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ABSTRACT

Polyvinyl chloride (PVC) is the most widely used and is the most
environmentally damaging plastic. The Polyvinyl chloride lifecycle (its
production, use and disposal) results in the release of toxic, chlorine based
chemicals. These toxins are building up in water, air and the food chain which
results in severe health problems, including cancer, birth defects, genetic
changes, chronic bronchitis, ulcers, skin diseases, deafness, vision failure,
indigestion, and fiver dysfunction immune system damage, and hormone
disruption.

The Aims of the present study were to isolates polyvinyl chloride degrading
microorganism from indigenous sources and to establish their biodegradation
abilities. For the isolation of microorganism thin films of plastics (PVC,
plasticized PVC with dioctyl phthalate (DOP) and dioctyl adipate (DOA); and
PVC starch blends) were buried in soil in pots for 10 months in laboratory
conditions. Microorganisms colonized and adhered to the surface of the
plastic films were isolated and purified on agar media. They include bacteria,
actinomycetes and different fungal strains. Four fungal strains having good
ability to grow and adhere to the surface of the plastic film were selected by
growing the isolates on mineral salt agar medium with plastic films as carbon
source. The selected fungal strains were then identified on the basis of
morphological and ribosomal RNA (5.8S, 185, 28S) sequence analysis as
Phanerochaete chrysosporium PVA, Lentinus tigrinus PV2, Aspergillus niger
PV3 and Aspergillus sydowii PV4,

Biodegradability of the fungal strains for the four kinds of polyvinyl chioride
films PVC, pPVC (DOP and DOA) and PVC starch blends was tested both in
soil and liquid broth. Analysis of biodegradation was monitored by growth
(biomass) on plastic films as scle carbon source in mineral salt broth under
shaking condition. Changes in the structure of the polymers were recorded by
scanning electron microscopic (SEM) analysis, Fourier transform infrared
spectroscopy (FTIR) and Nuclear magnetic resonance (NMR) before and after
treatment with fungal strains, both in soil burial ( for 3-10 months) and shake

ix



flask treatment (for 3-6 months). Further Gel permeation chromatography
(GPC) analysis was used to measure the molecular weight of the polymer
after treatment. Another parameter for biodegradability testing was gravimetric

CO; measurement after treatment with respective fungal strains for four
weeks in strum test.

Biomass quantification in case of pure PVC indicated that the strain
Phanerochaete chrysosporium PV1 was the best grown having biomass of
0.25 mg/ml. The appearance of hexagonal rings in treated samples was
observed in scanning electron microscopy due to fungal activity in PVC film
buried in soil with Phanerochaete chrysosporium PV1 for 10 months. The
measurement of CO; evolved during break down of polymer in Sturm test,
showed that more amount of CO; was produced in test (8.31g/l) than in the
control (4.90g/l) when PVC films were treated. A decrease in molecular weignt
of the PVC after fungal degradation was observed by gel permeation
chromatography (178,292 Da) in test treated for six months as compared to
the control (202,530 Da).

The changes in the structural properties of pure PVC film determined by FTIR
by peaks shortening and almost disappearance at wave lengths of 2980-2910
em” corresponding to alkyl group and appearance of new peaks at 2380-2340
cm™ representing hydroxyl groups. Further the biodegradation of the PVC was
confirmed with "*CNMR which showed increase in signals of the treated sample
in the range 29-47 ppm. The integration of the treated sample also decreased
to 43.07 compared to control (43.81) in 'H NMR spectra indicating degradation.

Similarly the fungal growth was also observed on the plasticized PVC films with
DOP and DOA. The increase in the biomass was also observed in the treated
sample than control as in case of the pPVC (DOP) the strains Aspergillus niger
PV3 showed maximum biomass (0.2890 mg/mi) after seven week of incubation
and the increase in the biomass was also observed in pPVC (DOA) about
0.2910 mg/mi by Aspergillus niger PV3. The scanning electron microscopy of
the pPVC (DOP) films after microbial treatments showed pits, extensive
spotting and changes in polymer surface. There was erosion and extensive
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roughening of the surface of fungal degraded pPVC (DOA) film and also fungal
adherence was observed by SEM. The results of the Sturm test showed more
CO; production (29.79 g/l) than that in the control (8.07 g/l) in pPVC (DOF) and
(32.79 g/l), in test than that in control (13.07 g/l) of pPVC (DOA). The significant
decrease in molecular weights were observed in pPVC(DOP) (81,028 Da) as
compared to control (84,300 Da), and in case of the pPVC (DOA) lower
molecular weight in test (81,830 Da) was observed than in control (88,000 Da).

The analyses of SEM and FTIR indicated preferred degradation with DOP as
plasticizer than DOA.

The degradation of the PVC starch blends was also checked by isolated fungal
strains. Good growth and adherence was observed on the PVC starch blended
films. A maximum increase in the biomass (0.297 mg/ml) was observed in the
starch blended film by Phanerochaete chrysosporium PV1. There was clear
surface erosions and breakdown of the some parts of the fim due to
Phanerochaete chrysosporium PV1 degradative activity in scanning electron
micrographs after shake flask experiments. The Sturm test showed amount of
CO, evolved in test (33.79 g/l) was more as compared to the control without
polymer (16.34 g/l). The decrease in the molecular weight of the polymer was
observed by gel permeation chromatography in test (77,011Da) by
Phanerochaete chrysosporium PV1 than control (80,275 Da).

In case of fungal treated PVC starch blended film the FTIR results showed
formation of some new peaks in the region 3077 cm™ (corresponding to
alkenes) and also decrease in the absorbance of the peaks at 2655-2529 cm
1 indicating degradation. In '“CNMR analysis chemical shifting and
appearance of the new peaks 29.85, 41.58, and 46.05 ppm and also
significant increase in the intensity of resonances in 'H NMR spectra
confirmed degradation.

Overall it is concluded that polyvinyl chloride degrading fungal strains isolated

from the soil had great potential to be used for treatment of solid waste
containing plastics.
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Chapter | Introduction

1. INTRODUCTION
1.1. History of Plastics

The development of synthetic polymeric materials began in the mid-nineteenth
century as an effort to find alternatives to materials that were either very
expensive or in short supply. Originally, plastics were mimicking and replacing
natural products (lacquer, shellac, amber, horns, tusks, tortoise shell), and the
early synthetic materials were chemical modifications of naturally occurring
cellulosic polymers. The development of fully synthetic polymers did not occur
until the early twentieth century, with fully cross-linked thermo set materials.
Throughout the twentieth century, the pace of innovation developed along with
the growth of the petrochemical industry, and scientists developed many new
plastics (Table 1.1, Dylingowski and Hamel, 2005; Association of Plastic
Manufacturers Europe (APME), 1999).

Table 1.1 Timeline for synthetic polymer development (Dylingowski and Hamel
2005)

Year Plastic Type

1869 Cellulose Nitrate

1889 Rayon

1910 Phenol-formaldehyde

1927 Cellulose acetate

1931 Polyvinyl chloride

1931 Polyvinyl chioride, Polyvinyl acetate copolymer
1933 Polyethylene

1937 Polymethyl methacrylate

1937 Polystyrene

1938 Cellulose acetate butyrate

1838 Poly tetra fluoro ethylene (“Teflon")
1838 Polyamide (“Nylon™)

1943 Silicone

1948 Acrylonitrile-butadiene-styrene
1956 Acetal

1957 Polypropylene

1958 Polycarbonates

Plastics are the product of the 20" century but today, they are largely
synthetic materials made from an extremely inexpensive but non-renewable

resource, crude oil.

Microbial degradation of Polyvinyl chloride (PVC) Plastics 1



Chaprer | Introduction

1.2. Plastics and their Uses

Plastics are man-made long chain polymeric molecules (Scott, 1999) They
are widely used economical materials, characterized by excellent all-round
properties, easy molding and manufacturing. Traditionally piastics are very
stable and not readily degraded in the ambient environment. As a result,
environmental pollution from synthetic plastics has been recognized as a
large broblam‘ For instance, statistics published by the United States
Environmental Protection Agency (US EPA) in 2003 indicated that before
recycling approximately 236 million tons of municipal solid waste (MSW) was
generated in the United States in that year of which 11.3% was composed of
plastics. Only a small fraction of this plastic waste (mostly soft drink and other
bottles) was recycled (US EPA, 2005),

Commodity plastics are used in packaging, disposable diaper backing, fishing
nets, and agricultural film (Table. 1.2). They include polymers such as
polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyurethane,
poly (ethylene terephthalate), and nylon.

The most widely used plastics used in packaging are Polyethylene (LDPE,
MDPE, HDPE and LLDPE), Polypropylene (PP), Polystyrene (PS), Polyvinyl
chloride (PVC), Polyurethane (PUR), Poly (ethylene terephthalate) (PET),
Polybutylene terephthalate (PBT), and nylons. The widespread applications of
plastics are not only due to their favorable mechanical and thermal properties
but also mainly due to the stability and durability (Rivard ef al,. 1995),

Microbial degradation of Polyvinyl chloride (PVC) Plastics 2
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Table 1.2 Uses of Synthetic Plastics (Vona et al,, 1965).

Plastic

Use

Polyethylene
Polystyrene
Polyurethane
Polyvinyl chloride
Polypropylene
Polyethylene
terephthalate

(PET)
Nylon

Polycarbonate

Polytetraflouro-
ethylene (PTFE)

Plastic bags, milk and water bottles, food packaging film, toys,
irrigation and drainage pipes, motor oil bottles.

Disposable cups, packaging materials, laboratory ware, certain
electronic uses.

Tires, gaskets, bumpers, in refrigerator insulation, sponges,
furniture cushioning, and life jackets.

Automobile seat covers, shower curtains, raincoats, bottles,
visors, shoe soles, garden hoses, and electricity pipes.

Bottle caps, drinking straws, medicine bottles, car seats, car
batteries, bumpers, disposable syringes, carpet backings.

Used for carbonated soft drink bottles, processed meat
packages peanut butter jars pillow and sleeping bag filling,
textile fibers.

Polyamides or Nylon are used in small bearings, speedometer
gears, windshield wipers, water hose nozzles, football helmets,
racehorse shoes, inks, clothing parachute fabrics, rainwear,

and cellophane.

Used for making nozzles on paper making machinery, street
lighting, safety visors, rear lights of cars, baby bottles and for
house ware. It is also used in sky-lights and the roofs of
greenhouses, sunrooms and verandahs. One important use is
to make the lens in glasses.

PTFE is used in various industrial applications such specialized
chemical plant, electronics and bearings. It is met with in the
households as a coating on non-stick kitchen utensils, such as
saucepans and frying pans.

Microbial degradation of Polyvinyl chloride (PVC) Plastics i
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1.3. Plastic Industry in Pakistan

The p1§stic industry in Pakistan is growing at an average annual growth rate
of 15%. There are about 600-700 medium sized plastic processing units
scattered all over Pakistan. About 60% of the units are located in and around
Lahore and the remaining at Karachi, Hattar, Gadoon, Faisalabad, Multan and
Quetta. Raw material is imported from Japan, Korea, Italy, Taiwan, Hong
Kong, England, China, and Germany (Sabir, 2004).

1.3.1. Solid Waste in Pakistan

Solid waste in Pakistan is generally composed of plastic and rubber, metal,
paper and cardboard, textile waste, glass, food waste, animal waste, leaves,
grass, straws and fodder, bones, wood, stones and fines to various extents.
The estimated figure of plastic waste generation across the country is 1.32
million tons per annum (Table. 1.3). This considerable content of plastic in the
solid waste generated in Pakistan is of great concern. Plastic waste is
released during all stages of production and post consumption every plastic
product is a waste. Both the quantity and quality of plastic waste cause
environmental problems.

Table 1.3 Plastic Waste Generations in Different Cities of Pakistan [GOP,
1996)]

Sr. No. Cities No. of Plastic Waste (Tons)
' Scavengers Per Day Per Year

1 Faisalabad 1500 44 4 13320
2 Gujranwala 1200 41.2 12360
3 Karachi 7000 412.8 123840
4 Hyderabad 1200 35.1 10530
5 Peshawar 800 29.9 8970
6 Quetta 600 3.0 9300

Micrabial degradation of Polyvinyl chloride (PVC) Plastics 4
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1.4. Plastic Waste Disposal/Management

The main difficulty of solid waste management is found in the variability of
materials and sources. Synthetic polymeric packaging is the largest
component followed closely by paper packaging. Used packaging is generally
non-toxic but can have considerable impact as litter and is a significant
c&ntribﬂt-::-r to landfill costs and a balanced approach to waste minimization
and waste management has been suggested (Sturges, 2000). The hazard of
discarding waste plastic, so-called "white pollution" is becoming more and
more severe. The plastic waste stream emerges from domestic, industrial and
municipal refuse (Jayasekara et al., 2005). The plastic waste is disposed off
through land filling, incineration and recycling.

1.4.1. Land filling

Millions of tons of plastic waste, including refuse sacks, carrier bags and
packaging, are buried in landfill sites around the world each year. China
genera'tes about 16 million tons, India 4.5 million tons and the UK 1 million
tons, of which more than 800,000 tons is waste polyethylene. Conventional
polyethylene products can take longer than 100 years to degrade, taking up
valuable landfill space (Sylvia, 1995).

