
Radar Imaging

Margaret Cheney

Department of Mathematical Sciences

Rensselaer Polytechnic Institute

cheney@rpi.edu

September 18, 2005

with thanks to Brett Borden and various web authors for figures

1



RADAR = RAdio Detection And Ranging

• developed within engineering community
– how to transmit high power (physics, engineering)

– how to detect signals (physics, engineering, math)

– how to interpret and use received signals (math)

• mathematically rich
– PDE (electromagnetic theory, wave propagation)

– harmonic analysis, group theory, microlocal analysis

– linear algebra, sampling theory

– statistics

– scientific computing

– coding theory, information theory
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Why make images with radar?

• works day or night (unlike optical imaging)

• works in all weather
penetrates clouds, smoke

some radars can penetrate foliage, buildings, soil, human tissue

• can provide very accurate distance measurements

• sensitive to objects whose length scales are cm to m

• can measure velocities (changes in range)
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Radar history

1886 Heinrich Hertz confirmed radio wave propagation

1904 Hülsmeyer patented ship collision-avoidance system

1922 ship detection methods at NRL (Taylor & Young, 700MHz)

1930 Hyland used radar to detect aircraft

⇒ first US radar research effort, directed by NRL

1930s England and Germany radar programs developed:

Chain Home early warning system (22-50 MHz)

fire control systems

aircraft navigation systems

cavity magnetron to transmit high-power microwaves

1940s establishment of MIT Rad Lab (British + American)

radar for tracking, U-boat detection
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Rudimentary imaging

• Detection. For a target at distance r,

see blip at time 2r/c.

• High Range-Resolution (HRR) imaging

• Real-aperture imaging

• Plan position indicator
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Synthetic Aperture Radar 
(SAR)





SAR History

1951 SAR invented by Carl Wiley, Goodyear Aircraft Corp.

mid-’50s first operational systems, under DoD sponsorship:

U. of Illinois, U. of Michigan, Goodyear Aircraft,

General Electric, Philco, Varian

late ’60s NASA sponsorship (unclassified!)

first digital SAR processors

1978 SEASAT-A

1981 beginning of SIR (Shuttle Imaging Radar) series

1990s satellites sent up by many countries

SAR systems sent to Venus, Mars, Titan
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JERS (Japan)
Radarsat (Canada)

ERS-1 (Europe) Envisat (Europe)



Venus radar penetrates cloud cover



Venus topography



AirSAR

CARABAS



UAVs

Lynx SAR



Applications

• military: early warning, tracking, targeting

• commercial aviation, navigation, collision-avoidance

• land use monitoring, agricultural monitoring, ice patrol,
environmental monitoring

• surface topography, crustal change

• speed monitoring (police radar)

• weather radar: storm monitoring, wind shear warning

• search and rescue

• medical microwave tomography
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Deforestation in Brazil



Ocean waves (texture due to wind)



Oil slicks on the ocean

Sea ice



Ocean internal waves at Gibraltar



Southern
California

topography







Glacier flow
via SAR 

interferometry
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Assumed background

• Fourier transform

• delta function

• (∂2
x − ∂2

t )u(t, x) = 0 has solutions of the form
u(t, x) = f(t− x) + g(t + x)

• Cauchy-Schwartz inequality (
∫

fg∗ ≤ ‖f‖‖g‖)

• f = O(g) means f ≤ (const.)g

• ∇ · B = 0⇒ B = ∇×A and ∇×E = 0⇒ E = −∇φ

• ∇×∇×E = ∇(∇ · E)−∇2E
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Fourier transform

F [F ](t) := f(t) =
1
2π

∫
e−iωtF (ω)dω =

∫
e−2πiνtF̃ (ν)dν

inverse transform: F (ω) =
∫

eiωtf(t)dt

Properties

1. If g(t) =
∫

h(t− t′)f(t′)dt′, then G(ω) = H(ω)F (ω).

