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Abstract

We analyze US money demand stability and the indicator proper-
ties of derived money overhang measures of various monetary aggre-
gates for predicting inflation over a sample from 1987Q1 to 2008Q2.
In contrast to a large part of the literature, we find evidence of a
stable money demand function for M2 in the framework of the cointe-
grated VAR (CVAR) model without resorting to ’exotic’ determinants
or redefinitions of M2. Previous evidence suggesting instability of the
M2 money demand function may have been related to two kinds of
misspecification: First, with regard to the specification of the deter-
ministic components, and secondly, with regard to the imposition of
theoretically plausible but empirically rejected restrictions imposed on
the model from the outset. Using formal stability tests, we find that
stability of the long-run coefficients cannot be rejected, while stabil-
ity of the short-run parameters is doubtable. Inference is not only
based on asymptotics, but also on small-scale (parametric) bootstraps.
We find some evidence that money overhang is a useful information
variable for predicting changes in the inflation rate. First, our esti-
mates obtained from the CVAR model suggest that money overhang
Granger-causes inflation. Secondly, recursive out-of-sample forecasts
which we conducted over a hold-back period show that taking account
of derived money overhang measures significantly improves forecasts
of the change in inflation over long horizons (about 3 years). Finally,
we provide some evidence that the importance of money overhang for
predicting (changes in) inflation may have increased over time.

∗Address: Sparkassen-Finanzgruppe-Chair of Macroeconomics, HHL - Leipzig
Graduate School of Management, Jahnallee 59, 04109 Leipzig, Germany. Email:
oliver.hossfeld@hhl.de. I thank Wilhelm Althammer and Katarina Juselius for many help-
ful comments and discussions.
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1 Introduction

Although the FED at least formally attributes a much less prominent role to
the development of monetary aggregates and their potential impact on infla-
tion than the ECB does, we believe that a careful reassessment of the proper-
ties of money demand in the US and the potential leading indicator qualities
of derived money overhang measures for inflation are warranted. Previous
empirical evidence has been skeptical of both, the stability of US money de-
mand with respect to various monetary aggregates, as well as money’s leading
indicator qualities for inflation (see for instance Friedman and Kuttner, 1992,
Estrella and Mishkin, 1997, and Stock and Watson, 1999). However, previous
evidence suggesting instability of the M2 money demand function may have
been partly due to two kinds of misspecification: First, with regard to the
specification of the (long-run) deterministic components in the econometric
model (see Swanson, 1998, and Ahking, 2002). And secondly, with regard to
the imposition of theoretically plausible but empirically rejected restrictions
imposed on the model from the outset. Following Juselius (2006), we think
that it is time to ’let the data speak freely’.1 To take this approach seri-
ously, our analysis starts from a very general model specification and each
imposed restriction is formally tested whether it is ’compatible with the data’.
We thereby carefully employ the Cointgrated VAR (CVAR) approach from
Juselius (2006). To address previous concerns regarding stability, our model
specification is augmented by a rigorous stability analysis, examining both
the long-run and the short-run stability of the final (overidentified) model.
Our more favorable results in terms of M2 money demand stability may also
partly be related to a different sample choice. In contrast to most previous
studies we do not examine the full sample for which data is available (start-
ing 1959Q1), but focus our analysis on a sample starting 1987Q1. While
our sample-choice may superficially be criticized as ’data-mining’, we believe
that our approach to shorten the sample length by shifting the sample start
is reasonable. First it is very likely that a sample spanning about 50 years of
data contains (possibly several) regime shifts which would require adequate
and often complex modeling. Generally, one would prefer a model to be as
parsimonious as possible. Secondly, by picking a sample starting in the mid
80s we exclude the period preceding the ’Great Moderation’, which may es-
pecially be advantageous with respect to our forecasting exercise. Thirdly,
our sample choice is ex post rationalized by an (informal) recursive stability
analysis which clearly points towards instability of the estimated long-run
parameters during the period excluded from our previous analysis.

1See also Hoover et al. (2008).



If there is evidence of a reasonably stable money demand relation, derived
measures of money overhang (which are defined as the deviation from the
respective monetary aggregate from the money demand equilibrium) may
well serve as an ’information variable’ regarding the future state of the econ-
omy, and be - more specifically - helpful to predict future rates of inflation.
Friedman’s famous proposition that ’inflation is always and everywhere a
monetary phenomenon’ or at least Taylor’s (1992) (cited in Nelson, 2003)
’softened’ version that ’substantial inflation is always and everywhere a mon-
etary phenomenon’ (emphasis added) remain intriguing.

To our knowledge no study has so far examined the leading indicator of
money overhang measures for predicting (changes of) inflation in the US.2

However, this is not surprising against the background of the above men-
tioned widespread skepticism regarding the stability of conventional money
demand functions.

This article is structured as follows. In section 2 we will shortly review
previous evidence on US M2 money demand (instability) and comment on
potential shortcomings, which serve as a motivation for our article. In section
3 we will visually inspect the properties of the time series used in our analy-
sis. In section 4 we will describe our estimation methodology and the model
specification. Following Juselius (2006) we examine the cointegration space
more closely and systematically test whether certain linear combinations sug-
gested by economic theory are stationary in section 5. This will help us to
find a sensible long-run identified structure of the model. In section 6 we
will examine the stability of the long-run parameters, and how precisely they
have been estimated. We also carefully analyze how our results are affected
by the inclusion of a restricted smooth-shift dummy variably in the early
1990s, which has previously been often used in the literature on M2 money
demand. We will formally test whether such a dummy is long-run exclud-
able. In section 7 we examine the short-run structure of the overidentified
model and examine the constancy of the short-run equations, which may be
crucial for obtaining reliable inflation forecasts. A special focus will be on
the analysis of the short-run ’inflation-equation’ and the ’money-equation’.
In section 8 we will conduct an extensive out-of-sample forecasting analysis
(based on two distinct approaches) to assess whether our previously derived
money overhang measures are useful to predict (changes in) inflation over
various forecasting horizons (from 1 quarter up to 3 years). Finally, section

2Carlson et al. (2000) use derived money overhang measures to forecast nominal GDP,
Dotsey et al. (2000) use an estimated money demand function to assess the ’nowcast-
ing’ properties of money for the other variables contained in the cointegration vector,
Orphanides and Porter (2000) analyse whether a P ∗model based on recursively estimated
M2 money velocity is helpful to predict inflation.
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9 concludes the article.

2 Previous Evidence and Sources of Misspeci-

fication

The following short overview about previous US money demand studies fo-
cuses on M2. A short review of previous empirical results and the presenta-
tion of our own results with respect to other monetary aggregates are moved
to the appendix. We keep our literature review very short and instead refer
to the comprehensive and excellent survey by Duca and Vanhoose (2004).
Previous evidence on the relevance of monetary indicators for predicting in-
flation is summarized in section 1.8.1.

Until the early 1990s M2 money demand was deemed stable (see for in-
stance Duca, 1995, Dotsey et al., 2000, and for the most extensive empirical
study Carlson et al., 2000). If the sample end was shifted to include the
early 1990s M2 money demand appeared to have become instable however.
A notable decrease in the opportunity costs of holding money could not eas-
ily be reconciled with a slow-down of M2 growth (see Carlson et al., 2000).
Those who acknowledged a break in that period basically found two ways
to circumvent the problem and ’re-establish’ stability: Either by including
dummy variables, smooth-shift variables (Carlson et al., 2000), or other vari-
ables such as the long-term bond rate over the respective period (see Koenig,
1996); or by redefining M2 in such a way to either exclude supposedly instable
components or include alternatives to which shifts may have occurred.3

To illustrate this further, figure 1 depicts the inverse of US M2 velocity
together with the commonly hypothesized opportunity costs of holding M2,
that is the spread between the 3-month treasury bill rate (tb3) and the M2
own rate (own), which is the weighted average interest rate paid on the
components included in M2.

The shaded area depicts the period which is often held responsible for
instabilities in the US M2 money demand function, the so called ’period of
missing money’. While this period looks peculiar if the end of the sample is
in the midst of the 90s, it does not appear to be particularly special if the
full sample is considered. Apart from this it should be noted that a contra-
intuitive comovement of both series does not occur over five years, but is
restricted to a very few quarters (most notably 1991Q4 and 1992Q1).

3Carlson and Keen (1996) for instance suggest that MZM is a more appropriate aggre-
gate than M2, because it is per definitionem not affected by shifts to money market and
bond funds (especially in the early 1990s) which are both included in MZM but not in
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Figure 1: Inverse M2 Velocity vs. Interest Rate Spread
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Note: Inverse M2 Velocity is calculated as m2−y. The shaded area depicts the period which is
often held responsible for supposed instabilities of M2 money demand (see for instance Carlson
et al. (1999) who include a dummy which is equal to 0 before and 1 after this period, and
linearly increases in between.)

The robustness of previous results is questioned by Swanson (1998) and
Ahking (2002). Swanson notes that estimation results fundamentally differ
if the deterministic trend assumptions are changed. Building on this Ahk-
ing systematically examines the sensitivity of cointegration rank test results
for various specifications including real M2, real GDP and different interest
rates (which are however included separately) to changing the deterministic
assumptions. He concludes that cointegration test results heavily depend
on the deterministic components being correctly specified and claims that
the deterministic components have often not been adequately dealt with in
previous studies. Neither is formally tested for the appropriate determinis-
tic components, nor is a clear cut made between restricted and unrestricted
trends/constants. He therefore warns that ’there is a need for a more care-
ful modeling of the deterministic components of long-run economic models
than had been the case in the past’. In contrast to a large part of the lit-
erature, Ahking (2002) finds weak evidence of a long-run relationship for a

M2.
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sample covering the early 90s without including any binary variables.4 How-
ever, Ahking does not provide any estimated coefficient values (neither of
the long-run parameters nor of the short-run parameters) which leaves us
with a doubt whether the long-run relationship can really be interpreted as
a money demand function. Evidence of cointegration is a necessary but not
a sufficient condition for the existence of a (stable) long-run money demand
function.

Beside a possible misspecification of the deterministic components in pre-
vious studies, there is another source of misspecification: the imposition of
restrictions which are not ’accepted by the data’. To illustrate this let us con-
sider equation 1.1, which is an econometric model for a quite general form
of a money demand function that encompasses the most commonly tested
specifications:

m2t = β0 + β1yt + β2tb3t + β3ownt + β4∆pt + εt, (1)

where m2t is the natural log of real M2 at time t, yt is the log of real income,
tb3t the three-month treasury bill rate, ownt the own rate of M2, and ∆pt
the annualized quarterly inflation rate.

Almost all previous studies on US M2 demand (except Dotsey et al.,
2000) define the opportunity costs of holding M2 as the difference between
tb3 (or alternatively a long-term bond yield) and own, or alternatively only
include tb3 and disregard own completely. In terms of equation 1 this means
that either the restriction β2 = −β3 or β3 = 0 is imposed from the outset
without testing its compatibility with the data. If either of these restrictions
is mistakenly imposed the estimator will be biased, and closely related, coin-
tegration tests may fail to find evidence of a long-run relationship among the
variables.

Anticipating our results it turns out being crucial not to impose either
of these restrictions. We find that both are incompatible with the data.
Furthermore and closely related, restricting β2 and β3 in either way we do
not find evidence of a long-run money demand relationship, but leaving both
coefficients unrestricted we do.