In the United States, synthetic polymers are estimated to be approximately
20% of the volume of municipal solid waste, dumped as landfill. They are
estimated to account for 8% of the total weight (Glover, 1993; Alexander,
1994), a similar figure to Germany. In Australia, most of waste from
households and business ends up in municipal landfill sites and packaging is
estimated to be 25% of the total waste by weight (common wealth of
Australia, 1996). According to a study in Pakistan, the estimated figure of
plastic waste generation across the country is 1.24 million tons per annum
(GOP, 1996). There is no proper land filling of plastic waste in Pakistan, most
of it is dumped as open garbage.
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1.4.2. Incineration

Incineration or burning of plastics seems to be simple and straight forward but
it is also not free of problems. Many polymers like polyvinyl chloride, poly
(vinylidine chloride), poly (urethane) and other halogen and nitrogen-
containing polymers can form corrosive and toxic substances upon burning
and can cause health hazards or pollute the environment. Burning of PVC
produces furans and dioxins which are carcinogenic and causes diseases of
skin and respiratory tract. PVC also produces hydrochloric acid that causes
probterﬁs in municipal incinerators. Thus, incineration has had a bad name in

the environmental community as a result of the production of toxic fumes and
ashes (Scott, 2000).

1.4.3. Recycling

Measures to deal with the growth of packaging waste also include reuse
recycling. Recycling channels diverse material from waste streams to a
reprocessing stream. Reuse is use of the product in its original form without
extra processing other than cleaning. Recycling offers economic and
environmental benefits if the costs of resources used, including collection,
sorting, cleaning and reprocessing, are not greater than the resources saved.
The quality of most materials deteriorates with processing. Recycling of
household waste plastics is difficult when they are contaminated with
biological residues or when they contain a mixture of different plastics. Direct
recycling is applicable to wastes of the plastic production process. Indirect
recycling has good future prospects if polymers can be separated and
recovered, The cost of recovery is very high, it limits recycling activities. The
other limiting factor is that the material to be reused must maintain the original
quality and be no greater in cost than the virgin raw material. Recycling and
reuse have limited value in solving waste management problems (Sturges,
2000).

Recycling inevitably leads to a reduction of desired physical properties. Plastic
recycling is becoming more and more important in various industrial sectors. It

Microbial degradation of Polyvinyl ckloride (PVC) Plastics 6



Chapier | Introduction

is topic of high priority due to large consumption of plastics. Many polymers
possess excellent properties after their first use and can be utilized for many
different applications after that use. Waste management strategy has stressed
recycling of plastic wastes/packaging materials that have a small combustion
value and which, at the same time, are feasible for recycling. Other options
such as prevention reuse and recovery of energy can offer ecological and
economic advantages over recycling according to the application area. Thus
the growth of recycling industry is not a necessarily desirable policy target but
it must perform at its optimum rate, both from an economic and an
environmental point of view (Datta et al, 1998).

1.5. Biodegradation of Plastics

Microorganisms such as bacteria, fungi and actinomycetes are involved in the
degradation of both natural and synthetic plastics (Gu et al, 2000a). The
biodegradation of plastics proceeds actively under different soil conditions
according to their properties, because the microorganisms responsible for the
degradation differ from each other and they have their own optimal growth
conditions in the soil (Glass and Swift, 1989).

Plastics (polymers) are potential substrates for heterotrophic microorganisms
including bacteria and fungi. Polymer biodegradability depends on molecular
weight, crystallinity and physical forms (Gu et al., 2000b). Generally, an
increase in molecular weight results in a decline of polymer degradability by
microorganisms. In contrast, monomers, dimers and oligomers of a polymer's
repeating units are much easily degraded and mineralized. High molecular
weight result in a sharp decrease in solubility making them unfavorable for
microbial attack because bacteria require the substrate be assimilated
through the cellular membrane and then further degraded by cellular
enzymes. However it should be pointed out that concurrent abiological and
biological process may facilitate the degradation of polymers.

Microbial degradation of Polyvinyl chloride (PVC) Plastics i



Chapter | Introduciion

The high molecular weight and generally non-soluble polymers cannot be
taken up into the microbial cell. Therefore, polymer-degrading hydrolases are
excreted by the producing microbial cell into the surrounding milieu to allow
the direct contact with the polymeric substrate. The polymer chains are then
cleaved until short-chained water-soluble products are produced which can be
transported through the cell membrane. Inside the cell, these degradation
products are intracellularly metabolized into water, CO, and biomass and
others (Gu et al., 2000b).

Dominant groups of microorganisms and degradative pathways associated
with polymer degradation are often determined by the environmental
conditions. When O is available, aerobic microorganisms are mostly
responsible for destruction of complex materials, with microbial biomass, COg,
and H,O as final products. In contrast, under anoxic conditions, anaerobic
consortia of microorganisms are responsible for polymer deterioration. The
primary products will be microbial biomass, COz CHs and H.O under
methanogenic conditions (Barlaz ef al., 1989a, b; Gu et al, 2001; Gu and
Mitchell, 2001) or H;S, CO; and H;O under sulfidogenic conditions. Both
aerobic and strictly anaerobic microorganisms are involved in the degradation
of polymers (Gu, 2003).

1.6. Polyvinyl Chloride (PVC)

Polyvinyl chioride (PVC) is arguably the most versatile of all the plastics (more
correctly termed polymers). It is resistant to corrosion and weathering, a
superb- electrical insulator, impact and scratch resistant, tends not to crack,
can be made rigid or flexible, and under many circumstances, it does not
catch fire readily. PVC is aiso cheap to produce and can serve its designed
function for decades. Due to its high chiorine content (57 wt% in virgin PVC)
PVC is inherently more energy conservative (less fossil carbon is utilized)
compared to its polymer alternatives, However, when energy consumption
during manufacture is included PVC is on parity with the other major plastics
(UBA 1999).

Microbial degradation of Polyvinyl chloride (PVC) Plastics ]



Chapler | Introdwciion

1.6.1. History

Polyvinyl chloride was accidentally discovered on at least two different
occasions in the 19th century, first in 1835 by Henri Victor Regnault and in
1872 by Eugen Baumann. On both occasions, the polymer appeared as a
white solid inside flasks of vinyl chloride that had been left exposed to
sunlight. In 1926, Waldo Semon and the B.F. Goodrich Company developed a
method to plasticize PVC by blending it with various additives. The resuit was
a more flexible and more easily-processed material that soon achieved
widespread commercial use (Scott, 1999).

Polyvinyl chloride is one of the three most important polymers currently used
worldwide. This is because PVC is one of the cheapest polymers to make and
has a large range of properties so can be used to make hundreds of products.
PVC is formed by the polymerization of vinyl chloride (chloroethane) monomer
units (Fig. 1.1). PVC consists of polar molecules which are attracted to each
other by dipole-dipole interactions due to electrostatic attractions of a chlorine
atom in one molecule to a hydrogen atom in another atom. These
considerable intermolecular attractions between polymer chains make PVC a
fairly strong material.

Polyvinyl chloride homopolymer is a semi-crystalline polymer with a relatively
high melting temperature about 212 °C with tensile strength 50-80 mpa,
depending on formulation that can be lowered by plasticizing entities to
produce semi-rigid and flexible items. The density is about 1380 kg/m® (Table:
1.4).
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Figure 1.1 Structure of the Polyvinyl chloride

Table 1.4 Properties of PVC (http://en.wikipedia.org/wiki/pvc)

1380 kg/m®
Young's modulus (¢)  2900-3300 mpa
Tensile strength(o) 50-80 mpa
Elongation @ break 20-40%

Glass temperature 87 °C

Specific heat (c) 0.9 kj/(kg-k)
Melting point 212°C

Water absorption (astm) 0.04-0.4
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1.6.2. Applications of PVC

Polyvinyl chloride with a world-wide market second only to low-density
polyethylene (Fauvarque, 1996), has been extensively used for a broad range
of applications due to its safety, effectiveness, manufacturing technology and
cost, The building products sector includes pipes (sewerage and potable
water), cable and wiring covers, electrical switches and conduit, membranes,
insulation, flooring, trim, and window frames. Consumer household uses
include toys, blinds, wallpaper, furniture, shower curtains, electrical casings,
imitation leather, and surface finishes (Fig. 1.2). Packaging and medical
disposables are also minor but important applications (UBA, 1999).

@ Building Matesial

= Fumiture

o Other househoid applisnces
0 Pacakaging

m Electric/Electronic

58% g Automotive

m Others

Figure 1.2  Application of PVC (Source, Mechanical recycling of PVC
wastes, Study for DG X, January 2000).

In commercial terms, compounding PVC involves adding sufficient modifying
components to the raw polymer to produce a homogeneous mixture suitable
for processing and required performance at the lowest possible price. The
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formulation is also determined by the processing technique to be employed.
Modifiers for polymers may be classified into different groups (Table 1.5).

Table 1.5 Modifiers for PVC polymer

modifier major function | how achieved | Example
plasticizer  soften PVC reduce |separates PVC phthalate esters
Ta chains aliphatic diesters
epoxidzed oils
phosphate esters |
stabilizer minimize or react with tin mercaptides
eliminate degrading |degradation product|barium-cadmium :
| effects of heat, light | (HCI) salts of fatty acids |
or oxygen on PVC lead salts
alkyl benzenes
lubricant prevent adhesion of |sweats out to form a|calcium stearate
compound to film between PVC 'normal and dibasic
processing and equipment lead stearate _
impact reduce brittleness  |impedes crack acrylonitrile- |
modifier development Ih‘.rr;.ev:li4t=zrmz:-s-.tyrrema |
ethylene-vinyl
processing | ensure uniform flow |affect melt viscosity acrylates
aid and good surface |of polymer acrylonitrile-
finish butadiene-styrene
filler opacity compound |changes refractive |calcium carbonate
lincrease hardness |index and reflective |magnesium
'reduce cost properties carbonate l
[ adds bulk to barium sulfate |

Source of data (Titow, 1984 and Brydson, 1999).

1.6.3.Plasticizers

Plasticizers are the major modifier for PVC formulations in terms of
percentage weight (between 15 and 50%) and, therefore, have the greatest
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influence on the properties and behavior of the compounded PVC. A
plasticizer is a material incorporated into a polymer or polymer mixture to
increase its workability and its flexibility or elongation (Wilson, 1985).
Plasticizers are essentially non-volatile solvents, with solubility parameters
close to that of the polymer. Non-polymeric plasticizers are typically high
boiling, oily, organic liquids, usually esters. Addition of plasticizer to a PVC
polymer has two main functions; to assist in the processing stage by reducing
the viscosity and melting temperature, and to modify the final product by
softening it

The méjcrity of industrially produced plasticizers are used to manufacture
plasticized PVC (pPVC). These plasticizers transform un-plasticized PVC
(uPVC) into softer and more flexible form of the plastic. Primary plasticizers
have the highest degree of compatibility with the PVC resin and are grouped
into two classes- monomeric or polymeric. Modermn monomeric plasticizers are
synthetic organic chemicals with an ester base, such as adipate and
phthalates.

The most common monomeric plasticizers include DOP (DEHP) bis-(2-
ethyihexyl phthalate), DIDP (diisodecyl phthalate), DINP (diisononylphthalate),
DOA (DEHA) bis-(2ethylhexyl adipate) and TOTM (tri-octyl tri-mellitate),
(Roberts and Davidson, 1986; Whitney, 1996; Gumargalieva et al., 1989). The
polymeric plasticizers include various molecular weight plasticizers
polymerized from adipic and glutaric acids in combination with various glycols.
The end groups can also vary and include alcohols, esters and acids.

1.7. Hazards of PVC

The health and environmental effects of PVC and its additives have been the
subject of intense debate (Hansen, 1999). The focus of this debate was
initially concerned with the manufacture of PVC but has now shifted to the use
and disposal of the material. The problems that are most often associated
with the use of PVC in building and other product sectors arise from a number
of factors, namely the release or extraction of the heavy metal based
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stabilizers, uncertainty surrounding the health implications of the phthalate
plasticizers and other additives, the formation of dioxins and hydrogen
chioride gas and other substances during building fires and incineration, the
long-term consequences of land filled PVC, and the poor recycling record of
PVC waste ( US EPA, 2000).

Dioxin has no commercial value and is extremely toxic, long-lived and
ubiquitous in both the environment and our bodies. It is hormonally active in
concentrations as low as 5 parts per trillion (ppt). The EPA has labeled dioxin
a known carcinogen. (US EPA 2000) It is also unavoidable when PVC is
incinerated or heated. Polyvinyl chloride is the largest contributor of the
world's dioxin burden and it is highly persistent in the environment, traveling
up the food chain, and accumulating in body fat

The commonly employed phthalate plasticizers generally have low water
solubility (although the values cited are variable). Phthalates are susceptible
to a number of degradation pathways including hydrolysis, photochemical,
and biodegradation (Staples et al., 1997a). Acidic and alkaline hydrolysis of
phthalates firstly affords the mono-ester and an alcohol moiety followed by
formation of phthalic acid and a second alcohol moiety. This pathway is most
relevant to higher animals where ingestion of phthalates results in rapid
formation of the mono-ester in the stomach. Phthalates also undergo rapid
aerobic and slow anaerobic biodegradation. Phthalates appear to persist in
sediments where anaerobic conditions exist (VROM, 1898). According to the
EPA, incineration of municipal and medical waste, which is heavily loaded
with P\.}C. is the largest source of dioxinoid plasticizers (US EPA, 2000).