2. ∂tf(t) = F [−iωF ](t)

3. δ(t) = (2π)−1
∫

eiωtdω

in n dimensions:

F [F ](x) := f(x) =
1

(2π)n

∫
eiξ·xF (ξ)dξ F (ξ) =

∫
eiξ·xf(x)dx
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Maxwell’s equations

∇× E = −∂tB (1)

∇×H = J + ∂tD (2)

∇ · D = ρ ∇ · B = 0 (3)

E = electric field D = electric displacement

B = magnetic field H = magnetic induction

J = current density ρ = charge density

Constitutive laws in free space

D = ε0E B = µ0H J = 0 ρ = 0
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∇× (1) + constitutive laws + (2) ⇒

∇×∇× E︸ ︷︷ ︸
∇(∇ · E)︸ ︷︷ ︸

0

−∇2E

= −∂t∇×B = −µ0∂t∇×H︸ ︷︷ ︸
ε0∂tE

⇓

∇2E − µ0ε0︸︷︷︸
1/c2

0

∂2
t E = 0

Fourier transform

& E(ω) =
∫

eiωtE(t)dt

∇2E +
ω2

c2
︸︷︷︸

k2

E = 0
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Atmospheric Attenuation



Radar frequency bands

Band Designation Approximate Frequency Range

HF 3–30 MHz

VHF 30–300 MHz

UHF 300–1000 MHz

L-band 1–2 GHz

S-band 2–4 GHz

C-band 4–8 GHz

X-band 8–12 GHz

Ku-band 12–18 GHz

K-band 18–27 GHz

Ka-band 27–40 GHz

mm-wave 40–300 GHz
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Decibels

log10

(
power in
power out

)
= Bel too small

instead use:

decibel dB = 10 log10
power in
power out = 10 log10

V 2
in

V 2
out

= 20 log10
Vin

Vout

↑
power ∝ (voltage)2

dB Power ratio

0 dB 1

10 dB 10

20 dB 100

30 dB 1000
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Radar systems

1. Stepped-frequency radars (laboratory systems)

transmit receive measure

cos(ω1t)︸ ︷︷ ︸
Re(e−iω1t)

RR(ω1) cos(ω1t) + RI(ω1) sin(ω1t)︸ ︷︷ ︸
Re[R(ω1)e−iω1t]

R(ω1)

Re(e−iω2t) R(ω2)e−iω2t R(ω2)
...

...
...

Re(e−iωN t) R(ωN )e−iωN t R(ωN )

From the Rs, can synthesize response to any waveform

sin(t) =
∑

an(ωn)e−iωnt ≈
∫ ωN

ω1

a(ω)e−iωtdω

Response would be

srec(t) =
∑

an(ωn)R(ωn)e−iωnt ≈
∫ ωN

ω1

a(ω)R(ω)e−iωtdω
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waveform

generator

transmitter

(amplifier)

I/Q 

demodulator

correlation

receiver

circulator

antenna

low-noise

amplifier (LNA)

⊗
s(t)

cos ! t 
c

p(t) = s(t)cos ! t 
c

p (t) = a(t) cos[ ! t +" (t)]
crec

2.  Pulsed radar systems



I/Q Demodulation

in-phase (I) channel:

prec(t) cos(ωct) = a(t) cos(φ(t) + ωct) cos(ωct)

= a(t) 1
2



cos(φ(t) + 2ωct)︸ ︷︷ ︸
filter out

+cos φ(t)





quadrature (Q) channel (90◦ out of phase):
prec(t) sin(ωct) = a(t) cos(φ(t) + ωct) sin(ωct)

= a(t) 1
2



− sin(φ(t) + 2ωct)︸ ︷︷ ︸
filter out

+sinφ(t)





I and Q channels together give the analytic signal

srec(t) = a(t)eiφ(t)

(approximately analytic in upper half-plane, when a(t) is slowly varying,
i.e., in narrowband case)

19



Filters

H(ω) transfer function

f(t) F−→ F (ω)→

"
⊗
→ F (ω)H(ω) F

−1

−→ (h ∗ f)(t)

F−1 [H(ω)(Ff)(ω)] (t) =
1
2π

∫
e−iωtH(ω)

∫
eiωt′f(t′)dt′dω

=
1
2π

∫ [∫
e−iω(t−t′)H(ω)dω

]

︸ ︷︷ ︸
h(t−t′)

f(t′)dt′

Example: Low-pass filter. Take H(ω) =
{

1 |ω| < ω1

0 otherwise

⇒ h(t) = ω1
π

sin ω1t
ω1t = ω1

π sinc ω1t
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1D Scattering by a fixed perfect conductor at range R

waveform generator→ sinc(t)
transmitter output:

sinc(t) cos(ωct) = Re
[
sinc(t)e−iωct

]
:= f(t)

transmitted electromagnetic wave: (1D model)

Ein(r, t) = einf(t− x/c) where x = ê · r

Ein is a right-going solution of

∂2
xEin − 1

c2
∂2

t Ein = 0

Write total field as Etot = Ein + Esc (think f(t− x/c) + g(t + x/c))
Etot satisfies