4He abstains from using dummy variables because the tabulated critical values under-
lying the cointegration rank tests are no longer valid. We instead choose to simulate the
critical values in those cases where binary variables are included.
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3 A Visual Inspection of the Time Series

Our benchmark model includes the five previously defined endogenous vari-
ables: m2t, yt, ownt, tb3t, and ∆pt. Before we introduce the model more
formally in the next section, we have a preliminary look at the involved se-
ries in this section, which also serves as a motivation for the choice of the
estimation methodology.

All data is taken from the Fed’s FRED database. Real variables are ob-
tained by dividing nominal values by the GDP deflator. Annualized quarterly
inflation rates are obtained as four times the quarter-on-quarter percentage
change of the GDP deflator. All rates are measured as fractions of 100.
Graphs of the series over the estimation sample are depicted in figures 2 to
4. First of all, it can be clearly seen from figure 2 that US M2 money ve-
locity is clearly non-stationary over the sample period. As an alternative to
modeling the demand for money M2, we could have modeled M2 velocity.
However, as described in the previous section, by doing so we would im-
plicitly impose the non-tested long-run restriction that the money demand
to income-elasticity is equal to unity and additionally impose restrictions
on the short-run adjustment parameters. Wrongly imposing this restriction
would again make the estimator biased.

Figure 2: M2 Money Velocity

M2 Money Velocity 
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M2 Money Velocity 

It is also clearly visible in figure 3 that the assumption of a stationary
interest rate spread would be quite hazardous. This visual assessment is
formally supported in the succeeding analysis. It implies that the spread be-
tween tb3 and own potentially qualifies as a determinant of the demand for
m2, which itself is also clearly non-stationary. But again, instead of directly
including the spread as a determinant, we include both interest rates individ-
ually. Figure 4 depicts annualized quarterly inflation rates, one based on the
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Figure 3: Interest Rates and their Spread
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Note: The spread is calculated as tb3 -m2own.

GDP deflator, the other on the CPI. Both series generally comove, however,
CPI inflation is in some periods far more volatile than the one based on the
GDP deflator and thereby causes, in contrast to the latter, unpleasant ARCH
effects. The order of integration of inflation is less obvious than for the other
series. Just by looking at the graphs it is hard to say whether inflation (how-
ever defined here) is I(0) or I(1) (and this is also unclear according to several
univariate unit root tests we conducted). Its order of integration has crucial
impacts for both, the model specification, as well as for our forecasting exer-
cise. Our derived money overhang measure, which is defined as the difference
between actual m2 and the value predicted by the long-run money demand
function (or more technically, the residual from the respective cointegration
relationship), is per definitionem stationary and cannot plausibly be a useful
predictor of a non-stationary variable. So whether inflation is I(0) or I(1) will
determine whether money overhang may be a useful indicator for predicting
the inflation rate or changes in the inflation rate.
Because all series (maybe except ∆p) are nonstationary, cointegration anal-
ysis is the proper tool to analyse potential (long-run) relationships among
the variables. Simple OLS regressions could lead to so-called ’spurious re-
gressions’ and estimating the model in first differences could cause omitted
variable bias if there are cointegration relationships among the undifferenced
series which are not taken into account in the model in first differences by
including the error correction term(s).
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Figure 4: US CPI Inflation Rate vs. GDP Deflator Inflation Rate
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4 Estimation Methodology and Model Specifi-

cation

It is unlikely that all variables except money are weakly exogenous so that
a systems approach is generally warranted. In contrast to single equation
approaches such as dynamic OLS (DOLS) or fully-modified OLS (FMOLS),
which can also cope with endogenous regressors, a systems approach will
furthermore give us insights into the adjustment dynamics. Additionally, it
is straightforward to use the respective VECM for forecasting (as opposed to
the DOLS estimator, which uses a two-sided filter to ’whiten’ the residuals).

Following Johansen (1995) we write the CVAR model in vector error
correction form as:

∆xt =
k−1
∑

i=1

Γi∆xt−i + αβ′xt−1 + ΦDt + εt, t = 1, ..., T,

where xt = (m2t, yt, tb3t, ownt,∆pt)
′ is the vector of endogenous variables,

Γi are matrices of short-run coefficients, Dt is a vector of deterministic com-
ponents, and k the order of the VAR in levels. The number of cointegrating
relationships is given by the rank of Π = αβ′ and will be determined after
having set up a well-specified model.5

5If xt is integrated of order 1, i.e. I(1), and the variables contained in that vector
were not cointegrated, it would imply that the equations would be unbalanced (unless
Π = 0), because ∆xt which is I(0) if xt is I(1) would have to equal xt−1 which is non-
stationary plus some other stationary components. Because the sum of a stationary and a
nonstationary series is itself nonstationary, the equation would be unbalanced and logically
inconsistent (see Juselius, 2006).
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We expect the demand for money to be positively related to real income,
yt, positively to the own rate of M2, ownt, and negatively to the 3-month
treasury bill rate, tb3t. The sign of the coefficient of ∆pt is ambiguous. On
the one hand, ∆pt may be included to capture the opportunity costs of hold-
ing money compared to real assets. In this case we would expect a negative
relationship. On the other hand, a positive sign may be rationalized in the
presence of adjustment costs and nominal inertia (see Dregers and Wolters,
2008, Wolters et al., 1998, as well as the references therein). Another reason
why ∆pt needs to be included is that by assuming that the I(2) trends in
nominal money and prices cancel each other out, we impose long-run homo-
geneity. If we would not include ∆pt (or alternatively ∆m2t) we would impose
the much more controversial restriction of short-run homogeneity as well (see
Juselius, 2006). To restrict our analysis to the ’I(1)-world’ seems appropriate
based on the visual inspection of the series but is not formally tested.6 Al-
though the series have already been gathered in seasonally adjusted form, we
include centered seasonal dummies to account for seasonalities in the data,
which may have ’survived’ the filtering process. Centered seasonal dummies
are used in order not to create seasonal trends.

A money demand relationship does not have to be the only sensible long-
run relationship we may find among the endogenous variables. Other plausi-
ble long-run relationships such as a long-run Fisher effect or a Phillips-curve
relationship are equally possible and will be formally tested in the succeeding
sections.

Our base model includes an unrestricted constant (to account for de-
terministic trends in the data) and a trend restricted to the cointegration
relationship to allow for the possibility that the deterministic trends of the
involved series do not cancel in the cointegration relationship(s).7 We fur-
thermore identified two extraordinary outliers in 1992Q1 and 2001Q1, which
we first captured by including two restricted level shifts in these periods. The
first coincides with the most peculiar quarter during the ’period of missing
money’, the latter is in the proximity of the burst of the new-economy stock
market bubble and may be rationalized by a subsequent shift to liquidity.
Later on we will formally test whether there was a shift in the equilibrium

6Juselius (2006) carefully explains how to formally test whether this so-called ’nominal-
to-real transformation’ is appropriate in the respective system. This however necessitates
setting up an I(2)-model, which we abstain from doing. However, our analysis does not
suggest ’severe I(2)-ness’ in the transformed data - neither based on graphical evidence nor
based on other criteria such as huge differences between uncorrected and Bartlett-corrected
trace statistics.

7Such cointegration relations are called trend-stationary, which means that the relations
are stationary around a deterministic trend.
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mean in these periods, or whether a permanent impulse dummy is sufficient.
The choice of the correct rank is very important and crucially depends on

the VAR model being well-specified. In table 1 we present misspecification
test results for two similar competing models.8 For both models we choose a
lag-length of k=2 as recommended by the Hannon-Quinn information crite-
rion (HQC). Whereas model A contains a restricted trend and two restricted
level shifts (DS921 and DS011 ), model B includes an unrestricted constant,
a permanent impulse dummy in 1992Q1 (DUM921P) as well as the restricted
level shift in 2001Q1. Neither for model A nor model B do the residual diag-
nostics show clear evidence of a serious misspecification. However, in model
A we find evidence of ARCH effects at the second and fourth lag, but only
at the 5%-level. According to Rahbek et al. (2002), moderate ARCH effects
will however not have a large impact on the results of the cointegration rank
tests. So this should not be too concerning. In the more parsimonious model
B the model diagnostics are even slightly better. Here we cannot reject the
null hypothesis of no ARCH effects for the presented lags any longer. So,
according to the misspecification tests, we would slightly favour model B over
model A. However, we decide to base our choice of rank on both specifica-
tions. Additionally, after setting the rank we will have the opportunity to
test the acceptability of the deterministic assumptions with respect to the
trend assumptions as well as with respect to the dummy variables.

Because both of our models include level shifts and/or impulse dummies
the critical values underlying the Johansen trace test are affected and tabu-
lated critical values cannot be used. We therefore provide simulated critical
values depending on the included deterministic components in each of the
models.9 Because the Johansen test is known to obey relatively poor small-
sample properties and our sample is not that large, we furthermore provide
empirical p-values based on parametric bootstrapping (with 9,999 bootstrap
replications).10 Cointegration rank test results are presented in table 2.

At the 5% level we would choose a cointegration rank of 2 for model A.
For model B we would choose a rank of 2 if we follow the empirical p-value
and a rank of 3 if we follow the asymptotic one. Since the choice of the
rank for model B is not absolutely clear, we also estimated the model for

8We present diagnostics for both models, because model A is the starting point of
our analysis (in which we impose testable restrictions), while model B turned out to be
our preferred specification in the later part of the analysis. Because it is known that the
cointegration rank may differ if the deterministic components are specified differently, it
is sensible to show both specifications.

9Simulations are performed in CATS 2.0.
10Bootstrapping is conducted in S-VAR (version 0.43), which can be downloaded from

http://www.texlips.net/svar/source.html.
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Table 1: Misspecification Tests

Model A Model B

Deterministic Restricted Trend Unrestricted Constant
Assumptions DS921 (restricted) DP921 (unrestricted)

DS011 (restricted) DS011 (restricted)

No AC

LM(1) χ2(25) = 24.07 (0.52) χ2(25) = 27.32 (0.34)
LM(2) χ2(25) = 35.29 (0.08) χ2(25) = 26.51 (0.38)
LM(4) χ2(25) = 34.69 (0.09) χ2(25) = 31.00 (0.19)

Normality

χ2(10) = 14.19 (0.17) χ2(10) = 11.07 (0.35)
No ARCH

LM(1) χ2(225) = 227.48 (0.44) χ2(225) = 210.27 (0.75)
LM(2) χ2(450) = 510.63 (0.03) χ2(450) = 459.93 (0.36)
LM(4) χ2(900) = 988.17 (0.02) χ2(900) = 970.83 (0.05)

Note: p-values in brackets. Null hypotheses for misspecification tests
are: No autocorrelation (AC) at lag p, residuals are normally distributed,
and no ARCH effects at lag q.
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Table 2: Simulated and Bootstrapped Cointegration Tests

Model A EV Trace Trace* Frac95 p-value p-value* p-value**

r = 0 0.505 165.175 141.415 110.778 0.000 0.000 0.001
r ≤ 1 0.421 106.182 89.132 82.413 0.000 0.013 0.022
r ≤ 2 0.342 60.220 51.023 57.406 0.028 0.162 0.218
r ≤ 3 0.202 25.055 20.109 36.438 0.451 0.755 0.779
r ≤ 4 0.070 6.127 5.081 18.436 0.857 0.925 0.958

Model B EV Trace Trace* Frac95 p-value p-value* p-value**

r ≤ 0 0.503 136.625 116.972 65.768 0.000 0.000 0.000
r ≤ 1 0.383 77.838 65.423 45.229 0.000 0.000 0.010
r ≤ 2 0.291 37.301 31.362 28.170 0.003 0.021 0.159
r ≤ 3 0.075 8.467 7.300 14.694 0.331 0.437 0.850
r ≤ 4 0.023 1.916 1.128 3.720 0.162 0.284 0.551

Note: * refers to values obtained using simulated Bartlett-corrected test distri-
butions, ** refers to values obtained using bootstrapped empirical distributions
with 9,999 replications.

r = 3. However the system turned out to be much less stable than for r = 2,
and we therefore stick to the more conservative choice of r = 2 also for this
specification.