1.8. Degradation of Polyvinyl Chloride

Polyviny! chioride is a known thermal and photo unstable polymer, degrades
over 130°C (Pospisil &t al,. 1999; Veronelli et al,. 1999).

Thermal decomposition of PVC results in an intense discoloration of the
polymer, which is a result of the formation of long conjugated polyene
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sequences that absorb in the visible region (Winkler 1959; Marks et a/,. 1967
and Bacaloglu et al,. 1995). It is generally accepted that during degradation
HCI molecules are eliminated in succession along the polymer chain yielding
these conjugated polyenes.

Photo degradation is considered to occur according to a radical mechanism.
Initiation of degradation occurs by excitation of the polymer by irradiation of
the material with ultraviolet (UV) light eliminating a chiorine atom, which can
initiate dehydrochlorination at other polymer chains (Abbas and Sorvik 1873).
The photo and thermal degradation releases hydrochloric gas
(dehydrochlorination) that leads to the formation of conjugate polyene
sequences (-CH=CH) in the polymer chains, giving the PVC a reddish brown
color (Hollande and Laurent, 1997; Veronelli et a/,. 1999).

1.8.1. Biodegradation of Polyvinyl chloride

Plastics are biodegraded aerobically in wild nature, anaerobically in sediments
and landfills and partly aerobically and partly anaerobically in composts and
soil. Carbon dioxide and water are produced during aerobic biodegradation
and carbon dioxide, water and methane are produced during anaerobic
biodegradation. Biodegradation is defined as any physical or chemical change
in a material caused by biological activity. Microorganisms such as bacteria,
fungi and actinomycetes are involved in the degradation of both natural and
synthetic plastics (Gu et al., 2000a).

Biodegradation of the PVC and pPVC would comprise a series of processes
for decomposition of the polymer formula when exposed to conditions
favorable for growth of microorganisms able to colonize PVC and pPVC. PVC
is a strong plastic that resists abrasion and chemicals and has low moisture
absorption. There are many studies about thermal and photo degradation of
PVC (Braun and Bazdadea, 1986, Owen, 1984) but there only few reports
available on PVC biodegradation. PVC having low molecular weight can be
exposed to biodegradation by the use of white rot fungi (Kirbas et al., 1999).
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Plasticized PVC (pPVC) is highly susceptible to microbial attack in many
different environmental situations. Biodeterioration of pPVC is now known to
occur in a wide range of industrial, commercial, and structural applications
(Flemming, 1998; Gaylarde ef al, 1999 and Griffin ef al, 1984). The
susceptibility of pPVC results from the presence of plasticizers, commonly
organic acid esters such as dioctyl phthalate (DOP) and dioctyl adipate
(DOA), added to modify physical or mechanical properties of the polymer.
Both bacteria (Booth et al, 1968 and Eaton et al., 1982) and fungi can
degrade ester-based plasticizers. Loss of plasticizers from pPVC due to
microbial degradation results in brittleness, shrinkage, and ultimately failure of

the pPVC in its intended application (Berk et al, 1957 and Roberts ef al,
1986).

Adhesion represent the first stage of the colonization process (Christensen et
al, 1995). Several factors contribute towards successful binding among which
the most important are the non-specific physiochemical forces, such as
hydrophobic interactions and electrostatic attraction. Adhesion of
Aureobasidium pullulans has been shown to be dependent on the chemical
composition of the PVC and more precisely on the presence of plasticizers
such as DOA and DOP (Webb et al., 1999).

The majority of colonization studies have focused on polyurethane (Nakajima-
Kambe et al, 1999). By contrast there have been fewer studies on the
degradation of pPVC in situ. Studies have been carried out on the microbial
colonization and deterioration of pPVC by bacteria (Booth et al, 1968) and
fungi (Webb et al,, 2000). Despite the fact that the backbone structure of PVC
is considered to be intrinsically resistant (Andrady ef al,. 1984), there are
studies reporting on partial degradation of PVC by white rot fungi under
elevated oxygen levels (Kerbas et al, 1999). However, the pPVC additives
are more readily degraded and utilization of them as a carbon source causes
brittleness, loss of plasticity and fragmentation (Roberts and Davidson, 1988).

The presence of different types of esters of adiphic and phthalic acids are
considered as important factors for the increased susceptibility of pPVC to
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fungal colonization (Whitney, 1996, Steinbuchel, 1996). The majority of
reports on phthalates degradation have been by bacteria (Yu and Ward, 1995;
Samsonova el al, 1996; Valiente et al., 1998, Zeng ef al., 2002; Murad el al.,
2007) and the mode of bacterial degradation of DOP is known, consisting of
initial de-esterification, formation of protocatechuic acid, ortho-cleavage and
entry into the tricarboxylic acid (TCA) cycle (Karpagam and lalithakumari,
1999). Only a few studies however have reported on phthalate degradation by
yeasts (Gartshore et al., 2003).

1.9. Aims and Objectives

Biodegradation of PVC by indigenous microorganisms was the specific aim
which was fulfilled by the following specified objectives.

1. Isolation of microorganisms from plastic waste contaminated soil and
sewage sludge with the ability to degrade synthetic plastics

2. Characterization of PVC degrading microorganisms

3. Degradation of PVC plastics in solid and liquid media using selected
microorganisms

4. Analysis of biodegradation of synthetic polymer by measuring the
evolution of CO; by the breakdown of polymers through Sturm test, by
FTIR, SEM, NMR and GPC.
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2. LITERATURE REVIEW

2.1. Production of Plastics

Since the discovery of man-made polymers continuous and systematic efforts
have been made to make polymers more stable, mechanically stronger and
chemically and environmentally durable. Rot-resistance and rust proof are the
two important factors for the large-scale popularity and demand of synthetic
polymers. Now the use of synthetic polymers, due to their low price, ready
availability, wide spectrum colorability, and ease of fabrication in any desired
shape has been accelerated to such that the disposal of the used products
has become increasingly difficult (hitp://www.envis-icpe.com).

The industrialized countries of Western Europe, Austria, Germany, France
and Denmark had about 0% share of plastic production in 1973, In 1983, the
total world demand for plastics was over 107 million tones and it was
estimated about 146 million tones in 2000. At present, the production growth
of plastics is almost stand-still in the industrialized countries but for the
developing nations the annual growth rates are still in order of 10-40% per
annum.

2.2. Hazards of Plastics

Modernization and progress has had its share of disadvantages and one of
the main aspects of concern is the pollution it is causing to the earth - be it
land, air, and water. The disposal of plastic waste is a growing problem across
the country. Most of today's plastics and synthetic polymers are produced
from petrochemicals. As conventional plastics are persistent in the
environment, improperly disposed plastic materials are a significant source of
environmental pollution, potentially-harming life (Nir et al., 1993). The plastic
has both environmental and health hazards. There is a need of technical
guidelines for protecting human health and the environment from the improper
management and disposal of plastic wastes (Sturges, 2000).
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2.2.1. Health hazards

Each year more than 140 million tones of plastics are produced woridwide. In
many countries, plastics are disposed off through open, uncontrolied buming
and land filling. Open burning releases pollutants into the air that could cause
various health problems. In addition, the burning of PVC plastics produces
persistent organic pollutants (pops) known as furans and dioxins. These
pollutants circulate globally and have been associated with a number of
adverse effects in humans, including immune and enzyme disorders and they
are classified as possible human carcinogens. Health may be affected by the
polymer itself, by chemicals added to the plastic to make it more flexible,
stable or flame retardant, or by coloring agents. These substances may also
be released to the air when the plastics are heated. When plastics are heated
to form final products, monomers, additives and degradation products can be
released. Small amounts of these may also be present in the resins before
heating. They can affect the health of workers who use, clean or maintain the
processing equipment (Jayasekara et al., 2005).

2.2.2. Environmental hazards

Discarded, non-degradable polymers show several undesirable environmental
problems. These polymers create a threat to diverse animal populations. They
have a direct impact on marine ecosystems and are believed to be
responsible for the death of a very large number of birds by ingestion or
strangulation (Scott, 1990). Polymers found in the ocean have a considerable
effect on marine life, and if ingested cause intestinal blockages in small fish or
suffocation of other marine animals (dolphins and turties). The amount of litter
at sea seems to be increasing despite control measures. It is estimated that
one million tones of plastics are dumped in the sea annually. Litter is also a
danger to terrestrial wildliife (Whitney et al., 1993) by tangling or by blocking
digestion pathways. Entanglement can readily occur in materials with holes,
or plastic bags. Non-biodegradable polymers also have the capacity to act as
disease foci because they persist in the environment for a very long period of
time enabling organisms to accumulate (Jayasekara et al., 2005).
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2.3. Hazards of Polyvinyl Chloride

Polyvinyl chioride production invoives the creation of many toxic chemicals,
as feed stocks, as additives or as by-products. Dioxins, including 2, 3, 4, 7,
8-tetrachlorodibenzo dioxin (TCDD), one of the most toxic synthetic
chemicals known (National Toxicology Programme, 1991), and furans are
inescapable by-products of the production of the basic feedstock of
monomer of PVC (IC! Chemicals & Polymers Ltd, 1994). There is conclusive
evidence that dioxin (TCDD) causes cancer in animals (NTP US, 1991).
Epidemiology studies have also shown that exposure to dioxins is strongly
associated with an increase in mortality of all cancers considered together
(Zobe et al., 1990; Manz et al., 1991).

The epidemiology studies on dioxins have been reviewed by the US EPA,
1894. The review suggests that epidemiological evidence is consistent with
experimental studies, and indicates that dioxins have the potential to cause
many different types of cancer. Although the evidence was not considered
sufficient to confirm that dioxin causes increased cancer incidence. the EPA
concluded that dioxin (TCDD) probably increases cancer mortality of several
types. In February 1997, 25 scientists from 11 countries met under the
auspices of the international agency for research on cancer to review the
evidence on the carcinogenicity of dioxins. They decided to re-classify TCDD
as a known human carcinogen.

2. 3, 4. 7, 8-Tetrachlorodibenzo dioxin is also a known hormone disrupting
chemical. TCDD dioxin and other dioxins have been shown to have adverse
effects on the male reproductive system in animals and humans. Experiments
on laboratory animals have shown that exposure to dioxin results in changes to
the male reproductive systems which include reduced levels of testosterone,
decreased sperm production, decreased fertility and reduced testicular weight
(Peterson et al., 1993). A single, very small dose of dioxin administered to rats
on the fifteenth day of pregnancy (a critical time for the development of sexual
differentiation in the rat fetus) caused male offspring to produce between forty
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and fifty-six per cent less sperm than those whose mothers had not been
exposed to dioxin (Mably et al., 1991).

Concern over plasticizer migration from pPVC products has made phthalates
the focus of considerable recent attention (Fiala et al., 2000; Safe, 1989). The
scientific committee on toxicity, ecotoxicity and the environment (CSTEE) has
established standard protocols for the extraction of phthalates from plasticized
PVC toys (CSTEE 2000). In 1999 the European commission banned the use
of Di(2-ethylhexyl)phthalate (DEHP) in PVC toys and other easily mouthed
items intended for children under 3 years of age as a precaution against the
uncertain impact of phthalates on young children (EC 1999). Manufacturers of
PVC toys have also voluntarily withdrawn the use of DEHP in many countries,
including Australia.

The potential health effects of phthalates have been the subject of much
debate in the scientific community. DEHP and some other phthalates cause
liver cancer in rodents via a mechanism known as peroxisomal proliferation
(Latruffe et al, 1995; Parmar and Seth, 1997, Qi et al., 2000). However, this
mechanism is not considered relevant to humans because of the difference in
the way that the human liver responds to phthalates compared to the rodent
liver. Goll et al., (1999) found no peroxisomal proliferation of human liver cells
in vitro studies. In an in vivo study on marmosets (Kurata et al, 1998)
conducted by no peroxisome proliferation was detected after administering
DEHP. Doull et al. (1999) concluded that “the hepatocarcinogenic response of
rodents to DEHP is not relevant to human cancer risk at any anticipated
exposure level”. Based on studies of DEHP on cynomoigus monkeys Pugh et
al, (2000) concluded that “... phthalate esters do not appear to produce
hepatic effects associated with peroxisome proliferation and hepatic
carcinogenicity in humans”. An expert panel convened by the American
council of science and health (Koop et al., 1999) concluded that "... there is
no convincing evidence to date that early childhood cancers are caused by
exogenous agents”, such as phthalates. On the basis of mechanistic studies
involving peroxisomal proliferation, the world health organization's
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international agency for research on cancer has reclassified DEHP as "not

classifiable as to carcinogenicity to humans® International Agency for
Research on Cancer (IARC 2000).

Some bhthalates have been shown to have effects on the testis of laboratory
animals (Sjoeberg et al., 1985; Parmar ef al,, 1987, Mylchreest et al., 1998)
and are thus suspected of contributing to the indications of reduced male
fertility observed in some populations (Li ef al., 1998; Sharpe, 1998).

