingly argues, analog magnitude representations of number are
part of core knowledge. In adulthood, these representations are automatically
activated in numerical reasoning, even in tasks where they are logically
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unnecessary (or even counterproductive). Adults have mapped integer words
onto analog magnitude representations, and since analog magnitude represen-
tations are innately interpreted, this mapping provides some of the meaning
of integer words. In a very real sense, then, analog magnitude representations
are part of the evolutionary foundation of numerical concepts.

The argument I have developed in my commentary on Dehaene’s précis
is paradoxical. A system of numerical core knowledge, analog magnitude rep-
resentations of number, may not be part of the ontogenetic foundation of
the first representational system with the power to express natural number.
Evolutionary cognitive foundations and ontogenetic cognitive foundations are
conceptually distinguishable, and as a matter of empirical fact, appear to be
distinct. Some system of knowledge may be innate, and eventually integrated
with other relevant systems in the representation of a given domain of knowl-
edge, but still play no role in the learning of the systems of representation
with which it is ultimately integrated.

At the very least, the process of constructing a mapping between number
word representations and analog magnitude representations is not simply one
of coining lexical items for prelinguistic symbols. Rather, the integer list system
of number representation itself transcends any known system of number rep-
resentations in core knowledge. As Dehaene remarks, in the course of the
development of mathematics, core knowledge is extended and different
domains of core knowledge are related to each other. I argued here that con-
structing the integer list representation of number (even a small finite part of
it) requires extension and interrelation of different systems of core knowledge.
A major challenge to the naturalistic project Dehaene has called for is to specify
the bootstrapping mechanisms that extend and relate systems of core knowl-
edge, resulting in representational systems with more expressive power than
any that were antecedently available.

Department of Psychology
New York University
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