5 Tests for Long-run Exclusion and Stationar-

ity of Linear Combinations

The long-run parameters of the model have neither been statistically nor
economically identified so far. This requires the imposition of identifying
restrictions. Not to impose arbitrary restrictions, but to narrow down two
sensible long-run relationships, we systematically conduct a number of hy-
potheses tests on the stationarity of linear combinations of the variables based
on economic priors.11

11This systematic approach to identify long-run relationships has previously been ap-
plied by Juselius and MacDonald (2004) to investigate international parity relationships
between Germany and the US. For an application similar to ours, but with respect to the
Danish monetary transmission mechanism see Juselius (2006). To our knowledge this ap-
proach has not yet been implemented to analyze US money demand and related long-run
relationships – likely due to the direct modeling of the interest rate spread. Trivially, if
the cointegration rank was set to one, a systematic approach was not necessary, because
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Before we do so we formally check which specification of the deterministic
components is acceptable/preferable.

Hypotheses tests with regard to the exclusion of variables from the coin-
tegration tests can be conducted despite the model not being identified, since
the imposed restrictions underlying these hypotheses are not identifying but
nevertheless binding (see Juselius, 2006). First we test whether the speci-
fied restricted level shifts can be excluded from the long-run relationships
and whether it is necessary to include a restricted trend in the cointegration
relationships.

It turns out that DS1992Q1 and the restricted linear trend are indi-
vidually (χ2(2) = 5.33[0.07], respectively χ2(2) = 3.22[0.20]) and jointly
(χ2(4) = 5.63[0.23])12 long-run excludable, which supports our previous no-
tion that model B is more appropriate than model A. Due to these consid-
erations and to save space the focus of our succeeding analysis is on model
B.

The unrestricted coefficient estimates for r = 2 are:

β′xt =

[

8.24 −11.73 96.46 −277.40 226.30 −3.31
51.24 −54.11 340.28 −523.52 −105.85 −2.13

]
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Normalizing on ∆p, respectively m2 we obtain:

β′xt =

[

0.04 −0.05 0.43 −1.23 1 −0.02
1 −1.06 6.64 −10.22 −2.07 −0.04

]
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with the respective adjustment coefficients (t-statistics in brackets):

the long-run parameters were directly identified.
12p-values in square brackets.
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Based on the reported t-statistics we observe significant error correction
towards equilibrium of at least two variables towards both long-run relation-
ships thereby supporting our previous choice of r = 2. It is furthermore note-
worthy that y does neither significantly adjust to the first, nor to the second
long-run relationship, implying that it may be weakly exogenous. Therefore
we test whether y does not adjust significantly to either of the cointegration
relationships by imposing two restrictions on α. These restrictions are clearly
accepted (χ2(2) = 0.80 [0.67]).13

We now test the long-run excludability of any of the remaining included
variables (including the restricted shift dummy DS011 to check whether the
model can be further ’simplified’), long-run homogeneity between m and y,
and a long-run homogeneous interest rate spread. The only one of these
restrictions which cannot be rejected is a long-run homogeneous relationship
between m and y in both cointegration relations (for details see table 3).

While the previous test results are helpful to narrow down possible long-
run relationships and possibly adjusting variables, they alone do not statis-
tically and economically identify the model. To find a sensibly identified
long-run structure of the model, we test whether certain linear combinations
of the included endogenous variables are stationary.

A number of combinations could be expected to be stationary based on
economic priors; among others: Money velocity (although that seems unlikely
based on our previous visual assessment of the respective graph), a classic
money demand function (involving m, y, one or several opportunity cost
variables and possibly own), a monetary policy reaction function (involving
the own rate of M2, which may be regarded as the closest substitute to a

13Based on this result we also set up a partial model (conditional on y). However, results
do not qualitatively change, so that we stick to this model specification. It furthermore
allows us to check whether y may even be strongly exogenous at a later stage of our
analysis.
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Table 3: Tests of Same Restriction on all Cointegration Relations

Restriction Interpretation χ2(2) p-value

H1 β1· = 0 m is l-r excludable 11.41 0.00
H2 β2· = 0 y is l-r excludable 12.17 0.00
H3 β3· = 0 tb3 is l-r excludable 12.54 0.00
H4 β4· = 0 own is l-r excludable 15.84 0.00
H5 β5· = 0 ∆p is l-r excludable 26.74 0.00
H6 β6· = 0 DS011 is l-r excludable 9.48 0.01
H7 β1· = −β2· l-r homog. betw m and y 3.73 0.16
H8 β3· = −β4· l-r homog. betw tb3 and own 19.38 0.00

Note: l-r means long-run. All test statistics have alternatively been com-
puted with a Bartlett-correction. Results only change marginally, not qual-
itatively, and are therefore not reported here.

monetary policy instrument in our set of variables, y and/or ∆p), a stationary
interest rate spread (revealing efficient financial markets) and stationary ex-
post real interest rates (with respect to tb3 and/or own) as implied by the
(long-run) Fisher effect.

Table 4 shows the test results for the respective underlying hypotheses
together with a number of additional hypotheses tests.14

In contrast to the usually applied univariate unit root tests the null hy-
pothesis is reversed here. Non-rejection of the null therefore implies station-
arity of the linear combination in this case. We test in a two-step procedure.
First we test whether the respective linear combination is stationary when
we include the level-shift in 2001Q1 (i.e. the coefficient of DS011 is left unre-
stricted). If we cannot reject the null of stationarity we repeat the respective
test without the level-shift included.

Hypotheses 1 to 5 (H1 to H5 ) refer to the stationarity of each of the vari-
ables individually (with level-shift included). In all cases we clearly reject
the null meaning that all variables are integrated of order 1, i.e. I(1). The
stationarity of money velocity (H6 ) is also clearly rejected. So are the null on
the ex-post real tb3 interest rate (H7 ) and the ex-post real own interest rate
(H8 ), if we impose a homogeneous relationship between each of the interest
rates and ∆p. However, once we relax the latter restriction stationarity of
a linear combination between own and ∆p can no longer be rejected. This

14A similar set of hypotheses tests is examined in Juselius (2006) to analyze the monetary
transmission mechanism in Denmark. For a careful examination of the acceptability of
imposed restrictions in an analysis of Euro area money demand see Bruggeman et al.
(2003).
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Table 4: Hypotheses Tests on Stationarity of Linear Combinations for r=2

m2 y tb3 own ∆p DS011 χ2(υ) p-value

H1 1.000 −1.124 35.37 (3) 0.000
H2 1.000 −0.976 35.32 (3) 0.000
H3 1.000 0.042 16.40 (3) 0.000
H4 1.000 0.036 24.94 (3) 0.000
H5 1.000 0.004 26.19 (3) 0.000
H6 1.000 −1.000 −0.033 29.64 (3) 0.000
H7 1.000 −1.000 0.039 11.31 (3) 0.010
H8 1.000 −1.000 0.029 19.25 (3) 0.000
H9 1.000 −1.000 0.011 16.79 (3) 0.001

H10 1.000 −1.000 −8.980 −0.384 12.28 (2) 0.002
H11 1.000 −1.000 −6.119 −0.204 11.55 (2) 0.003
H12 1.000 −1.000 −10.523 −0.025 10.01 (2) 0.007
H13 1.000 −1.000 6.056 −10.492 −0.089 2.37 (1) 0.124
H14 1.000 −1.000 10.102 −13.037 9.98 (2) 0.007
H15 1.000 29.336 −0.263 23.97 (2) 0.000
H16 1.000 18.316 0.311 22.94 (2) 0.000
H17 1.000 32.331 1.042 15.77 (2) 0.000
H18 1.000 110.689−186.628 2.819 1.22 (1) 0.270
H19 1.000 −27.774 58.573 −1.355 9.47 (1) 0.002
H20 1.000 −44.652 39.499 −0.928 10.98 (1) 0.000
H21 1.000 −1.437 0.039 10.49 (2) 0.005
H22 1.000 −0.689 0.020 12.30 (2) 0.002
H23 1.000 −17.435 29.393 −0.456 1.60 (1) 0.207
H24 1.000 −1.781 0.028 1.70 (2) 0.428
H25 1.000 −5.114 25.86 (3) 0.000

Note: The null hypothesis underlying each of the conducted tests is that the respective
linear combination is stationary. A p-value larger than 0.05 therefore indicates that the
variables are cointegrated at the 5% level.
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does not hold for tb3 and ∆p. In line with the previous visual inspection we
do not find the interest rate spread between tb3 and own to be stationary.
H10 to H14 refer to a number of possible money demand functions.15 The
only ’candidate’ which turns out to be stationary is a linear combination of
(inverse) money velocity, own and tb3 (H13 ). The signs are in line with our
theoretical priors. It remains to be tested however, whether this linear com-
bination really qualifies as a money demand function, which also depends on
the short-run adjustment parameters. In the next section we will therefore
test which of the variables correct(s) a long-run disequilibrium. It is further-
more important to note that stationarity of this linear combination can no
longer be accepted once the level-shift is excluded.16

In H15 to H20 we check whether several linear combinations of real in-
come, interest rate(s) and the inflation rate are stationary. A long-run re-
lation between inflation and real income is unsurprisingly clearly rejected
(H15 ). Only H18 cannot be rejected, i.e. a linear combination of y, own
and ∆p is stationary. One may be tempted to interpret this as evidence in
favor of an IS-schedule relating real income to the real interest rate. But first
of all, the additionally imposed coefficient restriction that the coefficient of
own is equal to minus the coefficient of ∆p, which would facilitate the inter-
pretation in terms of a stationary relationship between real income and the
real ex-post interest rate, is clearly rejected (χ2(2) = 15.12[0.00]). Secondly,
the coefficient estimates of the interest rate semi-elasticities are so large that
the inclusion of real income in the linear combination may not be necessary
to ’achieve’ stationarity. Indeed, we find the linear combination of only own
and ∆p to be stationary with an even higher p-value (H24 ). Whereas the
linear combination tested in H18 is a reducible cointegration relationship,
the combination tested in H24 is an irreducible cointegration relationship
(Davidson, 1998), meaning that excluding either of the variables would make
the relation non-stationary (because H4 and H5 have been rejected). We
furthermore find a linear combination of both interest rates and ∆p to be
stationary (H23 ). However, this relation again is not irreducible, but only
the subset tested in H24.

Summarizing, we find evidence of two irreducible cointegration relation-
ships, one of which might be interpretable as a money demand function.
The number of irreducible cointegration relationship matches with our pre-
vious choice of the cointegration rank. We will interpret the stationary rela-
tionships more carefully after having imposed the respective overidentifying

15More specifically, we test whether money velocity together with ∆p and/or tb3 and/or
own is stationary, because the homogeneity restriction between m and y is imposed here.

16We furthermore observe that the coefficient estimates of own and tb3 increase if the
level shift is excluded (disregarding the obvious misspecification of the model in that case).
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restrictions on β.
By imposing these restrictions we obtain the following overidentified long-

run relations:

β′xt =
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which are clearly accepted, both according to the asymptotic p-value (χ2(3) =
3.90[0.27]) as well as the empirical p-value [0.49].