An increasingly important area of concern regarding phthalates, and the major
reason for the intense debate, is their implication as possible endocrine
disrupting chemicals (Heinze and Adams 1997, Langer and Sang 1997). The
effects of endocrine disrupting chemicals on wildlife and the extrapolation of
these observations to possible human health problems have been debated
extensively in the scientific literature. Much of the evidence for endocrine
disruption of wildlife populations comes from sites with heavy environmental
pollution (Tyler et al. 1998; Vos et al. 2000).

2.4. Degradation of Polyvinyl Chloride

Processes inducing changes in polymer properties (deterioration of
functionality) due to chemical, physical or biological reactions resulting in
bond scission and subsequent chemical transformations (formation of
structural in homogeneities) have been categorized as polymer degradation.
Degradation has been reflected in changes of material properties such as
mechanical, optical or electrical characteristics, in crazing, cracking, erasion,
discoloration, phase separation or de-amination the changes include bond
scission, chemical transformation and formation of new functional groups
(Pospisil and Nespurek, 1987).

Sensitivity of polymers to photo-degradation is related to the ability to absorb
the harmful part of the tropospheric solar radiation. This includes the UV-b
terrestrial radiation (~295-315nm) and UV-a radiation (~315-400nm)
responsible for the direct photo-degradation  (photolysis, initiated
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photooxidation). Visible part of sunlight (400-760 nm) accelerates polymeric
degradation by heating. Infra-red radiation (760-2500 nm) accelerates thermal
oxidation (Gugumus, 1990; Pospisil and Nespurek, 1997).

2.4.1. Thermal degradation of PVC

Thermal decomposition (Bacaloglu and Fisch, 1995) of PVC resuits in an
intense discoloration of the polymer, which is a result of the formation of long
conjugated polyene sequences that absorb in the visible region. It is generally
accepted that during degradation HCI molecules are eliminated in succession
along the polymer chain yielding these conjugated polyenes. The
dehydrochlorination process involves three successive steps. It starts with a
relative slow initiation of HCI loss, which is followed by a rapid zipper-like
elimination of HCI and thus the formation of polyenes, which is finally
terminated. Dehydrochlorination is initiated mainly by structural defects (e.g.
allylic and tertiary chlorine) at the polymer backbone. After the first elimination
of HCI, allylic chlorine has been formed, which is a very active moiety,
supporting the fast zipper-like elimination of HCI. The main issue is the type
of mechanism by which the overall dehydrochlorination process takes place.
Studies on some small aliphatic model compounds for PVC have been
inconclusive. Various schemes have been proposed, which can be classified
as involving uni-molecular eliminations, ionic, free radical chain, or polaron
mechanisms.

2.4.2. Photo-degradation of PVC

Photo-degradation (Gibb et al., 1974) is considered to occur according to a
radical mechanism. Initiation of degradation occurs by excitation of the
polymer by irradiation of the material with UV light eliminating a chlorine atom,
which can initiate dehydrochlorination at other polymer chains. The extent of
degradation depends primarily on the presence of photosensitive
chromophores in the polymer chain as irregular structures and impurities, e.g.
hydroperoxides, carbonyl groups, unsaturation and metal salts, often present
in processed polymeric materials (Xu et al., 1989). Whatever the nature of the
Microbial degradation of Polyvinyl chloride (PVC) plastics 23




Chapier 2 Literature Review

chromopheres initially absorbing UV light in the original material, polyene
structures, which rapidly accumulate in photolyzed PVC, become the

predominant absorbing chromophores due to their large extinclion
coefficients,

In the presence of oxygen both thermal- and photodegradation are enhanced.
There are various interpretations of the mechanism of the thermo-and
photooxidative degradation of PVC. It is, however, almost generally accepted
that in the presence of oxygen, radical chain reactions play an important role
(Braun, 1971). The dehydrochiorination in oxygen is much faster than in
nitrogen (Abbas and Sorvik 1973). This is probably due to the superposition of
oxygen-initiated radical processes on the dehydrochlorination reactions, which
is supported by the observation that the high rate of HCI elimination in thermo-
oxidation is reduced by antioxidants. Also the degradation of PVC containing
peroxide groups formed due to the presence of oxygen during polymerization
(Braun and Wolf, 1978) was found to proceed faster compared with the
degradation of PVC, prepared in an inert atmosphere.

2.4.3. Biodegradation of Polyvinyl chloride plastics

The polymer surface deterioration is an interfacial process. It can involve
mic:rcmfganisms that can colonize the polymer surfaces as biofilms. These
biofilms consist of cells embedded in a polymer matrix of their own origin,
containing polysaccharides and proteins (Flemming, 1998, Costerton ef al,
1987). Some of the major ways through which microorganisms deteriorate
synthetic polymers are: fouling, which is an unwanted deposition and growth of
microorganisms on surfaces; degradation of leaching components; corrosion
including hydration, penetration, and color change due to biofilms which can
contain organisms that produce pigments (Flemming, 1998).

Some fungi, such as Phanerochaete chrysosporium and Aspergillus
fumigatus are known for their ability to degrade some recalcitrant pollutants
such as synthetic polymers. The former is called white rot fungus and
degrades lignin and synthetic polymers (Martins et al., 2002; Thomas et al,
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1892, Lymar et al,, 1995) and the latter has been described as an effective
degrader of plasticized PVC and dichloro-diphenyl-trichloroethane (DDT)

Plasticized polyvinyl chioride is highly susceptible to microbial degradation,
especially by fungi. Plasticizers are added to PVC to improve its flexibility,
process ability and extensibility, but they are also potential substrates for
microbial growth (along with other additives), hence contributing to polymer
degradation (Gumargalieva et al, 1999; Webb et al, 1999, 2000) and,
potentially, failure in the plastics application.

Plasticized PVC is highly susceptible to microbial attack in many different
environmental situations. The problem was first identified in U.S. government
reports of the deterioration of military equipment (Brown, 1946: Wellman and
McCallan 1945), and subsequent reports described defacement and
deterioration of commercial pPVC products (Girard and Kods, 1959, Zabel
and Terracina, 1979). Biodeterioration of pPVC is now known to occur in a
wide range of industrial, commercial, and structural applications (Flemming,
1988, Gaylarde, 1999; Griffin and Uribe, 1984).

The biodegradation of pPVC was reported by Sabev et al., (2006) in a recent
study. After 10 months of soil burial experiments the physical properties of the
pPVC were altered; changes in stiffness were the most significant for heavily
colonized grassland-buried pPVC samples, whereas in forest soil, the
extensibility of the pPVC was affected more than the stifiness. These results
suggested that fungi are important colonizers of pPVC buried in soil and that
enrichment of soil fungi capable of clearing DOA occurs during colonization of
the plastic surface. The results also demonstrated that incorporated biocides
have a marked impact on the richness of species colonizing the pPVC
surface,

Complete mineralization of phthalate in the environment is restricted to
microbiologically mediated processes with the biodegradation process
reported to follow a series of stages common to all phthalate esters (Staples

et al, 1997 a, b and Ribbons et al., 1984). Phthalate has the basic structure of
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an esterified benzene dicarboxylic acid with two alkyl chains, and primary
biodegradation involves the sequential hydrolysis of the ester linkage between
each alkyl chain and the aromatic ring, forming the monoester and
subsequently phthalic acid (PA) (Johnson et al, 1984). This process is
common to both aerobic and anaerobic degradation and has been reported in
at least 10 bacterial genera (Eaton, 1982). Secondary biodegradation resuits
in mineralization of the PA by a number of pathways (Pujar and Ribbons
1985, Elder and Kelly 1994). With diethyl phthalate (DEP), the formation of
both the monoesters (monoethyl phthalate (MEP) and PA) has been observed
following the biodegradation of DEP in aqueous solution as the sole carbon
source by Micrococcus sp. and Aureobacterium saperdae NRRL B-14840
(Jackson et al., 1996). The appearance and subsequent degradation of PA
during the degradation of DEP, also in aqueous solution, has been reported
Zhang and Reardon, (1990) although no monoester was detected. No other
aromatic metabolites have been recorded during the primary degradation of a
diester phthalate to PA.

The decomposition of phthalates by some bacteria has been reported (Zeng
ef al, 2002). Murad et al, (2007) reported the bacterial degradation of
phthalic acid. A bacterial isolate, Pseudomonas sp. P1, was found to degrade
phthalic acid. The highest percentage of degradation of phthalic acid was
found at 37 °C and pH 8. i.e. 59% and 64% respectively, after 48 hours.

The fate and behavior of phthalic acid esters during anaerobic conditions in
municipal solid waste landfills was investigated in laboratory scale bioreactors
under conditions of anaerobic digestion by Bauer (1997). Dimethyl phthalate
(DMP), being very water soluble, could be biologically transformed during the
anaerobic degradation sequence of the municipal waste regardiess of the
length of incubation. A primary degradation of DEHP during the hydrolytic and
acidogenic phases of anaerobic digestion could not be precluded. However,
there was no evidence of a transformation of DBP and Butyl benzyl phthalate
(BBP). During methanogenesis all the phthalic acid esters except DMP turned
out to be persistent. Di (2-ethylhexyl) phthalate could not be decomposed
abiotically at pH 9. It was concluded that in the biochemical environments of
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municipal landfills, short chain polyarylene ethers (PAE) can be degraded by
base catalyzed hydrolysis or by microorganisms which enzymically split the
side chains. However, there was no cleavage of the aromatic ring long chain
PAE like di-(2-ethylhexyl) phthalate.

In a recent study the five different bioslurry reactors were operated under
different conditions to study the degradation of DEHP (1 mg g™ soil) in soil.
The process performance was assessed by monitoring DEHP concentration
periodically using high performance liquid chromatography. More than 90%
degradation was observed within 12 days of the cycle period in the
augmented reactors. Metabolites formed during the degradation of DEHP in
the slurry phase reactor were identified and the pathway was also
established. The degradation process was found to follow zero-order kinetic
model (Shailaja ef al., 2008).

Lee et al,, (2007) reported a white rot fungus, Polyporus brumalis for dibutyl
phthalate (DBP) degradation. The degradation potential and resulting
products were evaluated with HPLC and GC/MS. As DBP concentration
increased to 250, 750, and 1,250 mM, the mycelial growth of P. brumalis was
inhibited. However, growth was still observed in the 1,250 mM concentration.
DBP was nearly eliminated from culture medium of P. brumalis within 12
days, with 50% of DBP adsorbed by the mycelium.

Polyesters are potentially biodegradable due to the hydrolysable ester bonds
Poly caprolactone (PCL) mixed with PVC alters its properties, such as high
impact behavior, heat resistance temperature and technological processing.
PCL was reported to be a very effective plasticizer for PVC (Karal ef al.,
1997). In some cases, thermal and photo pre-treatment can facilitate the
attack of microorganisms on the polymer surface (Veronelli et al, 1999).
Martin-Franchetti ef al., (2007) studied the PVC blend with (PCL) degradation
in soil using aerobic biodegradation. The morphology and structural changes
of the blends were studied by FTIR, scanning electron microscopy, differential
scanning calorimetry and contact angle measurements. The results showed
that PCL films degrade faster than PVC/PCL and PVC films.
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The biodegradation of the pPVC and its blends with cellulose was reported by
Kaczmarek and Bajer (2006) the analysis was done by FTIR, SEM and for
molecular weight estimation GPC was used. They found that biodegradation
in soil occurs in pPVC and this process is accelerated in the composition of
pPVC with cellulose. The bio decomposition yield of pPVC /cellulose blends
(calcutated as relative percentage weight loss) is several dozen times higher
than that of pPVC. Studies on biodegradation of PVC/cellulose compaosites
with cellulose part 25, 50 or 75 wt% showed that biodegradation of
PVC/cellulose composites depended on polysaccharide content and was
more effective than PVC itself while dehydrochlorination, characteristic for
PVC, was inhibited in the presence of natural polymer (Kaczmarek and Bajer,
2008).

In a recent study the blends of PVC and biodegradable aliphatic-aromatic
copolyester (AAC) were prepared, and their physical, thermal, and
mechanical properties were studied. Biodegradation in the presence of the
lipases of Rhisopus arrhisus or Candida cilindracea was monitored as well.
The physical properties of the blends, such as density and softening
temperature, were between those of each component. Differential scanning
calorimetry measurements showed that the blend components were
completely amorphous and miscible. Obviously, PVC suppressed the
crystallization of the partially crystalline copolyester. AAC was the thermally
more stable component, and it seemed to improve the thermooxidative
stability of PVC in the blends. The lipases of R. arrhisus and C. cilindracea no
doubt catalyzed the ester hydrolysis of AAC, although the PVC matrix limited
the rate and extent of the hydrolysis (Andricic et al., 2008).

Loss of plasticizers from pPVC due to microbial degradation results in
brittleness, shrinkage, and ultimately failure of the pPVC in its intended
application Colonization processes occurring on pPVC in the environment
have received comparatively little attention. Nothing is known about the
temporal sequence of microbial colonization of pPVC in situ. Existing studies
have examined fungal defacement of pPVC in tropical or subtropical climates
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(Hamilton, 1983; Upsher and Roseblade, 1984). In both studies fungal growth
was evaluated with a subjective, visual assessment of defacement of the
pPVC. Neither study examined the role of bacteria in the colonization process.