∂2
xEtot − 1

c2
∂2

t Etot = 0

Etot

∣∣∣∣
x=R

= 0 ← conducting B.C.
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⇒

∂2
xEsc − 1

c2
∂2

t Esc = 0

Esc

∣∣∣∣
x=R

= −Ein

∣∣∣∣
x=R

expect Esc(r, t) = escg(t + x/c) (left-going solution of wave equation)

B.C.⇒ escg(t + R/c︸ ︷︷ ︸
w

) = −einf(t−R/c) ⇒ esc = −ein

t = w −R/c ⇒ g(w) = f(w − 2R/c)

received field at r = 0:
Esc(0, t) = −einf(t− 2R/c)

transmit f(t), receive prec(t) = f(t− 2R/c) (fixed target)
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1D Scattering by a moving conductor at range R(t)

g(t + R(t)/c︸ ︷︷ ︸
w

) = f(t−R(t)/c)

solve w = t + R(t)/c for t (via Implicit Function Theorem)→ t = τ(w)

for pulsed systems: use Taylor series expansion R(t) = R + vt + · · ·

w = t +

R(t)
︷ ︸︸ ︷
(R + vt) /c ⇒ t =

w −R/c

1 + v/c
:= τ(w)

g(w) = f(t− (R + vt)/c)
∣∣
t=τ(w)

= f





(
1− v/c

1 + v/c

)

︸ ︷︷ ︸
α

(w −R/c)−R/c





↑
Doppler scale factor
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RF field scattered from moving target

For f(t) = s(t) cos(ωct),
prec(t) = s(α(t−R/c)−R/c) cos[ωc (α(t−R/c)−R/c)︸ ︷︷ ︸

αt−(1+α)R/c

]

frequency of cosine = ωcα

For
v

c
<< 1, α ≈ 1− 2v

c
⇒ ωcα ≈ ωc−

2v

c
ωc

︸ ︷︷ ︸

↑
Doppler shift = ωD
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I/Q demodulation of signal from moving scatterer

prec(t) cos(ωct) = s(α(t−R/c)−R/c) cos[ωc(αt− (1 + α)R/c)] cos(ωct)

= s(α(t−R/c)−R/c)
1
2

( filter out︷ ︸︸ ︷
cos[sum] + cos [ωc(αt− (1 + α)R/c)− ωct]

)

I(t) = s(α(t−R/c)−R/c) cos ωc [(α− 1)t− (1 + α)R/c)]
Q(t) = s(α(t−R/c)−R/c) sinωc [(α− 1)t− (1 + α)R/c)]

srec(t) = s(α(t−R/c)−R/c)eiωc[(α−1)t−(1+α)R/c)]

For v
c << 1 and s slowly varying:

srec(t) ≈ s(t− 2R/c)eiωD(t−R/c)e−2iωcR/c

25



Outline

1. introduction, history, frequency bands, dB, real-aperture imaging

2. radar systems: stepped-frequency systems, I/Q demodulation

3. 1D scattering by perfect conductor

4. receiver design, matched filtering

5. ambiguity function & its properties

6. range-doppler (unfocused) imaging

7. introduction to 3D scattering

8. ISAR

9. antenna theory

10. spotlight SAR

11. stripmap SAR

9



waveform

generator

transmitter

(amplifier)

I/Q 

demodulator

correlation

receiver

circulator

antenna

low-noise

amplifier (LNA)

⊗
s(t)

cos ! t 
c

p(t) = s(t)cos ! t 
c

p (t) = a(t) cos[ ! t +" (t)]
crec

2.  Pulsed radar systems



Receiver design

For good range resolution, want a short pulse

But a short pulse has little energy⇒ hard to detect signal in noise

energy density ∝ 1
R4 !

signal is swamped by thermal noise in the receiver!

target can’t even be detected, much less imaged

Brilliant solution:

Use (long) coded pulses and mathematical processing

↑
matched filter or correlation receiver

pulse compression
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Matched filter: sketch of derivation

receiver input: r(t) = ρs(t− τ) + n(t) ( = demodulator output)

↗ ↗ ↖ want to find τ

aeiφ/R4 2R/c noise, assumed white, zero mean

power spectral density N

Apply filter η(t) = (h ∗ r)(t) =
∫

h(t− t′)r(t′)dt′ = ηs(t) + ηn(t)
Choose h so that |ηs(τ)/ηn(τ)| is as large as possible.