Money adjusts significantly to a deviation from long-run equilibrium sup-
porting our interpretation of the second cointegration relationship as a money
demand function. About 11% of a disequilibrium are corrected in the next
period (keeping the other variables constant). Furthermore, signs are as
predicted by theory. m is positively related to y, positively to own, and neg-
atively to tb3. However, some things are noteworthy: First, the estimated
interest semi-elasticities are comparably high, secondly, money demand does
not react symmetrically to changes in both interest rates (the model is clearly
rejected if this restriction is additionally imposed), and thirdly, (presumably)
the burst of the stock-market bubble around 2000/2001 caused an upward
level shift in money demand, i.e. an increased preference for holding more liq-
uid assets. Carstensen (2006b) as well as Dreger and Wolters (2010) provide
similar interpretations for a dummy variable included in Euro area money
demand specifications around that time.

The interpretation of the other cointegration relationship is less obvious.
It lends support to a long-run Fisher effect, because a nominal interest rate
and the inflation rate are cointegrated. It does however not support the ’full
Fisher effect’ (Miskin, 1992) because ∆p and own do not move one for one in
the long-run. We furthermore see that the inflation rate exclusively adjusts
to long-run disequilbria in this relation. A tentative explanation is that an
increase in the expected inflation rate will push up the nominal interest rate
causing a long-run disequilibrium between the nominal interest rate and the
inflation rate, which is then corrected by an increase in the actual inflation
rate. In this sense, own may qualify as a predictor of inflation as hypothesized
by Fama (1975) with respect to short-term nominal interest rates in general.
However, in contrast to the predictions by Fama, we do not find a unit long-
run coefficient. Crowder and Hoffman (1996) provide an explanation for this.
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They attribute coefficient estimates larger than 1 to the taxation of nominal
interest income. Against their hypothesized value of 1.3 to 1.5 our point
estimate of 1.8 still seems large, however.17 But since we cannot reject a
model in which the additional restriction that the respective coefficient value
is equal to 1.5 (χ2(4) = 7.57[0.11]), our results are still consistent with their
hypothesized range of suitable coefficient values once we take into account
estimation uncertainty.18

6 Tests for Constancy of the Long-run Coeffi-

cients and Estimation Precision

Even if model B is well-specified according to the misspecification test re-
sults presented in table 1, it does not imply that the estimated long-run and
short-run parameters are stable. In this section we will conduct a number of
stability (or constancy) tests with regard to different estimated parameters.
We will conduct three kinds of tests. First we will check whether the eigen-
values are stable, we will then check the constancy of the estimated long-run
parameters. The stability of the short-run coefficients is examined in the
next section.

We approach the tests in the specified order, because it can help us to
narrow down the reasons for instabilities in the model in general. If the long-
run parameters are instable, we would generally be more concerned as if the
short-run effects are instable.

First we will conduct the eigenvalue fluctuation test. The eigenvalues
are (quadratic) functions of both, α and β, so that a rejection of constant
eigenvalues could (among others) imply instable α- and/or β- parameters.
Figure 5 graphically depicts the recursively calculated (τ) test-statistics.

Whereas we observe non-constancies of the eigenvalues in the full model
version (X-form), we do not so in the concentrated model version (R-form).
This may either be due to a too short base sample, which leads to less precise
estimates especially in the X-form (because there are more parameters to be
estimated), or to non-constant short-run effects.

17In table 4 we have chosen another normalization, because ∆p adjusts to disequilibria;
normalizing the first cointegration relationship on own gives a point estimate of 1.8 for
the coefficient of ∆p.

18The lowest possible imposed coefficient value which does not lead to a rejection of the
model (where all other previous restrictions remain imposed) at the 5% level is 1.43. This
value would imply an average marginal tax rate of around 30% (since 1

1−τ
= 1.43), where

τ is the average marginal tax rate. For further details see Darby (1975).
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Figure 5: Eigenvalue Fluctuation Test
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Note: This figure depicts the recursively calculated τ -statistics and the 5% critical value, both
for the X-form and the R-form. τ -statistics larger than the critical value imply rejection of the
null hypothesis of constancy of the respective eigenvalue.

To check whether the estimated long-run parameters are stable, we ap-
ply the Nyblom-type test for parameter constancy by Hansen and Johansen
(2002).19 According to the test result, constancy of the long-run parameters
cannot be rejected, neither based on the the asymptotic distribution (see fig-
ure 6 where the respective test-statistics are depicted), nor on the empirical
distribution.

Figure 6: Nyblom-test of β-Constancy
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Figure 7 shows the recursively estimated money to interest semi-elasticities.
In line with the results from the long-run stability test we observe that they
are reasonably stable.

19See also Nyblom (1989).
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Figure 7: Recursively estimated Coefficient of tb3 and own (based on con-
centrated form)
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Note: The sample end for each recursive estimation is denoted on the horizontal axis, the
respective estimated coefficient value on the vertical axis.

To assess the stability of the interest rate semi-elasticities over the pe-
riod which is mostly held responsible for perceived instabilities of the money
demand function (the early 1990s) we backwards recursively estimate the pa-
rameters over this period. Our base sample is 1996Q1 to 2008Q2. We then
successively include an additional quarter at the beginning of the sample and
re-estimate the model. The coefficient estimates again are reasonably stable
(see figure 8).

Figure 8: Backwards recursively estimated Coefficient of tb3 and own (based
on concentrated form)
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Note: This figure should be read from right to left. Here we always estimate until 2008Q2 and
subsequently add observations at the beginning of the sample.

While the long-run coefficients with respect to the interest rates seem to
be quite stable over time, they are estimated very imprecisely - most likely
due to the high collinearity among both rates.
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Figure 9: Log-likelihood Values for Different Values of β2,3 for Model B re-
estimating all other Parameters
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Note: A coefficient value outside the 95% confidence interval implies rejection of the null that
the coefficient is equal to the hypothesised value at the 5% level.

To illustrate, figure 9 and 10 depict log-likelihood values for specific val-
ues of interest rate semi-elasticities.20 They are obtained by imposing the
respective coefficient value and re-estimating all other coefficients. This gives
a certain log-likelihood value, which is denoted on the vertical axis. All log-
likelihood values outside the denoted 95%-confidence interval imply rejection
of the imposed hypothesis at the 5% level according to a LR-test. We see
clearly that the confidence intervals are huge.

Finally, figure 11 depicts various confidence ellipses for certain parameter
values of β2,3 (i.e. the long-run coefficient of tb3 ) and β2,4 (the long-run
coefficient of own). These confidence ellipses are based on values of the
log-likelihood function for fixed values of the short rate and the own rate
semi-elasticities re-estimating all other parameter values. Analogously to
the interpretation for a single parameter restriction, the area outside the
X% confidence ellipse (where X = 80, 90, 95, 97.5, 99%) depicts value pairs
of β2,3 and β2,4 for which a LR test would reject the null hypothesis that β2,3

and β2,4 have the hypothesised values at the (100−X)% level of significance.
We observe that the confidence intervals are quite large implying that the
coefficients are estimated imprecisely. Additionally, the coefficient estimates
are negatively correlated.

We now compare the stability of two competing models, model B and the

20These estimations have been conducted in S-VAR (version 0.43). Bruggeman et al.
(2003) use this approach to investigate estimation uncertainty with respect to long-run
coefficients for a Euro area money demand function.
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Figure 10: Log-likelihood Values for Different Values of β2,4 for Model B
re-Estimating all other Parameters
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Note: A coefficient value outside the 95% confidence interval implies rejection of the null that
the coefficient is equal to the hypothesised value at the 5% level.

same model without the level shift in 2001Q1 (DS011) included (in figure 12
denoted as B1, respectively B2). The results are clear. While the recursively
calculated likelihood ratios of our previous model are below the 5% critical
value and therefore not rejected, the opposite is the case for the same model
without the level-shift included (see figure 12) .21

Because most previous articles used some kind of a shift dummy for the
period 1990Q1 to 1994Q4, we also considered such a specification. We re-
specified the model to additionally include a restricted smooth-shift dummy
as an exogenous variable. We define this dummy in the same way as Carlson
et al. (2000), i.e. it takes the value 0 until 1989Q4, the value 1 from 1994Q4
onwards and linearly increases in between. It was designed in such a way to
capture a period of financial innovation, which supposedly made M2 money
demand instable in this period. Our results show that the inclusion of such
a smooth-shift dummy is not necessary, at least not for our sample. For all
suitable choices of the cointegration rank we find this restricted dummy to
be clearly long-run excludable (for r=2: χ2(2) = 2.65[0.27], for r=3: χ2(3) =
4.65[0.20]) and therefore prefer our more parsimonious specification.

Let us briefly summarize the main results of this section: First, we can-
not reject the null that the long-run parameters are stable outside the base

21That is a model where the coefficients of the level-shift are restricted to zero in both
long-run relations. We also conducted backwards-recursive tests of the imposed restric-
tions. Results of the forward recursive exercise are matched by those of the backwards
recursive exercise. Therefore we do not report the latter here, but they are available on
request.
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Figure 11: Various Confidence Intervals for β2,3 and β2,4 based on Log-
Likelihood of Fixed Values of both Parameters for Model B re-estimating
all other Parameters
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Note: Confidence ellipses are based on values of the log-likelihood function for fixed values of
the short rate and the own rate semi-elasticities re-estimating all other parameter values. The
area outside the X% confidence ellipse (where X = 80, 90, 95, 97.5, 99%) depicts value pairs of
β2,3 and β2,4 for which a Likelihood ratio test would reject the null hypothesis that β2,3 and
β2,4 have the hypothesised values at the (100−X)% level of significance.
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Figure 12: Recursive Likelihood Ratio Test of Restrictions: Model B1 vs. B2
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sample. Secondly, instable eigenvalues in the X-form as opposed to stable
eigenvalues in the R-form suggest possible instabilities in the short-run ef-
fects. Thirdly, the estimated long-run coefficients are also reasonably stable
in the period which has previously been made responsible for instabilities.
Fourthly, a shift dummy such as the one considered by Carlson et al. (2000)
is long-run excludable and does not significantly alter the results so that we
abstain from including it into our model. Fifthly, an equilibrium shift in
2001Q1 on the other hand is necessary to obtain a stable model. At last,
whereas the estimated interest semi-elasticities are reasonably stable, the es-
timation uncertainty is considerable, most likely due to the high collinearity
among both series.

7 Short-run Stability and Identification

To check the stability of the short-run parameters we conduct the Ploberger-
Krämer-Kronus fluctuation test.22 Based on the asymptotic distribution we
clearly have to reject stability of the short-run parameters in the ’inflation’-
and in the ’own rate-equation’.23 In this case, results obtained from boot-
strapping are fundamentally different. The p-values from the respective em-
pirical distribution are much more favorable in terms of constancy of the
parameters. Whereas we have to reject constancy of the parameters in the
’own rate- and inflation-equation’ at the 5, respectively 1% level based on the
asymptotic distribution, the marginal significance levels increase to 32 (sup

22See Ploberger et al. (1989). Tests have been conducted in S-VAR (version 0.43). For
careful stability analyses of Euro area money demand see Bruggeman et al. (2003) and
Carstensen et al. (2009).