Penicillium janthinellum was found to be an important colonizer of pPVC and
was one of the few strains recovered from pPVC containing biocide 10, 10’ -
oxy bis-phenoxy arsine (OBPA). Penicilllum roseopurpureum was also
recovered frequently while Penicillium canescens was recovered only during
the later stages. The high frequency of recovered Penicillium spp. probably
reflects their widespread and abundant distribution in temperate soils (Domsh
et al., 1980a, b); they were amongst the most commonly isolated from the
surface of a number of polymeric materials exposed to the environment and
from soil-buried polyurethane (Barratt et al, 2003). While many of the
recovered fungi were shown to be Ascomycetes, a small number of
Zygomycetes and basidiomycetes were also recovered, many of which were
poorly sporulating or nonsporulating and may have been under-represented
on the isolation plates compared to the more abundantly sporulating
ascomycetes (Webb et al., 2000) Moreover, it is well known that culture based
recovery techniques do not necessarily reflect either true diversity or
abundance (Borneman & Hartin, 2000) and that the majority of fungal species
may be difficult to recover in the laboratory due to their fastidious nutrient
requirements. However, despite these limitations, a total of 92 species were
recovered, although only those capable of clearing plasticizer agar and
recovered in high numbers or frequently during the course of the trial were
subjected to rDNA sequencing for identification purposes. While many of the
fungi recovered from the surface of the pPVC were capable of clearing DOA,
few isolates were capable of clearing DOP (Webb et al, 2000). Two
Doratomyces isolates were the most abundant recovered DOP-clearing fungi.
Phthalate plasticizers have previously been shown to be far less susceptible
to microbial hydrolysis compared to adipate plasticizers (Berk et al., 1957
Eaton & Ribbons, 1982: Frankland et al., 1990; Nalli et al., 2002) and there
have to our knowledge been no previous reports of phthalate ester clearing by
fungi. As the majority of DOA-clearing fungi were unable to clear DOP, the

two plasticizers must be hydrolysed by separate enzymic systems.
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In order to delay microbial colonization and biodegradation of pPVC during a
product's lifespan, a variety of biocides are often incorporated into the
polymer blend (Jones et al., 1996) or immobilized on the material surface
(James & Jayakrishnan, 2003). However, when the plastics are disposed of,
these biocides could have a negative effect by reducing colonization and
degradation of plasticizers. Soil is a rich microbial environment and natural
habitat for fungi, where they play a major role in the decomposition of dead
plant and animal materials (Thorn, 1997). Fungi play a major role in the
biodegradation of organic materials due to their ability to secrete a variety of
extracellular enzymes, and they actively invade and colonize substrates of
different origins (Bennett & Faison, 1997).

Hjertberg and Grevert (1995) did not observe any sign of degradation of the
PVC polymer in PVC samples after 25 years of application in soil. In a
theoretical study on the degradation of PVC, they assumed that rigid PVC will
not degrade at a practically relevant rate, and plasticized PVC will degrade
slowly with the PVC chain remaining intact. This corresponds to observations
on the PVC polymer reported by (Plate, 1997 ; Yabannavar 1893 and 1994.

Hjertberg and Grevert (1995) identified a loss of plasticizers from cables after
25 years of underground application. The measured content of plasticizer was
20% in the inner layer and 17% in the outer layer of the cable. A typical
plasticizer content for cable insulation would mean 26- 28%. The obvious
conclusion was that the plasticizer migrates out from the material. That was
confirmed by the observation that the content of plasticizer is lower in the
outer layer compared to the interior and the inner layers. The release of
different plasticizers of PVC under soil buried test conditions and after long-
term underground application was also reported in a number of studies, but
without determination of the quantities of losses (Plate, 1997).

Richard et al, (2007) reported the anaerobic landfil decomposition of
plasticized polyvinyl chloride. By the addition of the combination of tin
carboxylate heat stabilizer and a dimethylaminopropyl methacrylamide-
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titanate adduct in PVC through a mechanism as yet not understood, the
above combination directs decomposition under anaerobic conditions to chain

scission, thus lowering molecular weight to the point of vulnerability to
microorganisms.

2.5. Biodegradability Testing

When testing the degradation phenomena of plastics in the environment,
there is a general problem concerning the type of tests to be applied, and the
conclusions which can be drawn. In principle, tests can be subdivided into
three categories:

1. Laboratory tests

2. Simulation tests

3. Field tests

2.5.1. Laboratory tests

The most reproducible biodegradation tests are the laboratory tests, where
defined media are used (in most cases synthetic media) and inoculated with
either a mixed microbial population (e.g., from waste water) or individual
microbial strains, which may have been especially screened for a particular
polymer. In such tests, which may be optimized for the activity of the particular
microorganisms used, polymers often exhibit a much higher degradation rate
than would be observed under natural conditions. This can be regarded as an
advantage when studying the basic mechanisms of polymer biodegradation,
but in laboratory tests it is only possible to derive limited conclusions on the
absolute degradation rate of plastics in a natural environment. However, for
many systematic investigations these tests are widely used (Marten, 2000).

A move towards more reproducible and controlled degradation tests involves
the use of systems where only those extracellular enzymes known 1o
depolymerase a particular group of polymers are used. This method cannot
be used to prove biodegradation in terms of metabolism by a microorganism,
but the system is valuable when carrying out systematic investigations, for
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example on the correlation of polymer structure and biodegradability (Tokiwa
and Suzuki 1977; Vikman ef al, 1995; Waiter ef al, 1995; Marten, 2000).
Besides reproducibility, the shortening of test duration and minimization of the
material needed are crucial points when performing extended systematic
investigations, or when using biodegradation testing as a tool for industrial
materials development. Although degradation experiments in compost or soil
may take up to one year to complete, and tests with specially screened
organisms may take only a few weeks, enzymatic degradation can be
performed within hours to days. Recent approaches have been aimed at
using very small polymer particles (nanoparticles) for enzymatic tests, in order
to increase the surface area available to the degrading enzymes. Using this
technigue, enzymatic degradation tests with polyesters can be performed
within seconds (Gan et al., 1999; Welzel et al., 2002).

The analytical tools used to monitor the degradation process depend on the
aim of the investigation and the test environment used. Several different
analytical methods have been used to test biodegradability which includes,
visual observation, changes in mechanical properties and molar mass, weight
loss measurement (determination of residual polymer), CO2 evolution/O;
consumption, determination of biogas, radio labeling and clear zone
formation.

Visual ohservations

The evaluation of visible changes in plastics can be performed in almost all
tests. Effects used to describe degradation include roughening of the surface,
formation of holes or cracks, de-fragmentation, changes in color, or formation
of bio-filme on the surface. These changes do not prove the presence of a
biodegradation process in terms of metabolism, but the parameter of visual
changes can be used as a first indication of any microbial attack. To obtain
information about the degradation mechanism, more sophisticated
observations can be made using either SEM or atomic force microscopy
(AFM) (lkada, 1999). After an initial degradation, crystaliine spherolites
appear on the surface; that can be explained by a preferential degradation of
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the amorphous polymer fraction, etching the slower-degrading crystalline
parts out of the material. In another investigation, Kikkawa ef al., (2002) used

AFM micrographs of enzymatically degraded PHB films to investigate the
mechanism of surface erosion.

Changes in mechanical properties an lar m

As with visual observations, changes in material properties cannot be proved
directly due to metabolism of the polymer material. However, changes in
mechanical properties are often used when only minor changes in the mass of
the test specimen are observed. Properties such as tensile strength are very
sensitive to changes in the molar mass of polymers, which is also often taken
directly as an indicator of degradation (Erlandsson et al,, 1997). Whilst for an
enzyme-induced de-polymerization the material properties only change if a
significant loss of mass is observed, for abiotic degradation processes (which
often take place in the entire material and include the hydrolysis of polyesters
or oxidation of polyethylenes) the mechanical properties may change
significantly, though almost no loss of mass due to solubilization of
degradation intermediates occurs at this stage. As a consequence, this type
of measurement is often used for materials where abiotic processes are
responsible for the first degradation step, €.g., chemical hydrolysis for poly
(lactic acid) of oxidation for modified polyethylenes (Breslin, 1993; Tsuji and
Suzuyoshi, 2002).

Weiaht loss measurements: determination of residual polymer

The mass loss of test specimens such as films or test bars is widely applied in
degradation tests (especially in field- and simulation tests), although again no
direct proof of biodegradation is obtained. Problems can arise with correct
cleaning of the specimen, or if the material disintegrates excessively. In the
latter case, the samples can be placed into small nets to facilitate recovery;
this method was used in the full-scale composting procedure of din vivi54800.
A sieving analysis of the matrix surrounding the plastics samples allows a
better quantitative determination of the disintegration characteristics. For
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finely distributed polymer samples (e.g., powders) the decrease in residual
polymer can be determined by an adequate separation or extraction
technique (polymer separated from biomass, or polymer extracted from soil or
compost). By combining a structural analysis of the residual material and the
low molecular weight intermediates, detailed information regarding the
degradation process can be obtained, especially if a defined synthetic test
medium is used (Witt et al., 2001).

CO; evolution/O, consumption

Under aerobic conditions, microbes use oxygen to oxidize carbon and form
carbon dioxide as one major metabolic end product. Consequently, the
consumption of oxygen (Puchner et al, 1985 Hoffmann et al., 1997) or the
formation of carbon dioxide (Sturm test) are good indicators for polymer
degradation, and are the most often used methods to measure biodegradation
in laboratory tests. Due to the normally low amount of other carbon sources
present in addition to the polymer itself when using synthetic mineral media,
only a relatively low background respiration must be identified, and the
accuracy of the tests is usually good. Besides conventional trapping of COz in
Ba (OH); solution followed by manual titration, infrared and paramagnetic O;
detectors can also be used to monitor Oz and CO2 concentrations in the air
stream. Although the automated and continuous measurements have
advantages, they also have disadvantages. For example, the exact air flow
must be measured, the signals of the detectors must be stable for long
periods of time and, If slow degradation processes are to be determined, the
CO, concentration or fall in O, concentration to be detected is very small,
thereby increasing the likelihood of systematic errors. Under these
circumstances, other concepts (e.g., trapping COz in a basic solution, approx.
pH 11.5) with continuous titration of detection of the dissoived inorganic
carbon (Pagga et al, 2001) may be useful alternatives, Other attempts to
overcome problems with CO; detection are based on non-continuously
aerated, closed systems. Here, either a sampling technique in combination
with an infrared-gas analyzer (Calmon et al, 2000) or a titration system

(Mueller, 1999) was applied. Another closed system with a discontinuous
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titration method has been described by Solaro ef al., (1998). Tests using small
closed bottles as degradation reactors and analyzing the CO; in the
headspace (Iltavaara and Vikman, 1995) or by the decrease in dissolved
oxygen (closed-bottle test) (Richterich et al, 1998) are simpie and relatively

insensitive to leakages, but may cause problems due to the low amounts of
material and inoculums used.

Although used originally in aqueous test systems for polymer degradation,
CO, analysis was also adapted for tests in solid matrices such as compost
(Pagga et al, 1995), and this method has now been standardized under the
name, controlled composting test (American Society for Testing and Materials
ASTMD 5338 98et: Din V 54900; ISO 14855; JIS k 6953). In fact, the
controlled composting test was not a method simulating a composting
process, because mature compost was used rather than biowaste as a matrix.
Biowaste, which contains a large amount of easily degradable carbon, would
cause too high a background CO; evolution for accurate measurement, and
so pre-degraded biowaste (mature compost) is used. For polymer degradation
in soil, CO, detection proved to be more complicated than in compost
because of slower degradation rates that led not only to long test durations
(up to 2 years) but also low CO; evolution compared with that from the carbon
present in soil. One means of overcoming problems with background CO;
evolution from the natural matrices compost or soil is to use an inert, carbon-
free and porous matrix, wetted with a synthetic medium and inoculated with a
mixed microbial population. This method proved practicable for simulating
compost conditions (degradation at ~60°c) (Bellina et al., 1998, 2000), but has
not yet been optimized for soil conditions.

Determination of biogas

Compared with the formation of COz in the presence of oxygen, anaerobic
microorganisms produce predominantly a mixture of CO, and methane (called
biogas) as one extracellular product of their metabolic reactions. The
theoretical amount and composition of the biogas can be calculated from the
chemical material composition with the so-called buswell equation (Buswell
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and Muller, 1952). Degradation of plastics under anaerobic conditions is
mainly monitored via biogas production (Gartiser et al,, 1998, Reischwitz ef
al. 1998 Abou-zeid, 2001), and standards evaluating the anaerobic
biodegradation are also based on such measurements (ISO/DIS 15985,
ASTMD 5210, and ASTMD 5511). Measurement of gas volume can be
performed using manometry or simple water displacement, and the
composition of the gas produced can be analyzed (e.g., by gas
chromatography) (Budwill et al, 1996). As with CO. evolution, the basic
problem is biogas evolution from anaerobic sludge, which are usually taken as
environment. Attempts to reduce background biogas evolution were made by
Abou-zeid (2001) by diluting the anaerobic sludge with a synthetic mineral
medium.