SNR = max
h

|ηs(τ)|2

E|ηn(τ)|2 = max
h

ρ2
∣∣∫ h(τ − t′)s(t′ − τ)dt′

∣∣2

N
∫

|h(t)|2dt

= max
h

ρ2
∣∣∫ h(t′)s(−t′)dt′

∣∣2

N
∫

|h(t)|2dt

Cauchy-Schwartz inequality⇒ h(t) = s∗(−t)

η(t) =
∫

s∗(t′ − t)r(t′)dt′ =
∫

s∗(t′′)r(t + t′′)dt′′ correlation
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Pulse compression from matched filtering

Example: the 5-bit Barker code +++-+

+ + + - + correlator output

+ + + - + 1

+ + + - + -1+1=0

+ + + - + 1-1+1=1

+ + + - + 1+1-1-1=0

+ + + - + 1+1+1+1+1=5
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Multiple fixed targets

Two fixed targets: r(t) = ρ1s(t− τ1) + ρ2s(t− τ2) + n(t)

Distribution of fixed targets: r(t) =
∫

ρ(τ ′)s(t− τ ′)dτ ′ + n(t)

Apply matched filter:

η(t) =
∫

s∗(t′ − t)r(t′)dt′

=
∫

s∗(t′ − t)
∫

ρ(τ ′)s(t′ − τ ′)dτ ′dt′ + noise

=
∫ ∫

s∗(t′ − t)s(t′ − τ ′)dt′

︸ ︷︷ ︸
χ(τ ′−t)

ρ(τ ′)dτ ′ + noise

χ(t) =
∫

s∗(t′′ + t)s(t′′)dt′′ = point spread function for

1D “imaging system”
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High Range-Resolution (HRR) Imaging



Chirp = Linearly Frequency Modulated (LFM) waveform

s(t) = eiφ(t)rect(t/tp) where dφ
dt (t) = instantaneous frequency

rect(t) =
{

1 −1/2 < t < 1/2
0 otherwise

dφ
dt (t) = at ⇒ φ(t) = at2

⇒ s(t) = eiat2rect(t/tp)

gives rise to a point spread function

χ(t) = (1− |t|)sinc(at(1− |t|))

where sinc x = (1/x) sinx.

(see p. 170 in Rihaczek Principles of High Resolution Radar

or work out yourself)
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Matched filter for single moving target

receiver input = demodulator output = r(t) = s(t− τ)eiωD(t−τ) + n(t)
want to find τ and ωD.

use a filter bank = set of filters that depend on a parameter ν:

η(t, ν) =
∫

hν(t− t′)r(t′)dt′

to maximize SNR, choose hν(t) = s∗(−t)ei2πνt
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Matched filter for distribution of moving targets

demodulator output = r(t) =
∫ ∫

ρ(τ ′, ν′)s(t− τ ′)e2πiν′(t−τ ′)dτ ′dν′

output of filter bank is

η(t, ν) =
∫

s∗(t′ − t)e2πiν(t−t′)r(t′)dt′

=
∫

s∗(t′ − t)e2πiν(t−t′)s(t′ − τ ′)e2πiν′(t′−τ ′)dt′ρ(τ ′, ν′)dτ ′dν′

=
∫ ∫

χ(τ ′ − t, ν′ − ν)e2πiν(t−τ ′)ρ(τ ′, ν′)dτ ′dν′

where

χ(τ, ν) =
∫

s∗(t′′ + τ)s(t′′)e2πiνt′′dt′′

(narrowband) radar ambiguity function

point spread function for imaging system

Typically one considers only the magnitude of the ambiguity function.
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Properties of the ambiguity function

1. |χ(τ, ν)| ≤ |χ(0, 0)| =
∫

|s(t)|2dt = signal energy

= 1 for a normalized signal

2.
∫ ∫

|χ(τ, ν)|2dτdν = 1 (for a normalized signal)
Radar uncertainty principle or conservation of ambiguity volume

3. |χ(−τ,−ν)| = |χ(τ, ν)|

4. If χ is the ambiguity function for s, then the ambiguity function χa

for e−iπat2s(t) satisfies |χa(τ, ν)| = |χ(τ, ν + aτ)|

5. The ambiguity function for s(t)eia is the same as that for s(t).

6. The (magnitude of the) ambiguity function for s(t)e−iωt is the same

as that for s(t).
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Resolution and cuts through the ambiguity function

Doppler (frequency) resolution:

|χ(0, ν)| =
∣∣∣∣
∫

|s(t)|2e2πiνtdt

∣∣∣∣

⇒ Frequency (Doppler) resolution is determined by amplitude.

For good Doppler resolution, want |s(t)| ≈ 1.