23More correctly, it is the ’change in inflation’, respectively the ’change in the own
rate’-equation, however our used terminology is less cumbersome.
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S(13)=1.78) respectively 15% (sup S(13)=2.44) based on the bootstrapped
distribution (using 999 parametric bootstraps) implying that we cannot re-
ject constancy of either equation at the 5% level. All in all, we cannot rule
out the possibility of non-constant short-run parameters, however. Addi-
tionally, the ’inflation-equation’ seems to be the most likely candidate for
having non-constant short-run parameters (with marginal significance levels
of below 1, respectively 14.5%).

While the short-run dynamic structure of the model is formally identified,
it is highly overparameterized, i.e. it contains many insignificant parameters.
Using a general-to-specific approach we therefore subsequently delete insignif-
icant variables from the simultaneous equations in a stepwise procedure. It is
known that the sequence in which variables are excluded might affect which
variables are retained in the final model. To increase transparency we use
the same decision rule in each step. We always exclude the least significant
variable (based on heteroscedasticity- and autocorrelation-consistent (HAC)
standard errors) and check with a LR-test whether its exclusion is statis-
tically acceptable. Before starting with this stepwise procedure, we first
check whether the centered seasonal dummies can be jointly excluded from
all equations. This restriction is not rejected at the 10 percent level, but at
the 5 percent level (χ2(15) = 23.39[0.08]). In order not to be overly restric-
tive we decide not to exclude them. Table 5 and table 6 show two possible
short-run representations for two distinct samples. Table 5 shows the most
parsimonious short-run specification we obtain over the full sample (1987Q3
to 2008Q2) and over a restricted sample (from 1987Q3 to 2002Q4). The
latter is presented here, because it will be used in the subsequent analysis.
Table 6 shows another identified short-run structure, which is less restrictive.
Here we left all variables included with a value of the t-statistics larger than
1.24

Because a detailed discussion of each of the components of the equations
would consume too much space and would distract from the main message,
we will only interpret the most notable findings or those with the closest
impact on the aim of this study.

First of all, the lagged error correction terms (EC1t−1 and EC2t−1) mat-
ter for changes in all the variables except y irrespective of the sample period
and the ’degree of restrictiveness’. This makes clear that modelling the sys-
tem in first differences and disregarding the cointegrating relationships might
have led to considerable bias due to omitted variables. Secondly, y is not only
weakly, but strongly exogenous over the full sample. We do not want to over-

24Centered seasonal dummies are included in both specifications, but their coefficient
estimates are not reported here.

26



Table 5: Parsimonious Short-Run Specifications

1987Q3 - 2008Q2 1987Q3-2002Q4

∆m2t ∆yt ∆tb3t ∆ownt ∆2pt ∆m2t ∆yt ∆tb3t ∆ownt ∆2pt

∆m2t−1 0.218 0 0.091 0.044 0 0.188 0 0.161 0.058 0
(0.082) (0.056) (0.016) (0.100) (0.063) (0.016)

∆yt−1 0 0.329 0.159 0.070 0 0 0.359 0.273 0.079 0
(0.097) (0.072) (0.021) (0.120) (0.083) (0.021)

∆tb3t−1 0 0 0.434 0.266 0 0 0 0.504 0.203 0
(0.130) (0.044) (0.096) (0.043)

∆ownt−1 1.050 0 0 0.205 0 1.140 0 0 0.213 0
(0.250) (0.056) (0.270) (0.047)

∆2pt−1 0 0 0 0 0 0.190 0 −0.259 0 0
(0.110) (0.064)

ec1t−1 −0.157 0 0 0 −0.831 −0.419 0 0.328 0 −0.808
(0.088) (0.100) (0.160) (0.091) (0.130)

ec2t−1 −0.127 0 0.032 0.018 0.109 −0.132 0 0 0.025 0.088
(0.018) (0.017) (0.005) (0.021) (0.022) (0.005) (0.021)

const −0.087 0.005 0.021 0.012 0.082 −0.087 0.005 −0.005 0.016 0.066
(0.013) (0.001) (0.013) (0.004) (0.016) (0.015) (0.001) (0.001) (0.004) (0.015)

DUM921Pt 0 0.007 0 −0.004 −0.007 0 0.008 0 −0.004 −0.006
(0.005) (0.000) (0.006) 0.005) (0.001) (0.005)

DIFC011t 0.011 −0.008 −0.013 −0.002 0 0.012 −0.008 −0.014 −0.002 0
(0.005) (0.005) (0.003) (0.001) (0.005) (0.005) (0.003) (0.001)

χ2(22) = 28.993(0.145) χ2(20) = 17.645(0.6108)
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Table 6: Less Restrictive Short-Run Specifications

1987Q3 - 2008Q2 1987Q3-2002Q4

∆m2t ∆yt ∆tb3t ∆ownt ∆2pt ∆m2t ∆yt ∆tb3t ∆ownt ∆2pt

∆m2t−1 0.426 0.065 0.052 0.036 −0.098 0.176 0 0.185 0.059 0
(0.092) (0.088) (0.056) (0.014) (0.110) (0.100) (0.068) (0.016)

∆yt−1 −0.289 0.231 0.172 0.081 0 0 0.279 0.251 0.081 0
(0.120) (0.120) (0.076) (0.020) (0.120) (0.083) (0.021)

∆tb3t−1 0 0 0.557 0.244 0.390 0 0 0.322 0.179 0
(0.150) (0.042) (0.310) (0.160) (0.046)

∆ownt−1 1.260 0 0 0.177 −0.518 1.210 0 0 0.236 −0.644
(0.290) (0.054) (0.390) (0.280) (0.048) (0.310)

∆2pt−1 0 0 −0.051 0 0 0.290 0.304 −0.162 0 0
(0.045) (0.120) (0.120) (0.073)

ec1t−1 −0.114 0 0 0 −0.809 −0.526 −0.322 0.217 0 −0.821
(0.089) (0.110) (0.170) (0.150) (0.100) (0.130)

ec2t−1 −0.096 0.018 0.014 0.020 0.057 −0.126 0.034 0.037 0.027 0.114
(0.021) (0.017) (0.018) (0.005) (0.036) (0.023) (0.022) (0.023) (0.006) (0.024)

const −0.061 0.018 0.008 0.013 0.045 −0.082 0.031 0.022 0.018 0.084
(0.015) (0.012) (0.013) (0.003) (0.025) (0.016) (0.016) (0.016) (0.004) (0.017)

DUM921Pt 0 0.008 0 −0.004 −0.008 0 0.010 0 −0.004 −0.008
(0.005) (0.001) (0.006) (0.005) (0.001) (0.005)

DIFC011t 0.008 −0.009 −0.013 −0.002 0 0.012 −0.008 −0.014 −0.002 0
(0.005) (0.005) (0.003) (0.001) (0.005) (0.005) (0.003) (0.001)

χ2(15) = 19.880(0.1766) χ2(15) = 3.2463(0.9993)
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interpret this finding, because our model is necessarily just a partial model
such that relevant interdependencies that ’endogenize’ y are probably simply
not modeled.25

However, if we impose less restrictions on the model and retain all vari-
ables with t-statistics larger than 1, we find weak evidence for a short-run
Phillips curve relationship, since ∆p enters the y-equation positively and sig-
nificantly at the 10% level.26 This also implies that y is only weakly (and not
strongly) exogenous over the restricted sample, but only in the case where
less restrictions are imposed.27

Particularly interesting is the outcome that money overhang enters the
inflation-equation significantly and with the predicted positive sign, implying
that positive (negative) money overhang ’leads to’ an increase (decreases) of
the inflation rate (even) in the short-run.28 Not surprisingly, inflation also
adjusts to the other error correction term. It is furthermore noteworthy
that in the parsimonious representation inflation only reacts significantly to
both error correction terms and to none of the other variables included in
the model. With regard to the ’money-equation’ two things are noteworthy.
First, the adjustment speed of money to long-run money demand disequi-
libria is very close to the adjustment speed in the initial model (it is only
very slightly faster). Secondly, money also adjusts to disequilbria in the sec-
ond long-run relationship. If we follow our previous tentative interpretation,
short-run money demand increases if there is an increase in the expected
inflation rate.

8 Forecasting (Changes in) US Inflation

8.1 Previous Empirical Evidence

A large number of studies examine the leading indicator properties of various
macroeconomic indicators for forecasting inflation in the US (see Stock and

25Our model does not include the long-term bond yield which may play a crucial role
in the monetary transmission mechanism. However, unsurprisingly, additionally including
the long-term bond yield as a third interest rate made our estimates even less precise.

26We choose such a low t-value to make it more likely that all relevant variables remain
included in the model. It clearly comes at the cost that also the number of irrelevant
variables increases compared to our approach where a t-ratio of 1.96 is used as a selection
criterion.

27Excluding y would however also be statistically acceptable according to the LR-test
result in this case, albeit with a much smaller p-value than over the full sample.

28We are aware of the fact that temporal order does not imply causality, but nevertheless
choose to use this ’sloppy language’ instead of a technically more correct but often less
intuitive language.
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Watson, 1999, and the references therein). Stock and Watson themselves
also provide the most extensive empirical study about forecasting US infla-
tion. Among others, they examine the leading indicator properties of what
they call a ’generalized version of the Phillips curve’ in which an index of ag-
gregate economic activity (composed of 61 real economic indicators) instead
of unemployment is related to inflation. Howeverm they do only consider
forecasts for the 12-month horizon. For this specific horizon their results
point towards the superiority of their generalized Phillips-curve compared to
other indicators derived from other frameworks such as monetary theories of
inflation and the term structure.

Superficially, their results suggest that monetary indicators are not useful
for predicting inflation. However, first it is important to note that Stock and
Watson only consider a 12-month horizon which may not be the forecast
horizon in which monetary indicators are useful, and secondly, they only
consider two simple monetary indicators: money growth and the change in
money growth. They do not consider more elaborate monetary indicators
such as money overhang. With regard to the Euro area Nicoletti-Altimari
(2001) and Carstensen et al. (2009) find evidence that money overhang
significantly improves inflation forecasts over longer horizons of about one to
two years.

In a more recent article, Stock and Watson (2007) emphasize that ’in-
flation has become harder to forecast, at least, it has become much more dif-
ficult for an inflation forecaster to provide value added beyond a univariate
model ’.29 They also acknowledge that the relative performance of the Phillips
curve forecasts deteriorated sharply from their first to their second sample
(1970Q1 to 1983Q4, respectively 1984Q1 to 2004Q4). Similarly, Orphanides
and van Norden (2002) as well as Atkeson and Ohanian (2001) conclude that
it has become difficult to beat inflation forecasts obtained from univariate
models since the mid-80s.

However, there is also some evidence suggesting that money can be used
as an information variable with regard to predicting inflation. Using standard
as well as Bayesian VAR models Berger et al. (2008) find that the inclusion
of money growth to their model significantly improves out-of-sample inflation
forecasts, albeit the benefits are quantitatively small. Estrella and Mishkin
(1997) are more skeptical. They set up a trivariate VAR in first differences
containing nominal income growth, inflation and growth in M2. Over a
sample from 1979 to 1995 inflation and nominal income growth Granger-cause
money growth, while the opposite does not hold. Because the former model
may be misspecified if the variables are cointegrated, they additionally set up

29Their univariate model is an MA(1)-model with time-varying parameters.
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a bivariate CVAR model composed of M2 velocity and tb3 and augment the
previous nominal growth equation with the obtained error correction term.30

Since the joint significance level of the model does not increase, they conclude
that there is no role for money as an information variable. Using predictive
regressions D’Agostino and Surico (2009) find that US money growth does
not provide marginal information content for predicting inflation over various
horizons compared to univariate inflation forecasts.31 This is consistent with
our previous findings, because ∆m2t−1 was clearly insignificant in the ∆2pt-
equation. However, we found evidence that money overhang Granger-causes
inflation, which may be interpreted as preliminary evidence for the hypothesis
that a more sophisticated monetary indicator such as money overhang is a
more suitable predictor of (changes in) inflation than the growth rate of a
monetary aggregate.