Radio labeling

If the carbon of the polymer is radiolabeled (usually with “C), many of the
above mentioned problems in testing biodegradation can be avoided. For
instance, very low concentrations of CO; can be detected even if CO; from
other carbon sources (e.g., biowaste) is evolved. Thus, radiolabeling is used
especially when slowly degradable materials are to be investigated in a matrix
containing carbon sources other than the plastics (Albertsson, 1978 Tuomela
et al,, 2001). The disadvantages of this method are problems in producing the
labeled material, and working with radioactive substances from an
experimental point of view.

Clear-zone formation

A very simple semi-quantitative method is the so-called clear-zone test. This
is an agar plate test in which the polymer is dispersed as very fine particles
within the synthetic medium agar, this results in the agar having an opaque
appearance. After inoculation with microorganisms, the formation of a clear
halo around the colony indicates that the organisms are at least able to
depolymerize the polymer, which is the first step of biodegradation. This
method Is usually applied to screen organisms that can degrade a certain
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polymer (Nishida and Tokiwa, 1993; Abou-zeid, 2001), but it can also be used

to obtain semi-quantitative results by analyzing the growth of the clear zones
(Augusta ef al., 1993).

2.5.2. S_Imulatiun tests

As an alternative to field tests, various simulation tests in the laboratory have
been used to measure the biodegradation of plastics. Here, the degradation
might take place in compost, soil or seawater placed in a controlled reactor in
a laboratory. Although the environment is still very close o the field-test
situation, the external parameters (temperature, pH, humidity) can be
controlled and adjusted, and the analytical tools available are better than
would be used for field tests (e.g., for analysis of residues and intermediates,
determination of CO, evolution or Oz consumption). Examples of such tests
include the soil burial test (Pantke and Seal, 1990), the so-called, controlled
composting test (Pagga et al., 1995, Tosin et al., 1996; Degli-innocenti et al,
1998: Ohtaki et al, 1998; Tuominen et al, 2002), test simulating landfils
(Mccartin et al., 1990, Smith et al,, 1990; Mccarthy et al, 1992) or aqueous
aquarium tests (Puchner ef al, 1985). On occasion, in order to reduce the
time taken to conduct the tests, nutrients are added to increase the microbial
activity and accelerate degradation.

2.5.3. Field tests

Although field tests, such as burying plastics samples in soil, placing itina
lake or river, or performing a full-scale composting process with the
biodegradable plastic, represent the ideal practical environmental conditions,
there are several serious disadvantages associated with these types of test
One problem is that environmental conditions such as temperature, pH, or
humidity cannot be well controlled; secondly, the analytical opportunities to
monitor the degradation process are limited. In most cases it is only possible
to evaluate visible changes on the polymer specimen, of perhaps to
determine disintegration by measuring weight loss. The latter approach 18
problematic however if the material breaks into small fragments that must be
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quantitatively recovered from the soil, compost or water. The analysis of
residues and intermediates is complicated by the complex and undefined
environment. Since the pure physical disintegration of a plastic is not
regarded as biodegradation in the sense of most definitions (as described
earlier), these tests alone can never prove whether a material is
biodegradable, or not (Tuominen et al., 2002).
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3. MATERIALS AND METHODS
3.1. Materials/Chemicals

The low molecular weight polyvinyl chloride (PVC), plasticizers dioctyl
phthalate (DOP), dioctyl adipate (DOA), solvent tetrahydrofuran (THF) and all
others compounds used were of analytical grade from Sigma-Aldrich, GmbH,
Steinheim, Germany and Oxoid Ltd, Basingstoke, Hampshire, England.

3.2. Media for Cultivation and Degradation Experiments

Malt extract agar (MEA; Oxoid, Basingstoke, Hampshire, England) and
Saboraud's agar (Sigma-Aldrich, GmbH, Steinheim, Germany) were used for
the detection, isolation and maintenance of the fungal strains. Nutrient Agar
was used for isolation of bacterial isolates and the basal mineral sait media
(MSM Table 3.1) was used for determining the deteriogenic properties of the
organisms.

Table 3.1 Composition of the Mineral Salts Media (MSM)

Ingredients Amount (g/l)
Kz HPO, 1.0
KH2PO4 0.2
NaCl 1.0
CaCl;. 2H;0 0.002
Boric acid 0.005
(NH4)2S04 1.0
MgSQ, .7TH:0 0.5g
CuSO, 0.001
ZnS0,4 7TH:0 0.01
MnSO4 0.001
FeSO,4, 7TH0 0.01
Agar 20.0

Media sterilization was performed by autoclaving at 121°C and 15 lbs
pressure for 20 minutes. The pH of media was adjusted (pH 4.5) prior to
sterilization with 0.1 M sodium hydroxide or hydrochloric acid.
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3.3. Sample Collection

Samples were collected from the plastics waste contaminated area near
Quaid-i-Azam University, Islamabad, Pakistan and active sewage sludge was
collected from a sewage treatment plant in Islamabad, Pakistan. This sewage
sludge was mixed with garden soil collected from different places of Quaid-i-
Azam University, Islamabad, Pakistan. This soil mixture was used for the
isolation of polymers PVC and pPVC degrading microorganisms.

3.4. Polyvinyl Chloride Film Preparation

Polyvinyl chloride having low molecular weight was used for the preparation of
film by dissolving the powdered PVC in, tetrahydrofuran (THF) (99% Merck)
as a solvent and sonicating for one hour. The mixture was poured into petri
plates and left for over night in oven to dry. Plasticized films were also
prepared by mixing the blend of PVC and plasticizer (DOP and DOA) and
starch in both 1:1 and 1:2 ratios of PVC and plastcizer. The PVC and pPVC
films (6x2.5 cm) were sterilized by dipping it into 70% ethanol for 15min (Calil
et al., 20086).

3.5. Isolation of Plastic Degrading Microorganism
The plastic degrading microorganisms were isolated from soil by soil burial
experiment.

3.5.1. Soil Burial Experiment

Pieces of PVC and pPVC films were washed and buried in soil (garden soil
mixed with plastics waste contaminated sewage sludge) at room temperature
(30 °C) for a period of 10 months. Soil was taken in a large pot amended with
mineral solution to maintain the availability of mineral salts and moisture. After
10 months pieces of PVC and pPVC were taken from soil, rinsed with
sterilized distilled water and placed on nutrient agar plates, at 30 °C for 2
weeks to observe the microbial growth.
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3.5.2. Enrichment and screening of Plastic degrading microbes

The fungal isolates from soil were cultured in 250ml Pyrex flask containing
100mL mineral salt media (MSM), with PVC and pPVC films as a sole carbon
source, in shaker at 155 rpm at 30 °C and pH 4.5. The biomass guantification
was done on weekly base and the best growing strains were selected and
further tested for biodegradation. The selected fungal strains were named as
PV1, PV2, PV3 and PV4.

3.6. Identification of the Selected fungal Isolates

The fungal strains isolated from soil (garden soil mixed with plastic waste
contaminated sewage sludge), attached on PVC and pPVC film pieces, and
were purified on Saboraud agar plates. The fungal strains were identified by
microscopic examinations at Microbiology Research lab, Quaid-i-Azam
University Islamabad, Pakistan. Macroscopic identification was done by
visualizing surface pigment and reverse pigment on Saboraud agar and
microscopic characterization includes shape, color and structure of conidia,
hyphae, conidiophores and conidial head.

3.6.1. Molecular Identification of fungal isolates

Fungal-isolates were identified by PCR amplification and partial sequencing of
the internally transcribed spacer (ITS) regions 5.85 rRNA and 28S rRNA
using the fungal Universal primers ITS-1 5-TCCGTAGGTGAACCTGCGG-3
and [TS-4 5-TCCTCCGCTTATTGATATGC-3' as previously described (Webb
et al., 2000). Detailed methodology is as follows:

3.6.1.1. Isolation of genomic DNA

Fresh mycelia were harvested in deionised water from overnight plate cultures
grown on MEA. The biomass was separated by centrifugation at 8,000 rpm
using MSE Mistral centrifuge, UK for 10 min, and the supernatant was
discarded. The pellet was frozen by placing the centrifuge tube into liquid
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nitrogen, and tubes were then stored at =80 °C until the pellet was ground in a

mortar under liquid N;. DNA was extracted according to the method of
Anderson et al., (1996).

3.6.1.2. DNA Extraction Protocol

1. Filter recovered spore suspension through 2 x muslin or j-cloth, were
added to liquid nitrogen in a cooled pestle and mortar and ground in to
a fine powder ensuring constant freezing. They were then transferred
to 12ml centrifuge tubes on ice.

2. A 5ml of 65 °C extraction buffer (0.7 M NaCl, 0.1 M Na;SO; 0.005 M
Tris/ Hel (pH= 7.5), 0.005 M EDTA, 1%, SDS) for the isolation of the
DNA was added (see appendix for constituents) and mixed well by
shaking or vortexing.

3. Mixture was incubated at 65 °C for 20 min. A 5 mi of chloroform:
isoamyl alcohol (24:1) was added vortexed and placed on ice for 30
min.

4. Centrifugation was done in MSE Mistral centrifuge for 30 min (4 °C at
3000 rpm). Upper phase was removed and kept and further transferred
to a clean 12ml tube. Equal volume of isopropanol (propan-2-of) was
added and mixed gently. Mixture was left at room temperature (30 °C)
for 10 min.

5. Centrifugation for 10 min was done at 4 °C at 3000 rpm and
supernantant was discarded. To this 2 mil of sterile distilled water was
added and left at room temperature to resuspend.

6. 1ml of 7.5M NH4Ac was added. Mixed gently and placed on ice for 1h.
Cantifuged for 30 min (4 °C at 3000 rpm).

7. Supernatant was removed and transferred to another tube. And 0.54
volumes of isopropanol was added (approx. 1.62ml) and mixed gently.
The DNA was visible as white strands. This was left at room temp for
10 min.

8. Centrifuged for 15min (4 °C at 3000 rpm and carefully removed and
discarded the supernatant. Pellet was washed with 2ml 70% ethanaol.
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Centrifuged for 5 min (4 °*C at 3000 rpm) and the supernatant was
removed and allowed the pellet to air dry.

9. The pellet was resuspended in 500yl sterile Distilled water and 1yl
RNase was added and stored at -20 °C.

3.6.1.3. PCR Amplification

Polymerase chain reaction (PCR) was used by using ITS| and ITS4 for the
amplification of fungal 5.85, 1Bs and 28s rRNA. The universal primers were
used for the identification of the fungal strains. The V3 variable region at the &'
end of the 5.8 S, 183 and 285 rRNA were amplified with the fungal universal
primers V3-1 (5 GCATATCAATAAGCGGAGGAAAAG) and V3-2 (5
GGTCCGTGTTTCAAGACGG) (Fell, 1993). PCR reagent concentrations were
0.2 pM of primers V3-1 and V3-2, 2.5 mM of MgClz, 200 pM for each of the
four deoxynucleoside triphosphates, and 1.25 U of Tag DNA polymerase
(Roche Diagnostics Ltd., Lewes, United Kingdom) per 50-pl reaction mixture.
Amplification was performed for 30 cycles with denaturation at 94 °C for 1
min, annealing at 60 °C for 1 min, and extension at 72 °C for 1 min. ITS
regions were amplified using fungal universal primers ITS-1 (5
TCCGTAGGTGAACCTGCGG) and ITS-4 (5 TCCTCCGCTTATTGATATGC)
(White et al.,1990). PCR reagent concentrations were as for V3-1 and V3-2
with the exception of concentrations of 0.25 uM for primers ITS-1 and ITS-4
and 1.5 mM for MgCl,. Amplification was performed for 35 cycles with
denaturation at 94 °C for 1 min, annealing at 56 °C for 1 min, and extension at
72 °C for 1 min.

3.6.1.4. Agarose Gel Electrophoresis

DNA was observed following electrophoresis using 1% agarose in 1X TAE
buffer) and staining with ethidium bromide (1 g mi™" in TAE buffer, Webb et
al., 1999],
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3.6.1.5. Purification

Amplified products were purified using the QIAquick PCR purification kit
(Qiagen Ltd., Crawley, United Kingdom).

3.6.1.6. Sequencing

PCR products (0.8 Kb fragments) were sequenced from the sequencing
facilities of Facuilty of Life Sciences, University of Manchester, UK.

Both strands of the amplified products were sequenced using the ABI BigDye
Dideoxy Terminator Cycle sequencing kit (Applied Biosystems Inc,
Warrington, United Kingdom). Cycle-sequencing conditions were denaturation
at 96 °C for 10 s, annealing at 50 °C for 5 s, and extension at 60 °C for 4 min
for 25 cycles, with a final extension at 60 °C for 4 min. The annealing
temperature was increased to 55 °C for sequencing reactions using the V3-1
primer. Forward and reverse sequences were aligned using ABI Auto-
assembler software (Applied Biosystems Inc.), and the overiapping
consensus sequence was compared with sequences in the NCBI database
using FASTA 3 sequence homology searches.

3.7. Biodegradation Studies

3.7.1. Soil burial

Low molecular weight polyvinyl chloride PVC films were buried in soil for 10
months, and pPVC (DOP, DOA) and blends with starch films were buried in
soil for 6 months, at room temperature (30-35 °C), in a large pot amended
with mineral salt media (MSM) to maintain the availability of mineral salts and
moisture and inoculated with the selected fungal isolates. Structural change In
the polymer was analyzed after soil burial.