Range resolution:

|χ(τ, 0)| =
∣∣∣∣
∫

|S(2πν)|2e2πiντdν

∣∣∣∣

where S(ω) =
∫

e−iωts(t)dt.

⇒ Range resolution (for a fixed target) is determined by bandwidth.
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Example: Range resolution with a CW pulse

baseband signal is s(t) = rect(t/tp) tp = time duration of pulse

ambiguity function is

|χ(τ, ν)| =
{ (

1− |τ |
tp

) ∣∣∣sinc
[
πνtp

(
1− |τ |

tp

)]∣∣∣ for |τ | < tp

0 otherwise

Range resolution is obtained from

|χ(τ, 0)| =
{ (

1− |τ |
tp

)
for |τ | < tp

0 otherwise

whose first null is at δτpn = tp.
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N. Levanon, 
Radar Principles, 

Wiley 1988

ambiguity
function

for CW pulse



Example: Range resolution with a chirp

For s(t) = rect(t/tp)eiπat2

the ambiguity function is

|χ(τ, ν)| =
{ (

1− |τ |
tp

) ∣∣∣sinc
[
πtp

(
1− |τ |

tp

)
(ν + aτ)

]∣∣∣ for |τ | < tp

0 otherwise

Range resolution is obtained from

|χ(τ, 0)| =
{ (

1− |τ |
tp

) ∣∣∣sinc
[
πtp

(
1− |τ |

tp

)
aτ

]∣∣∣ for |τ | < tp

0 otherwise

The first null is at δτpn = 1
atp

= 1
B where B = bandwidth

Phase modulation improves range resolution by a factor of

pulse compression ratio =
δτpn,CW

δτpn,chirp
=

tp
(1/B)

= tpB︸︷︷︸
!

time-bandwidth product
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A train of high-range-resolution (HRR) pulses

Doppler shift can be found by change in phase of successive returns

Suppose target travels as R(t) = R0 + vt; write Rn = R(nT )

1. transmit pn(t) = s(t)e−iωct

receive rn(t) = pn(t− 2Rn/c)eiωD(t−2Rn/c)

2. demodulate: sn(t) = s(t− 2Rn/c)eiωD(t−Rn/c)e−2iωcRn/c

3. correlate: ηn(τ) =
∫

s∗(t′ − τ)sn(t′)dt′ =∫
s∗(t′ − τ)s(t′ − 2Rn/c)eiωD(t′−Rn/c)e−2iωcRn/cdt′

4. at peak, τ = 2Rn/c:

ηn(2Rn/c) =
∫

|s(t′ − 2Rn/c)|2eiωD(t′−Rn/c)dt′
︸ ︷︷ ︸

χ(0,ωD)

e−2iωcRn/c

5. phase difference between successive pulses:

2ωc[R0 + v(n + 1)T ]/c− 2ωc[R0 + vnT ]/c = 2ωcv/c = −ωD

6. note blind speeds when 2ωcv/c = 2π(integer)
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a train of pulses

pulse repetition
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2. radar systems: stepped-frequency systems, I/Q demodulation

3. 1D scattering by perfect conductor

4. receiver design, matched filtering

5. ambiguity function & its properties

6. range-doppler (unfocused) imaging

7. introduction to 3D scattering

8. ISAR

9. antenna theory

10. spotlight SAR

11. stripmap SAR
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!

x

v

(x,y)

r

v cos ! Range-Doppler Imaging

Stationary radar, rotating 2D object

If radar is at (0,−R), scatterer at (x, y):

• range is R + y

• if rotation rate is Ω, then
|v| = rΩ ⇒ vLOS = vy = |v| cos θ = Ω r cos θ︸ ︷︷ ︸

x

recall Doppler shift is
ωD

ωc
= −2vLOS

c
= −2Ωx

c

• As the object rotates, x and y change (“scatterer moves out of

resolution cell”)

⇒ blurring

Need 3D scattering model that incorporates target motion
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Moving radar imaging a stationary planar scene

• delay⇒ range⇒ scatterer lies on a constant-range sphere

⇒ scatterer on plane lies on a constant-range circle

• Doppler shift⇒ line-of-sight relative velocity

⇒ scatterer lies on the iso-Doppler cone vLOS = R̂ · v = const

⇒ scatterer on plane lies on iso-Doppler hyperbola

• does not account for change in radar position as measurements are

taken (“scatterers migrate through resolution cell”)

⇒ get an unfocused image

Need a 3D scattering model that incorporates changes in sensor position
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