The two analyses which are methodologically most closely related to our
forecasting exercise are Carlson et al. (2000) and Orphanides and Porter
(2000). Carlson et al. isolate nominal income from their estimated long-run
relation for m2 and calculate the difference between actual nominal income
and the derived measure of equilibrium nominal income.32 This term and its
lags are added to a separate nominal income growth equation together with
6 or 9 lags of opportunity cost changes, nominal money growth, and (in some
cases) the inflation rate. To check whether nominal money growth and the
error correction term help to predict changes in nominal income growth they
test whether they are jointly significant with a simple F-test. Their results are
supportive.33 However, in-sample significance (or non-excludability) does not
imply that the variables also have predictive content out-of-sample. By only
considering the in-sample properties the risk of ’overfitting’ is not negligible.
We will therefore assess both the in-sample and the (pseudo) out-of-sample
predictive content of our derived money overhang measures.

Based on Hallman et al. (1991) Orphanides and Porter (2000) provide
evidence that a P∗model34 based on recursively estimated (mean shifting)

30The existence of an error correction term implies evidence in favor of cointegration.
This result is notable against the background of other published results covering this
period, but it is unfortunately not further commented on by the authors.

31Only at the 4-quarter horizon there is some minor improvement. They however find
that their measure of global liquidity helps to provide significantly better inflation forecasts
at forecast horizons beyond one year.

32The cointegration vector includes real income. They calculate the natural log of
nominal income by adding the natural log of the price index to the natural log of real
income after having estimated the model with real values.

33As they do neither present any model diagnostics nor provide HAC standard errors it
is not sure whether their test results are reliable.

34In this model P ∗(= MV ∗/Q∗) is the equilibrium level of prices supported by the
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equilibrium M2 money velocity helps to predict inflation in a real-time set-
ting.

In summary, previous evidence in favor of monetary indicators providing
useful (additional) information for predicting inflation is weak. Bringing to
mind the results from Stock and Watson (2007) this is however not restricted
to monetary indicators, but valid for nearly all macroeconomic indicators.
Also the performance of previously successful multivariate models based on
the Phillips curve deteriorated a lot. Since the mid-80s it has become hard
for ’theory-augmented’ multivariate models to improve on the performance
of ’atheoretical’ univariate models.

8.2 Forecast Methodology and Preliminary Considera-

tions

In this section we will address several questions related to the usefulness
of money overhang and our estimated model in general to predict changes
in inflation. Against the background of the results by Stock and Watson
(2007) outlined above we should not expect any ’miracles’ in the sense of vast
improvements in forecasting performance compared to univariate approaches.
However, in contrast to the univariate forecasts, our forecasts are not purely
atheroretical, but are based on (in most cases) sensible short- and long-run
relationships among the variables, which have been identified in the previous
sections.

We will address two fundamental questions in this section. First, we
check how various VECM specifications perform in a (pseudo) out-of-sample
forecasting exercise - compared to one another and compared to a univariate
model (keeping in mind that the univariate benchmark is a difficult one).35

Secondly, we will examine whether adding money overhang measures to a
univariate model improves its out-of-sample forecasting performance over
various horizons.

All results presented have in common that only information was used for
the forecast, which would have been available to a forecaster at the respective
forecast origin. Because it is sensible to assume that a forecaster would make
use of as recent information as possible, many of the models are recursively
(re-)estimated.

quantity of money in circulation M (Q∗ is an estimate of real potential output, V ∗ an
estimate of equilibrium velocity). If the actual price level P is lower than P ∗ it is expected
that prices will increase. This is the idea underlying the inflation forecasts.

35It is called ’pseudo’, because we created a hold-back period, for which we know the
realized values of inflation, but not the forecaster at the forecast origin.
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Before we address the question of how money overhang performs as an
information variable, we will check the out-of-sample performance of vari-
ous VECM specifications. Surely, these questions are not isolated from each
other, because one of the long-run relationships we identified has been inter-
preted as a money demand function, and money overhang shown to Granger-
cause inflation - both, over the full sample and over a restricted sample until
2002Q4. However, it is hard to assess how much of the model’s predictive
power can be attributed to the respective error correction term. Theoreti-
cally, one could compare the forecasting performance of the VECM with and
without money overhang in the ’inflation equation’, but since the exclusion of
money overhang from the ’inflation-equation’ is clearly rejected according to
the LR-test result, we would essentially compare the forecasting performance
of a well-specified to the performance of a clearly misspecified model. We
abstain from doing so. Instead, the question of ’how much’ money overhang
may contribute to inflation forecasts will be addressed in a single-equation
framework, which is outlined in section 8.4.

Before presenting the results of the forecasting exercises, we will shortly
explain how the VECM can be used for (multi-step) forecasting.

8.3 VECM Forecasts of Changes in Inflation

After estimation of the CVAR model until the respective forecast origin and
having imposed the long-run restrictions the I(1) system is ’mapped’ to a
stationary simultaneous equations system, on which possibly short-run re-
strictions are imposed. This model can be easily used to forecast changes
in the inflation rate (and thereby also the inflation rate itself) one period
ahead. All information we need for this forecast is directly observable at time
t. We only need to ’plug in’ the respective observed values into the ’change
in inflation’-equation. Dynamic forecasts more than one period ahead are
more difficult to obtain however, because this also requires forecasts of fu-
ture long-run disequilibria. Put simply, the error correction terms need to
be ’endogenized’ to obtain fully dynamic multi-step ahead forecasts. This is
achieved by defining the error correction terms as identities.36 If we recur-
sively re-estimate the model this procedure is further aggravated, because
the identities have to be be redefined after each recursion.

To make this more clear, consider the case of a two-step ahead forecast
of the change in inflation conducted in 2002Q4 as an example.

The first step in obtaining a two-step forecast is the estimation of the
CVAR model until 2002Q4, followed by the imposition of sensible long-run

36See Hendry (1995).
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restrictions. A sensible long-run identified structure which could have been
obtained after estimation until 2002Q4 is:

β′xt =









0 0 0 −0.53 1 −0.01
(−15.58) (−5.60)

1 −1 6.92 −11.26 0 −0.07
(16.13) (24.29) (−6.84)
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, χ2 (3) = 0.38

The long-run estimates are close to the ones obtained over the full sample,
and the same long-run restrictions are easily accepted according to the LR-
test.37

The parsimonious short-run specification which has been presented in
table 5 (columns: 1987Q3 to 2002Q4) has been obtained with regard to
these long-run estimates and can now easily be used to forecast the change
in inflation over the next quarter:

∆2pt+1 = −0.81EC1t + 0.09EC2t + deterministics (2)

Forecasting the change in inflation two periods ahead is more difficult. A
two-step ahead forecast of the change in the inflation ratio is obtained from

∆2pt+2 = −0.81EC1t+1 + 0.09EC2t+1 + deterministics (3)

To get a forecast of ∆2pt+2 requires forecasts of EC1t+1 and EC2t+1.
Future values of the error correction terms are obtained from the following
two identities:

EC1,t+1 ≡ EC1,t − 0.53∆ownt+1 +∆(∆pt+1) (4)

EC2t+1 ≡ EC2t +∆mt+1 −∆yt+1 + 6.92∆tb3t+1 − 11.27∆ownt+1 (5)

All we need to forecast future long-run disequilbria are the current values
of the long-run disequilibria and the forecasts of the changes in the other
endogenous variables.

We can iterate forward until we obtain forecasts for the designated fore-

37Apart from the statistical acceptability of these restrictions and the long-run structure
being the ’most sensible’ one, we would have arrived at the same long-run restrictions if
we repeated the steps of the analysis over the full-sample above over the restricted sample.
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cast horizon. We have also shown these equations to point towards a likely
reason for poor multi-step ahead forecasts: the instability of short-run pa-
rameters. Multi-step forecasts are obtained via iteration so that forecast
errors can be propagated through the system, because ’everything depends
on everything’. We saw in the previous section that short-run stability is
doubtable in at least one of the equations, which just turns out to be the
’inflation-equation’. To deal with the problem of possibly instable parame-
ters, we forecast 1-period ahead changes in inflation with a number of differ-
ent approaches, which will be further explained below. Some of them may
be better suited to cope with supposed instabilities and thereby improve the
forecast accuracy of the model.

We use five different approaches to obtain forecasts of the change in the
inflation rate over the next quarter. The period for which forecasts are ob-
tained is 2003Q1 to 2008Q2, so that we get 22 forecasted values with each
approach. These forecasted values can be compared to the realized values
to calculate the forecast errors, which can be then used to calculate mea-
sures of forecast accuracy. We will report the relative mean squared forecast
error (MSFE) of each of the models with respect to each other model. We
now describe the five approaches we use to obtain the forecasts. They differ
with regard to whether the long-run coefficients are recursively re-estimated,
whether the short-run coefficients are recursively re-estimated, and whether
short-run restrictions are (re-)imposed. In all of the models we impose sen-
sible long-run restrictions.38

The five approaches we use are:

• VECM1 : The CVAR model is estimated once until 2002Q4, no short-
run restrictions are imposed. Coefficients are fixed for all forecast ori-
gins, the model is not re-estimated.

• VECM2 : As VECM1, but short-run restrictions are imposed.

• VECM3 : As VECM2, but the short-run coefficients are recursively
re-estimated.

• VECM4 : Long-run coefficients and short-run coefficients are recur-
sively re-estimated, no short-run restrictions are imposed.

38While forecasting based on recursively estimated single-equation models and of sta-

tionary VARs is commonly applied in the literature (see for instance Stock and Watson,
1999, Nicoletti-Altimari, 2001, and Hubrich, 2005), to our knowledge such an exhaustive
comparison of the forecast accuracy of models which differ with regard to the re-estimation
of long-and/or short-run parameters and the (re-)imposition of short-run restrictions is un-
precedented.
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• VECM5 : As VECM4, but short-run restrictions are imposed.

We compare the forecast performance of VECM1 and VECM2 to check
whether a more parsimonious model (where short-run restrictions have been
imposed) leads to better out-of-sample forecasts, which seems likely, since
VECM1 is severely overparameterized. VECM2 and VECM3 are compared
to evaulate whether recursive updating of the short-run coefficients can im-
prove the forecast performance. This may be the case if the short-run coef-
ficients are instable, which is less likely to negatively impact on the forecast
accuracy if the coefficients are continuously updated (but surely, it may still
occur). The relative forecasting performance of VECM4 compared to the
other models will help us to assess whether it is worth the effort to recur-
sively re-estimate the model in each forecast origin. Finally, the relative per-
formance of VECM5 may give us hints whether the complete re-estimation of
the model in each period together with the imposition of sensible short-run
restrictions further improves the forecast performance.

Figure 13 exemplarily shows the one-step ahead forecasts of the change
in the annualized quarterly inflation rate from 2003Q1 to 2008Q2 obtained
from VECM2. We observe that the size of the forecast errors is quite large,
but the direction of change of the inflation rate is predicted quite well.

Figure 13: 1-step Ahead Forecasts of the Change of the Inflation Rate

1-step Forecasts DINF 
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Note: 1-period ahead forecasts for the change of the inflation rate based on the CVAR model
estimated until 2002Q4. The same long-run restrictions have been imposed as over the full
sample. It should be noted that this long-run structure could have equally been obtained over
this restricted sample (of course, coefficient estimates (slightly) differ). Short-run restrictions
are imposed as in table 5 (restricted sample).