3.7.2. Shake flask experiments

Mineral salt medium (100 ml) containing pieces of pure PVC, pPVC (DOP,
DOA) and starch blends of PVC were used for biodegradability testing of
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selected fungal isolates. Spore suspensions of fungal isolates were used as
inoculum. Experiments were run for 6 months under shaking conditions at 30
°C except PVC starch blends which was treated for 3 months. Biomass
quantification was done on weekly basis. The PVC films were analyzed for

structural changes by SEM, Gel permeation chromatography (GPC), NMR
and FTIR at the end of experiments.

3.7.2.1. Effect of UV pretreatment on biodegradation of PVC

The PVC film pieces were exposed to UV light (254 nm wavelength) for about
10 hours and then used in shake flask experiment with PV1 as inoculum.
Plastics film was analyzed.

3.7.3. Sturm test

Carbon dioxide evolution as a result of PVC, pPVC (DOP, DOA) and starch
PVC biodegradation was determined by Sturm Test (Muller et al., 1992) (Fig.
3.1). The pieces of polymer films were added to the culture bottle (Test bottle)
containing 300 mi of mineral salts medium without any other carbon source.
Spore suspensions of fungal isolates were prepared in sterilized saline and
were used to inoculate the test and the control bottles, containing mineral salt
medium, to study the degradation of PVC and pPVC. Control bottle was
without any plastic. Sterilized air was supplied to keep conditions aerobic. The
test and control bottles were stired continuously by placing them on the
magnetic stirrer. The test was performed at room temperature (30 “C) for 4
weeks. After 4 weeks of culturing the change in biomass and the amount of
carbon dioxide produced was calculated in the test and control bottles,
gravimetrically. Evolution of CO;, as a result of degradation of polymeric chain
was trapped in the absorption bottles containing KOH (1M). Barium chloride
solution (0.1M) was added to the CO; containing KOH bottles and as a result
precipitates of barium carbonate (using CO: released from breakdown of
polymer) were formed. CO, produced can be calculated gravimetrically by
measuring amount (weight) of precipitates evolved by addition of BaCl,.
Change in both test and control was observed.
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STURM TEST

R

Figure 3.1 Experimental set up of sturm Test for measurement of carbon
dioxide evolution during break down of plastic (PVC) material. a: CO;
absorbing chambers, b: pretreatment chambers, c: culture vessel, d.
0.2 um air filter, e: pressure air pump, T: Test, C: control

3.8. Analytical Methods
3.8.1. Light Microscopy

The pieces of PVC and pPVC buried in sewage sludge were taken. The
plastic films were washed with sterilized distilled water and examined through
microscope to observe the microbial adherence and attachment to PVC and
pPVC surface.

3.8.2. Biomass quantification
This method is considered as a relatively simple and useful for directly

quantifying the number of microorganisms attached to the polymer surface
(Christensen et al., 1995). It is used to evaluate the ability of chosen test
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microorganisms to grow and utilize component from the polymer blend as sole
carbon source. The quantification was done for the screening of isolates from
degradation experiment by examining the proliferation and growth of
microorganisms on the plastic material. The fungal isolates from soil were
cultured in 250m| Pyrex flask containing 100mL mineral salt media (MSM),
with PVC and pPVC films as a sole carbon source, in shaker at 155 rpm at 30
°C and pH 4.5, the fungal biomass was quantified on weekly basis. Separate
flasks were set for every week sample. The whole contents of the flask
containing fungal culture were filtered through Whattman #1 pre-weighed filter
paper. Biomass on the filter paper was dried in oven at 50 °C to constant
weight. The filter paper was weighed to get the dry biomass subtracting the
weight of filter paper.

3.8.3. Scanning Electron Microscopy (SEM)

The surface morphology of the PVC and pPVC films was analyzed through
scanning electron microscopy. Specimens were attached to stubs using
Electrodag 915 (Acheson Industries, Reading, United Kingdom) and sputter
coated (mode! S150 device; BOC Edwards) with gold before being examined
using a Stereoscan 360 scanning electron microscope (Cambridge
Instruments, Cambridge, United Kingdom).The images of the test samples
were compared with those recorded on the original untreated samples
(control).

3.8.4. Gel Permeation Chromatography (GPC)

The number- and weight-average molecular weights Mn, Mw of PVC and
pPVC were determined using the Gel Permeation Chromatograph (GPC)
made by Viscotek GPC max VE 2001(Texas) equipped with the refractometric
(Shoedex RI-71) and viscometric (Viscotek) Model TS0A) detectors. Two
connected columns (GMHHR-MS type, TSK-GEL) were used.. Column flow
rate was 1.mUminute. Higher plate counts can be obtained at lower linear
velocities. 100ul sample was injected at 35 °C detector temperature and 30 °C
column temperature. The calibration was made using the polystyrene
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standards (Aldrich). Tetrahydrofuran was used as solvent. The sample
measurement time was 30 min/ sample.

3.8.5. Fourier Transform Infra Red (FTIR) Spectroscopy

Fourier Transform Infrared Spectrophotometer FTX 3000 MX Bio Rad Ex-
Clibur™ FT-IR Series, USA was used for analysis of PVC and pPVC after
degradation experiments. The polymer pieces were mixed with KBr and made
into a tablet, which was fixed to the FTIR sample plate. Spectra were taken in
triplicate at 400 to 4000 wave-numbers cm™' for each sample.

3.8.6. Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the principal
techniques used to obtain physical, chemical, electronic and structural
information about molecules due to the chemical shift and Zeeman Effect on
the resonant frequencies of the nuclei. It is a powerful technique that can
provide detailed information on the topology, dynamics and three-dimensional
structure of molecules in solution and the solid state. Both "*Carbon NMR and
Proton NMR spectroscopic analysis were used with Chioroform cDel, as
internal standard.

The films of PVC and pPVC were dissolved in the solvent (Chloroform CDCly,
and then they were analyzed in the Bruker 400MHZ NMR spectrophotometer.
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4. RESULTS
41. Isolation of PVC degrading microorganisms

Soil samples, collected from plastic waste contaminated sites with heap of
solid waste debris from Quaid-i-Azam University, Islamabad, Pakistan and the
sewage sludge coliected from the Sewage Treatment Plant, Rawalpindi,

Pakistan, were used as a source for isolating microorganisms having the
ability to degrade PVC plastics.

A number of bacterial, actinomycetes and fungal strains were isolated. These
microbes were tested for having the ability to adhere, grow and degrade PVC.
Four fungal strains PV1, PV2, PV3 and PV4 were finally selected on the basis
of their good growth, adherence and degradation potential of PVC plastics.
The adherence and attachment of the fungal strains was observed in all
polymer films, pure PVC film, pPVC film and PVC starch blends (Fig 4.1).

4.2. |dentification of fungal isolates

For the identification of the fungal isolates, the morphology of the fungi on the
malt extract media was studied. The colonies of PV1 were white color with
serrated edges, the flat fruiting body appear like a crust on the plate surface.
Colonies were small, initially relatively smooth surfaced but later developed a
weft of aerial mycelium. The color of mature sporulated aerial mycelium was
pinkish white. (Fig. 4.2 a).

Colonies of the strain PV2 were light colored, smooth and fiat on the surface
of the agar plate, the colony surfaces have sporous appearance with smooth
surface, whereas colonies of strain PV3 on Malt extract agar were initially light
black, quickly becoming black with conidial production. The color of the
mature sporulated mycelium was blackish. Reverse is pale yellow and growth
may produce radial fissures in the agar (Fig. 42D, c).
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Initially- the growth rate of the colonies of PV4 were slow, the color was off
white but quickly turmed to greenish shade having irregular white colored
edges, on maturity of mycelium the appearance of light brown color observed
in centre of colony, the growth texture was powdery (Fig. 4.2 d).

4.3. Molecular |dentification of fungal isolates

The PCR product of 0.8 kb size of all of the isolated strains were visualized on
1% agarose gel with 1X TAE buffer (Fig. 4.3).

The four selected isolates were identified by 5.8S, 18S, 285 rRNA and
internal transcribed spacer (ITS) region. The 0.8kb nucleotide fragment was
observed in Agarose Gel Electrophoresis There nuclectide sequences ( see
Appendix) were compared with known sequences in National centre for
biotechnology information (NCBI) using fast alignment sequences tool all
(FASTA). The strains were identified on the basis of their homology as
Phanerochaete chrysosporium PV1, Lentinus tigrinus PV2, Aspergillus niger
PV3 and Aspergillus sydowii PV4 (Table 4.1). The sequences were deposited
in NCBI Genbank and got the accession number as EUS43980.1,
EU543989 1. EU543987.1 , EU543988.1 for PV1, PV2, PV3 and FV4
respectively.
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Figure 41, Fungal adherence and attachment on polymer films placed in
MSM agar plates after two months incubation at 30 °C (a) pure

PVC film (b) pPVC (DOP) film (c) PVC starch blends.
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Figure 4.2. Morphology of colonies of fungal isolates on Malt extract
agar plates. (a) PV1 (b) PV2 (¢) PV3 and (d) PV4
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Figure. 4.3 Gel electrophoresis of isolated DNA on agarose gel electrophoresis
L1, Hyp4: 1kb DNA marker (Invitrogen)
L2: PV2, L4: PV1, L5 PV3 LS PV4
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4.4. Biodegradation of PVC

Biodegradability was first tested of plastic fim kept with 10 months with
microbes. Following burial for 10 months, the surface of the PVC was heavily

colonised and discolored and some hyphal growth was visible to the naked
eye at the surface of the films (Fig.4.4).

Further plastic films were incubated on mineral salt agar medium with
inoculated fungi. Polyvinyl chloride film showed only the growth of
Phanerochaete chrysosporium PV1 (Fig.4.5).

4.41. Growth of fungal Isolates on PVC plastics

The Biomass quantification was done for the degradability studies of isolates.
The isolates were grown in MSM media having pure PVC under shaking
condition. The biomass quantification was done on weekly basis. For the pure
PVC the strain Phanerochaete chrysosporium PV1 showed maximum dry
weight about 2.57mg/ml followed by Aspergillus niger PV3 after 7 weeks
incubation in MSM media in shake flask experiment at 30°C. There was
gradual increase in dry cell mass from 3% week to 7" week. However no or
slow change in growth was observed in media inoculated with Lentinus
tigrinus PV2 and Aspergillus sydowii PV4 (Fig.4.6).

4.4.2. Analysis by Scanning Electron Microscopy (SEM)

Pure PVC film were buried in soil, inoculated with individual fungal strains, for
10 months were examined under SEM; There was a notable change on the
surface of treated PVC film after microbial treatment with Phanerochaete
chrysosporium PV1 showing initial pattern of degradation of the PVC film. The
appearance of hexagonal rings in treated samples not present in control
indicating the change in the surface of the polymer after soil burial due to
fungal adherence Phanerochaete chrysosporium PV1 At higher magnification
these hexagonal rings were more prominent and they were on the surface of
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the PVC films (Fig.4.7). There were less/not significant changes in SEM
analyses of films treated with other three fungal strains, PV2, PV3 and PV4.

4.4.3. Analysis by Strum test

Biodegradation of plastics was studies in liquid broth with fungal isolates
Phanerochaete chrysosporium PV1, Lentinus tigrinus PV2. The breakdown of
polymer results in the production of carbon dioxide. The carbon dioxide
evolved was determined gravimetrically by Sturm test.

After incubation for 4 weeks, it was found that in case of Test (with PVC
pieces) when treated with Phanerochaete chrysosporium PV1 the total
amount of CO; produced was 8.31g/l, whereas, in control (no PVC pieces) it
was 4.90g/l, however when treated with Lentinus tigrinus PV2 the total
amount of CO, produced was 6.03g/l, whereas, in control (no PVC pieces) it
was 3.05g/l). The dry cell mass of Phanerochaete chrysosporium PV1 in test
was higher (0.099 mg/mi) than in control (0.053 mg/mi) also the increase in
dry cell mass of Lentinus tigrinus PV2 was observed in test (0.087 mg/ml)
(Table. 4.2).

The change in the carbon dioxide and dry cell mass produced by comparing
with control confirmed that more activity of biodegradation was shown in the
test having PVC pieces treated with fungal isolates than the control. However
Phanerochaete chrysosporium PV1 showed better biodegradation ability than
Lentinus tigrinus PV2.

4.4.4. Analysis by Gel Permeation chromatography

Gel permeation chromatography (GPC) was used to analyze the structural
changes of pure polyvinyl chloride (PVC) after treatment with fungal isolates
in shake flask. The GPC results showed that the weight-average molecular
weight (Mw) of PVC decreased with longer exposure to the microorganism
The Initial molecular weight of the pure PVC was 202,530 Da however after 6
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months shake flask experiment decrease in molecular weight was observed,
the Phanerochaete chrysosporium PV1 showed more change in the PVC

molecular weight as decreased up to 178,292 than the rest of three fungal
strains (Table 4.3).

Due to fungal degradation the molecular dispersity (Mn) was also changed.
Aspergillus niger PV3 showed more change in the molecular dispersity
(1.545) followed by Phanerochaete chrysosporium PV1 (1.572) as compared
to the control 2.07 (Table. 4.3).