Generally, the results from this forecasting exercise (see table 7) are in line
with our previous expectations. First, the imposition of short-run restrictions
improves the forecast performance compared to a model where such restric-
tions have not been imposed (see the relative MSFE of VECM2 vs. VECM1,
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Table 7: Relative MSFE for Various VECM vs. MA(1)

VECM1 VECM2 VECM3 VECM4 VECM5 MA(1)

VECM1 1.00 0.95 0.96 0.95 0.91 0.89
VECM2 1.05 1.00 1.01 1.00 0.96 0.94
VECM3 1.04 0.99 1.00 0.99 0.95 0.93
VECM4 1.05 1.00 1.01 1.00 0.96 0.94
VECM5 1.10 1.04 1.06 1.04 1.00 0.98
MA(1) 1.12 1.07 1.08 1.07 1.02 1.00

Note: The VECM differ in three aspects. 1. whether the long-run coefficients
are recursively re-estimated (Y or N), 2. whether the short-run-coefficients are
recursively re-estimated (Y or N), and 3. whether short-run-restrictions are im-
posed (Y or N). VECM1: N,N,N; VECM2: N,N,Y; VECM3: N,Y,Y; VECM4:
Y,Y,N; VECM5: Y,Y,Y.

respectively VECM5 vs. VECM4), most likely due to overparameterisation
of the latter model. Secondly, the recursive re-estimation of the short-run pa-
rameters does not have a large impact on the forecast performance (VECM3
vs. VECM2). Thirdly, the recursive re-estimation of the complete model im-
proves the forecasts, but only if short-run restrictions are imposed after each
recursive estimation. Lastly, none of the models can beat a simple MA(1)
process, but VECM5 comes very close and achieves about the same forecast
performance (with a relative MSFE of 1.02 compared to an MA(1)). Overall,
we could say that the benefits of the tedious updating procedure are small,
but notable (with a relative MSFE of 1.10 of the ’nothing-updated’ model,
VECM1, compared to the ’everything-updated’-model, VECM5). One might
ask what the benefit is of estimating a complex CVAR model, recursively
re-estimating it every period, and recursively re-imposing restrictions every
period, to finally obtain forecasts which are about as good as those obtained
from one of the simplest possible univariate models. We think the benefit is
clearly that the model is not purely atheroretical, but based on two sensible
economic long-run relationships (a money demand function and a long-run
Fisher equation), towards which variables (among others the inflation rate)
adjust in case of long-run disequilibria. This means we do not just provide a
forecast of the change in the inflation rate (put simply: a number), but also
some economic rationale for it.

We also considered using the VECM for performing multi-period fore-
casts. How such forecasts can be obtained from the VECM was carefully
explained above. However, multi-period forecasts turned out to be relatively
bad, most likely due to the propagation of forecast errors. We furthermore
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think that the forecast errors are most likely due to the relatively bad fore-
casts of y, whose change is solely explained by its own lagged change. Re-
estimation of the model conditional on y, i.e. setting up a partial model,
and separately forecasting y with the help of another partial model would
certainly be worth trying, but is left for further research.39

8.4 Does Money Overhang Improve Inflation Forecasts?

Evidence from Predictive Regressions

We now turn to the question whether our derived measures of money over-
hang help forecast (changes in) inflation over various forecast horizons. We
have already presented some supporting evidence (money overhang Granger-
causing inflation). To assess whether money overhang improves forecasts of
(changes in) inflation over various horizons we use predictive regressions as
proposed by Stock and Watson (1999). Because it is still an ongoing discus-
sion whether US inflation is I(1) or I(0) (more specifically, trend-stationary),
we do not only assess money overhang’s information content with regard to
predicting changes in inflation, but also levels in inflation. In doing so we
follow Nicoletti-Altimari (2001) who faces similar uncertainties with regard
to the order of integration of Euro area inflation and opts for conducting
both kinds of forecasts as well.

If inflation is really I(1) (as it has been tested inside the CVAR model),
the stationary money overhang measures can plausibly only explain changes
in inflation, because the equation would be unbalanced otherwise. If the
inflation rate is best characterized as being stationary on the other hand,
money overhang may be a useful indicator to predict the level of the inflation
rate.

Following Stock and Watson (1999) the forecasting equations are specified
as

πh
t+h − πt = a+ b (L)∆πt + c (L) ovt + εt+h, (6)

respectively

πh
t+h = a+ b (L) πt + c (L) ovt + εt+h, (7)

39We also set up the respective partial model, which turned out to be even slightly more
stable than our presented model, but as the long-run parameters almost did not change,
the estimation results are not reported here (but can be obtained from the author upon
request). However, we did not check how the muli-period forecasts are affected if y is
forecasted separately.
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where πh
t = 400

h
ln
(

Pt

Pt−h

)

is the h-period annualized inflation rate, πt ≡ π1
t =

400 ln
(

Pt

Pt−1

)

is the annualized quarterly inflation rate (i.e. πt = 100∆pt),

ovt is money overhang in period t, and L the lag operator which is set to 4,
because data is quarterly.40

To assess whether money overhang improves the forecast accuracy com-
pared to a model where money overhang is not considered, we estimate both
regressions in two different ways. First we estimate both regressions with-
out restrictions so that all money overhang measures are included. Then we
estimate both regressions with the money overhang measures excluded (i.e.
we impose the restrictions that all c-coefficients are equal to zero. If money
overhang helps predict (changes in) inflation over the respective horizon, the
former specification should provide more accurate forecasts.

We will provide h = 1, 2, 4, 8 and 12 quarter ahead forecasts of the respec-
tive dependent variable. The predictive regressions are recursively estimated
over the sample 2002Q4−h to 2008Q2−2h and based on the estimated coef-
ficients we obtain forecasts for the period 2002Q4+h to 2008Q2. For h=1, 2,
4, 8, 12 we therefore obtain 22, 21, 19, 15, respectively 11 forecasted values
of the annualized (change in the) inflation rate for each of the models. These
in turn can be used to calculate the respective mean squared forecast error
(MSFE) for each of the models.

To illustrate the forecasting procedure, let us consider forecasts for the
8-period ahead annualized change in the inflation rate as an example. In or-
der to conduct forecasts we need to estimate the regressors’ coefficients first.
We therefore estimate equation 1.6 over the sample 1987Q3 to 2000Q4. This
regression equation contains the 8-period lead of the 8-quarter annualized
change in the inflation rate as the dependent variable so that we implicitly
use data from 2002Q4, which is only observable at that time. After hav-
ing obtained the coefficient estimates we ’move to’ 2002Q4 and calculate the
fitted value of the 8-period lead of the 8-period annualized change in the infla-
tion rate based on the previously estimated regression coefficients. The fitted
value of the 8-period lead of the 8-quarter annualized change in the inflation
rate in 2002Q4 is our forecast of the 8-quarter annualized change in the infla-
tion rate from 2002Q4 to 2004Q4. Then we add one quarter to the estimation
sample and re-estimate equation 1.6 from 1987Q3 to 2001Q1. This gives us
the forecast for 2005Q1, and so on. The last parameter estimation sample
is 1987Q3 to 2004Q2 (=2008Q2-2h), which gives the forecast for 2008Q2.
Any later base sample would produce forecasts outside our hold-back period.

40In the specification of Stock and Watson the unemployment rate is used instead of
money overhang.
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One more question we need to deal with is which money overhang measures
should be used when estimating equation 1.6. In contrast to the VECM
approach where money overhang measures were endogenously determined,
they are exogenous here. The long-run coefficients of the CVAR model esti-
mated over the full sample (ending 2008Q2) were not known to a forecaster
in 2002Q4, where all other information needed to run the first predictive
regression from 1987Q3 to 2000Q4 is observable. Because the forecaster uses
information from 2002Q4 to calculate the 8-period lead of the change in the
inflation rate, it is sensible to assume that he also estimates the CVAR model
from 1987Q3 to 2002Q4 to obtain estimates of money overhang in 2000Q4
(and previous quarters). He thereby uses all available information.

The next question concerns whether the coefficient estimates of the CVAR
to derive the money overhang measures are recursively updated or not. For
h=8, 12 we performed both, predictive regressions with fixed coefficient val-
ues to calculate the money overhang measures (those obtained from estimat-
ing the CVAR until 2002Q4), as well as with recursively updated ones for
which the CVAR has been re-estimated until the respective forecast origin.
In line with the results obtained from the long-run stability analysis, the in-
fluence of this updating procedure turned out to be negligible. We therefore
only report the forecast results based on money overhang measures derived
from CVAR estimates obtained until 2002Q4.

In table 8 we present the results from our forecasting exercise. The results
are in line with our expectations and consistent with our ’classification’ of
inflation as I(1). First, we observe that adding money overhang measures to
the univariate model does not improve forecasts of the annualized inflation
rate. This was expected because a stationary variable (money overhang)
should not help forecast a nonstationary variable (inflation rate). Secondly,
at short horizons money does not seem to provide useful information for
predicting changes in the inflation rate. However, at long horizons the money-
overhang-augmented models have smaller MSFE than the univariate models.
When predicting the change of the annualized quarterly inflation rate over
the next three years, including money overhang measures to the univariate
model reduces the mean squared forecast error by about 20%. To examine
whether the forecasting accuracy of the augmented model is significantly
better, we calculate the Clark and McCracken (2001) forecast encompassing
statistic, which is obtained as:

ENC −NEW = P
P−1

∑T

t=R

(

fe21,t+1 − fe1,t+1 · fe2,t+1

)

P−1
∑T

t=R fe22,t+1

,

where P is the number of forecasts, R is the number of observations in the
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Table 8: Relative Forecasting Performance Augmented vs. Univari-
ate Model

h-period change of inflation rate

Forecast horizon (h=) 1 2 4 8 12
Number of Forecasts 22 21 19 15 11

MSFE1 (w/ OV) 0.12 0.16 0.33 0.61 0.64
MSFE2 (w/o OV) 0.12 0.16 0.33 0.65 0.77

MSFE1/MSFE2 0.95 1.00 1.00 0.94 0.83

h-period inflation rate

Forecast horizon (h=) 1 2 4 8 12
Number of Forecasts 22 21 19 15 11

MSFE1 (w/ OV) 0.85 0.63 0.64 0.75 0.78
MSFE2 (w/o OV) 0.84 0.62 0.58 0.68 0.74

MSFE1/MSFE2 1.02 1.02 1.10 1.10 1.05

Note: The table shows the MSFE for predicting inflation, respectively
changes in inflation of the (recursively estimated) model that includes
money overhang measures (MSFE (w/OV)) and the model that excludes
money overhang measures (MSFE (w/o OV)) for five different forecast
horizons. MSFE1/MSFE2 gives the relative MSFE of model 1 (w/ OV)
vs. model 2 (w/o OV). A ratio smaller than 1 implies a higher forecast
accuracy of the augmented model.

initial estimation sample, T the number of observations in the full sample,
and fei,t the forecast error of model i in period t. Model 2 (the augmented
model) encompasses model 1 (the univariate model). The null hypothesis
is that the forecast accuracy of both models is equal. Rejection of the null
hypothesis implies that model 2 provides significantly better forecasts than
model 1. We obtain an ENC − NEW statistics of 1.26. This value has to
be compared to the non-standard critical values tabulated in Clark and Mc-
Cracken (1999).41 The appropriate critical value depends on the proportion
(Π) of the number of forecasts (P ) to the number of observations in the initial
sample (R), and the number of excess parameters (k2) in model 2 compared
to model 1. In our case Π = 11/48 = 0.229 and k2 = 5. Because critical
values are only tabulated for Π = 0.2 (1.198) and Π = 0.4 (1.639) we linearly
interpolate the critical value for Π = 0.229. As 0.029 is equal to 14.58% of

41Critical values for k2 = 5 are only provided in this working paper version of the
above-cited journal article. The critical value we use takes into account that the models
are nested and that forecasts are obtained after recursive re-estimation of the models.
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the difference between Π = 0.4 and Π = 0.2 we add 14.58% of the difference
between the critical value for Π = 0.4 and Π = 0.2 to the critical value for
Π = 0.2. Using this procedure we get an interpolated 10% critical value of
1.25, which is smaller than our calculated ENC − NEW statistics (albeit
very slightly). We therefore reject the null hypothesis of equal forecasting
accuracy and conclude that the ’money-overhang-augmented’ model 2 pro-
duces significantly better forecasts of the 3-year change of the annualized
quarterly inflation rate than the univariate model.

Finally, we examine whether the importance of money overhang to pre-
dict (changes in) inflation might have increased over time. To do so, we
test whether the money overhang measures can be jointly excluded from the
predictive regressions over two distinct samples, the first from 1987Q3 to
2002Q4-h, the second from 1987Q3 to 2008Q2-h. Table 9 shows the test
results for h=4, 8, and 12.

Table 9: Tests of Exclusion Restrictions on Money Overhang

h h-period change of inflation h-period inflation rate

4 F(5,69)= 2.36 [0.05] F(5,69)= 1.18 [0.33]
F(5,47)= 1.41 [0.24] F(5.47)= 0.95 [0.46]

8 F(5,65)= 2.74 [0.03] F(5,65)= 1.37 [0.25]
F(5,43)= 0.87 [0.51] F(5,43)= 0.71 [0.62]

12 F(5,61)= 2.46 [0.04] F(5,61)= 0.87 [0.51]
F(5,39)= 0.89 [0.50] F(5,39)= 0.54 [0.75]

Note: This table reports the F -statistics and the marginal p-values
for the null-hypothesis of exclusion of the money overhang measures
from the respective model. The statistics reported in the first row
refer to the full sample, while the statistics reported in the second
row refer to the restricted sample (for each of the reported forecast
horizons).

One result is especially noteworthy. While we can exclude the money over-
hang measures for predicting changes in inflation over the restricted sample,
we cannot exclude them over the full sample over all forecast horizons con-
sidered. While this may partially be related to the larger number of degrees
of freedom over the full compared to the restricted sample, the large drop in
the p-values suggests that the importance of money overhang measures for
predicting inflation actually has increased over the period excluded from the
restricted sample (especially for h = 8, 12). It is also striking that the money
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overhang measures are excludable in the models predicting the inflation rate,
both over the restricted, as well as over the full sample. This supports our
previous notion that the stationary money overhang measures can only be
helpful for predicting the stationary change in the inflation rate, not the rate
itself.

9 Conclusions

In this paper we have analyzed US money demand stability and the leading
indicator properties of derived money overhang measures of various monetary
aggregates for predicting inflation over a sample from 1987Q1 to 2008Q2. In
contrast to a large part of the literature, we find evidence of a stable money
demand function for M2 in the framework of the cointegrated VAR (CVAR)
model. In addition to a long-run money demand function, we also find ev-
idence of a long-run Fisher effect. As predicted by theory, the demand for
real M2 is positively related to real income, and a unit coefficient of real
income cannot be statistically rejected. Money demand is furthermore pos-
itively related to the own rate and negatively to the 3-month treasury bill
rate. We find a homogeneous long-run relationship among both interest rates
to be clearly rejected. Evidence in favor of a long-run money demand func-
tion collapses once we impose a homogeneous interest rate spread from the
beginning. This could be regarded as a possible explanation for contrary pre-
vious results. However, not imposing this restriction from the outset comes
at the cost of imprecisely estimated interest rate coefficients. This has been
illustrated by depicting the log-likelihood values for different hypothesized
coefficient values.

Formal tests show that the long-run parameters of the model are stable,
while the stability of the short-run parameters is doubtable.

In the first part of our extensive forecasting exercise we have analyzed
how various VECM models perform in predicting one-step ahead changes
of the inflation rate, depending on whether long-run and/or short-run pa-
rameters are recursively re-estimated and whether short-run restrictions are
(re-)imposed or not. The statistical acceptability of the model has been
checked in each single recursion. The results from this exercise suggest that
by recursively re-estimating the complete CVAR model in each period, and
by (re-)imposing sensible and statistically accepted long-run and short-run
restrictions, the forecast accuracy is about the same as the one from an
MA(1) model, whose forecast performance is known to be hard to beat for
this forecast horizon. While the price of this tedious procedure does not seem
to be worth paying at first glance, we believe it is for the following reason:
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Whereas the univariate model is atheroretical and, basically, only provides a
number, our model provides an economic rationale for each forecasted value.
More specifically, the predictions are based on the expected adjustment of
the inflation rate in the case of disequilibria in the two identified long-run
relations (i.e. money overhang and deviations from the long-run Fisher equa-
tion).

We find some evidence that money overhang is a useful information vari-
able for predicting changes in the inflation rate. First, in contrast to money
growth, money overhang Granger-causes inflation. Secondly, evidence based
on the second part of our (recursive) forecasting exercise suggests that tak-
ing into account derived measures of money overhang significantly improves
forecasts of the change in inflation over the 3-year horizon. Finally, some
tentative evidence suggests that the importance of money overhang for pre-
dicting changes in inflation may have increased in recent years. Based on
these results we believe that money overhang measures (albeit estimated im-
precisely) can be considered a useful supplementary information variable for
predicting long-run changes in the US inflation rate.
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10 Appendix

10.1 Rolling DOLS Estimation of Interest Rate Semi-

Elasticities

To further examine our comparably high interest rate semi-elasticities, we
estimate moving window dynamic OLS regressions for the full sample, where
data is available (so this sample also covers the period which has been ex-
cluded from our previous analysis). We set a fixed window size of 76 quarters,
which seems high at first glance, but choosing smaller samples would yield
to even less precise coefficient estimates than documented before, given the
high collinearity among the interest rates. Swanson (1998) uses a 15-year-
rolling window approach because he finds 10-year rolling windows to yield
too imprecise estimates using monthly data. Against this background our
chosen window size seems rather small than large.

We decide to fix the window size (as opposed to an approach where the
window is growing) because we are primarily interested in the potentially
time-varying parameter values. These would be much harder to detect in a
growing window setting, where the picture is more blurred.

Figure 14 shows the point estimates of the interest semi-elasticities with
respect to all 114 sample starts, which are depicted on the horizontal axis.
In each of the regressions the lag order is chosen that minimizes the Hannan-
Quinn criterion.42

42In order not to ’lose’ too many degrees of freedom, we restrict the maximum lead-lag-
length to 5.
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Figure 14: Moving Window D-OLS Estimates of Interest Semi-Elasticities

1965 1970 1975 1980 1985 1990

−10

−5

0

5

10

15
M2OWN Coefficient Estimates 
TB3 Coefficient Estimates 

Note: Window size is set to 76 observations. On the horizontal axis the starting period of each
of the estimation samples is denoted (so the first (adjusted) sample is 1961Q2 to 1980Q3, the
last of the 114 samples is 1989Q3 to 2008Q2). At each iteration the lead/lag length is chosen
that minimizes the HQC; maximum lead/lag length for lead/lag length selection is set to 5.

49



We observe that after a period of relative stability, interest semi-elasticities
increase a lot once the beginning of the sample is moved to the 1980s. While
the relatively large window-size prevents us to assess parameter stability dur-
ing our chosen sample within this more illustrative approach, our (backwards
recursive) formal stability tests in the preceding analysis point towards an at
least reasonable degree of parameter stability within our sample.

10.2 Results for other Monetary Aggregates

While the results for the monetary aggregate M2 have been favorable in terms
of the presence of a long-run stable money demand function, this is not the
case for the other monetary aggregates, which we examined, i.e. M2M (M2
minus short-term deposits), MZM (money at zero maturity), and M1. While
we find evidence of cointegration for the former two aggregates, the estimates
either do not point towards a money demand function (with reasonable coef-
ficient values) or the money demand functions are highly instable, both in the
long- and in the short-run. Below we present some more specific remarks on
our results with respect to each of these aggregates as well as present graphs
of the inverse velocity of the respective aggregates together with the most
commonly hypothesized opportunity costs for that respective aggregate.

10.2.1 M2M

Figure 15 shows the inverse M2M velocity and the spread between the 3-
month treasury bill rate (tb3 ) and the own rate of M2M (m2mown). In
the graph we thereby imposed the ’restriction’ that M2M money demand
is affected symmetrically by both interest rates. We did not impose this
restriction when estimating the various models for M2M.

We find evidence of a cointegration relationship resembling a money de-
mand function. However, both the short-run and the long-run parameters
are highly instable (indicated by the results obtained from the eigenvalue
fluctuation test, the Nyblom test, as well as the Ploberger-Krämer-Kontrus
test). This finding is robust against various trend assumptions, definitions of
shift- and impulse dummies, and the (in this case) difficult choice of the coin-
tegration rank (both, a rank of 2 and 3 seemed suitable). Due to the large
number of tested specifications, we do not report the results here, but they
can be obtained from the author upon request. Interestingly, our preferred
(but still unacceptable) specification for M2M includes a restricted level-shift
in 1992Q2, which could not be excluded according to the LR-test result.
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Figure 15: Inverse M2M Velocity vs. Opportunity Costs
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10.2.2 MZM

In figure 16 the inverse MZM velocity is depicted together with the spread
between tb3 and the own rate of MZM (mzmown).

In contrast to the specifications for M2 and M2M there is no need for
including a dummy variable in the beginning of the 1990s. Since we only
find money adjusting towards the first of two cointegrating relationships, we
estimate the ’money demand function’ in a single-equation framework. The
estimated interest semi-elasticities are in the proximity of those for M2 (6.75
for tb3, -11.50 for mzmown), but the estimated money-to-income elasticity
appears unreasonably high (with a point estimate of 2.00). Furthermore, the
recursively estimated eigenvalues are again highly instable.

10.2.3 M1

Lastly, figure 17 shows the inverse M1 velocity and two interest rates, tb3
and the 10-year long-term government bond yield, lt. Previously identified
periods of breakdown of the M1 money demand function (period of ’missing
money’ in the early 70s, the ’great velocity decline’ in the early 80s , and the
subsequent M1 explosion in the mid 80s where real M1 grew by more than
20% from 1985Q1 to 1986Q4) are shaded in grey.

In contrast to all other presented monetary aggregates previously ana-
lyzed, an own rate for the M1 components is not publicly available. Since we
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Figure 16: Inverse MZM Velocity vs. Opportunity Costs
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regard interest payments on the M1 components not to be of considerable
importance, we disregard the own rate here, and present two interest rates
possibly representing the opportunity costs of holding M1.

While we find a well-specified VAR model for M1 in terms of misspec-
ification tests, there is clearly no evidence for a cointegration relationship
among m1, y, tb3, and ∆p so that only a short-run money demand equation
could be specified. Results do not improve if we either augment the system
with lt, or if we separately include lt instead of tb3.
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Figure 17: Inverse M1 Velocity vs. Opportunity Costs
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