4.4.5. Analysis by Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy (FTIR) analysis of control of
Polyvinyl chloride film piece and FTIR analysis of Polyvinyl chioride film piece,
which were buried in soil showed the appearance of new peaks and shifting of
the peaks at 2370-2350 cm ' (corresponding to O-H) region indicating the
change in the structure of the PVC also decrease in peak height at 2277-2250
cm *! showing significant change due to microbial degradation (Fig.4.8).

The PVC film initially treated with UV and then exposed to Phanerochaete
chrysosporium PV1 for four months in shake flask experiment showed more
obvious degradation in PVC film, not only shifting of the peaks but also
complete change in the structure of the polymer chains by peaks shortening
and almost disappeared at 2980-2910cm™ (corresponding to alkyl segment)
also new peaks appeared at 2380-2340 cm ! (corresponding to O-H). The
results showed that some of the double bonds of PVC were cleaved by
microbial strain, indicating that UV treatment enhanced the biodegradation of
the polymer (Fig. 4.9).

4.4.6. Analysis by Nuclear magnetic resonance (NMR)
in *CNMR spectra of the control sample the signal at 14.26 ppm was

attributed to CH while the signal at 32.03 ppm was assigned to CH-CI
carbon. While In addition to these signals some more signals appeared in the
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range 29-47 ppm in treated film of PVC in shake flask experiment for six
months with Phanerochaete chrysosporium PV1. The increase in number of
signals indicated that some chemical change/shifting were taken place in the
polymeric material. Further the appearance of new peaks in the fungal treated

PVC film spectra indicated the chemical shift of peaks due to biodegradation
activity of the microbes (Fig.4.10).

The “CNMR spectra of the PVC film when treated with the Lentinus tigrinus
PV?2 in shake flask also showed new peaks appearance in range of 20-40
ppm, the peaks at 23.16 ppm, 30.15ppm, 44 24ppm, 44.57ppm and 46.
41ppm (represent OC*H2CHCIO) were the new peaks which were not present
in the control PVC film (Fig.4.10). That showed there was notable change in
the structure of the polymer film due to microbial attachment.

Proton magnetic resonance spectra of the PVC film showed the signal region
for aliphatic protons (-CHz-CH-CI) was around 1.5 ppm and for (-CH2-CH-CI)
was 3.0-4.0 ppm. The total integration of the region for the control sample 0.3-
3.1 ppm was 43.81 (Fig.4.11) while for the Phanerochaete chrysosporium
PV1 treated sample the integration was decreased to 43.07 in the same
region.

The 'H spectra of the pure PVC treated with Lentinus tigrinus PV2 also
showed decrease in integration to 43.52 in the same region. That decrease in
integration clearly indicates that during the process, some of the protons have
been exhausted (Fig.4.11).
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Figure 44. Fungal adherence and attachment on the surface of PVC film
(indicated by arrows) after 10 months soil burial experiment

Figure 4.4. Growth of fungal isolate Phanerochaete chrysosporium PV1 on
PVC film
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Figure 4.6. The growth of fungal isolates in mineral salt medium with pure
PVC as sole carbon source.
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Figure 4.7. Scanning Electron Micrographs of the pure PVC films, Untreated
flm control (A);, after 10 months soil burial experiment with

Phanerochaete chrysosporium PV1 (B1, 100 x and B2 500x )
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Table 4.2. Dry cell mass and gravimetric analysis of CO; evolution during

breakdown of pure PVC by Phanerochaete chrysosporium PV1 and
Lentinus tigrinus PV2 determined through Sturm test after 4 weeks of
treatment (control; without PVC pieces)

CO; Produced Dry cell mass

Fungal isolates (g) (mg/ml)
Control Test Control | Test
P. chrysosporium PV1 4.90 8.31 0.053 0.099
L. tigrinus PV2 3.05 6.03 0.063 0.087
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Table 4.3. Gel permeation chromatography analysis of the pure PVC
fungal degradation (after six months)

Strain Molecular weight Molecular dispersity
MW (Da) (MW/Mn)
Control 202,530 2.077

P. chrysosporium PV1

178,292 1.572

L. tigrinus PV2 195,326 1.685
A. niger PV3 183,930 1.545
A. sydowii PV4 190,753 2.077
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Figure 4.8. Fourier transform infra red spectra of polyviny! chioride film
pieces; control, untreated (A); After exposure to soil burial
treatment for 10 months (B).
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Figure 4.9. Fourier transform infrared spectra of polyvinylchloride Control (A},
UV treated with films P. chrysosporium PV1 after four months (B)
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Figure 4.10. "°C NMR spectra and peak assignments of PVC film, A) control,
B) treated with Phanerochaete chrysosporium PV1, C) treated with
Lentinus tigrinus PV2 after six months
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Figure 4.11. '"H NMR spectra of PVC film, A) control, B) treated with
Phanerochaete chrysosporium PV1, C) treated with Lentinus
tigrinus PV2 after six months.
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4.,5. Biodegradation of Plasticized PVC

Polyvinyl chloride films were made in the presence of plasticizers DOP and
DOA. Both of the plastics were then tested for biodegradation.

The plasticized PVC films were incubated on mineral salt agar medium and
inoculated with fungi. Both the plasticized (DOP and DOA) films showed only
the growth of Lentinus tigrinus PV2 (Fig.4.12).

4.5.1. Growth of fungal Isolates on PVC plastics

The biomass quantification after growth in MSM with fungal isolates showed
maximum dry weight 2.89 mg/ml after 7 weeks incubation by Aspergillus niger
PV3 in shake flask experiments with pPVC (DOP). Phanerochaete
chrysosporium PV showed initially increase in growth till 5" week there after
no increase was observed. While Lentinus tigrinus PV2 and Aspergillus
sydowii PV4 did not show significant growth (Fig.4.13).

A gradual increase in growth of Aspergillus niger PV3 was observed with
maximum of (2.8 mg/ml) with pPVC (DOA) after 7 weeks incubation in shake
flask experiment, however a increase in cell mass also observed in flasks
inoculated with PV1 from 3™ to 5" week. The rest of the two strains Lentinus
tigrinus PV2 and Aspergillus sydowii PV4 did not show significant increase in
growth (Fig.4.14).

4.5.2. Analysis by Scanning Electron Microscopy (SEM)

Plasticized polyvinyl chloride (DOP and DOA) films were incubated with
isolated fungal strains in mineral salt media in shake flask experiment for 6
months were examined under SEM; the results showed that there was not
only clear adherence of fungus on the surface of pPVC (DOP and DOA) but
also visible change in surface structure of the polymer film after microbial
treatment.
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The degradation pattern was more obvious in pPVC (DOP) after fungal
(Aspergillus niger PV3) attack showing complete change in the surface
structure of the treated film. The appearance of cracks and holes indicated
that fungal strain utilizing pPVC as sole carbon source in shake flask
experiment with mineral salt media after 6 months. The attachment and the
adherence of the Aspergillus niger PV3 was also shown on the surface of the
polymer leading to biodegradation potential of the Aspergillus niger PV3
(Fig.4.15).

Surface analysis of pPVC (DOA) film after microbial treatment with Aspergillus
sydowii PV3 in shake flask experiment for 6 months showed clear changes in
the film structure. There was erosion and extensive roughening of the surface
of fungal degraded pPVC (DOA) film .The appearance of fungal growth on the
surface of pPVC (DOA) film was also indication of the adherence and
degradation of the pPVC film (Fig.4.16).

Other 3 fungal strains PV1, PV2 and PV4 did not show significant structural
changes in electron microscopic analyses.

4.5.3. Analysis by Strum test

The carbon dioxide evolved was determined gravimetrically by Sturm test, in
reaction flasks containing PVC with DOP. After incubation for 4 weeks, it was
found that in case of test pPVC(DOP) film pieces. when treated with
Phanerochaete chrysosporium PV1 the total amount of CO; produced was
20.79g/l, whereas, in control it was 9.07g/l, however when treated with
Lentinus tigrinus PV2 the total amount of CO. produced was 20.75g/l,
whereas, in control it was 8.13g/l (Table 4.4). The increase in cell mass of
Phanerochaete chrysosporium PV1 (0.116 mg/ml) and cell mass of
Aspergillus sydowii PV4 (0.98 mg/ml) than in controls (Table. 4.4).

When biodegradability of plasticized PVC with DOA was tested by strum test
using Phanerochaete chrysosporium PV1 the total amount of CO; produced
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was 32.79g/l, whereas, in control it was 13.07 g/l, however when treated with
Aspergillus niger PV3 the total amount of CO; produced was 27.67 g/, as
compared to control 11.37 g/l.The cell biomass was increased in
Phanerochaete chrysosporium containing test flask (0.106 mg/ml) as
compared to control (0.056 mg/ml) and same increase was observed in strain
Aspergillus niger PV3 (0.089 mg/mi) (Table.4.5).

4.5.4. Analysis by Gel Permeation chromatography (GPC)

The change in the molecular weight was studied by analysis of pPVC films
with gel permeation chromatography, the results showed that the molecular
weight (Mw) of polymer was decreased due to biodegradation. There was
significant decrease in the molecular weight of pPVC (DOP) with
Phanerochaete chrysosporium PV1 (81,028) as compared to initial molecular
weight of the 84,300 followed by Lentinus tigrinus PV2 (81,928).

An increase in the molecular dispersity was observed in the pPVC (DOP) by
treating with fungal strains that confirming the change in the polymer. The
more increase was observed in Phanerochaete chrysosporium PV1 (1.759)
compared to rest of the fungal strains (Table.4.6).

A decrease in the molecular weight (Mw) of pPVC (DOA) was observed due
to fungal degradation, all of the four fungal strains showed significant
degradation results. The more change in molecular weight was observed by
Aspergillus sydowii PV4 (81,830) as compared to other fungal strains
(Table.4.7).

The increase in the molecular dispersity of the pPVC (DOA) was shown by all
the fungal strains, Aspergillus sydowii PV4 showed maximum increase in the
molecular dispersity (1.807) followed by Lentinus ftigrinus PV2 (1.681)
however Phanerochaete chrysosporium PV1 showed less increase as
compared to other strains (1.591) ( Table 4.7).
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4.5.5. Analysis by Fourier Transform Infrared Spectroscopy (FTIR)

After treatment of pPVC (DOP) with Lentinus tigrinus PV2 and Aspergillus
sydowii PV4 the structural changes in the polymer were determined by FTIR.
The appearance of new peaks at 2400-2200 cm™ and at 830-880 cm’
(corresponding to —C=C-) and peaks shortening at 1710-1715 cm’
(corresponding to carbonyl compound) confirmed the structural changes in
the polymer. The results showed that some of the double bonds of pPVC
(DOP) were cleaved by fungal strains (Fig.4.17).

The FTIR spectra of the pPVC (DOA) showed change in the structure of the
polymer film by Phanerochaete chrysosporium PV1 as compared to the
control. There was shifting of peaks appeared at 1000-900cm™ indicating the
change in the plastic film (corresponding to C-O) and appearance of new
peak at 690cm™ also confirmed the breakdown of the polymer due to fungal
attack (Fig.4.18).

4.5.6. Analysis by Nuclear magnetic resonance (NMR)

The Proton NMR spectra of pPVC (DOA) showed the signal region for
aliphatic protons (-CHz-CH-CI) and for (-CH2-CH-CI) was 0-3.0 ppm. The total
integration of the region for the control sample was 43.26ppm, while for the
treated sample; the integration was increased to 43.39 in the same region.
That increase in integration clearly indicated that during the process, some of
the protons have been exhausted. Therefore, it is suggested that this
decrease in integration in the polymer is due to fungal activity that bring
changes in the polymer structure (Fig.4.19).
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(B)

Figure 4.12. Growth of fungal isolate Lentinus tigrinus PV2 on pPVC( DOP)
film (A) and pPVC ( DOA) film (B).
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Figure 4.14. The growth of fungal isolates in mineral sait medium with p PVC
(DOA) as sole carbon source
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Figure 4.15. Scanning Electron Micrographs of the pPVC film (DOP)
A) Untreated film; B1) after 6 months shake flask experiment
with Aspergillus niger PV3 (B1) 250 x (BZ2) adherence of
Aspergillus niger PV3 on film surface 500x
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Figure 4.16. Scanning Electron Micrographs of the pPVC film (DOA), A)
Untreated film: B1) after 6 months shake flask experiment with

Phanerochaete.chrysosporium PV1 250 x (B2) 500x
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Table 4.4 Dry cell mass and gravimetric analysis of CO; evolution during
breakdown of pPVC( DOP) by Phanerochaete chyrososporium
PV1 and Lentinus tigrinus PV2 determined through Sturm test
after 4 weeks of treatment (Control; without pPVC pieces).

CO; Produced Dry cell mass
Fungal isolates g/l mg/ml
Control Test Control  Test
P. chrysosporium PV1 9.07 29.79 0.063 0.116
L. tigrinus PV2 8.13 20.75 0.061 0.098

Table 4.5 Dry cell mass and gravimetric analysis of CO; evolution during
breakdown of PVC +DOA by Phanerochaete chrysosporium
PV1 and Aspergillus niger PV3 determined through Sturm test
after 4 weeks of treatment (Control; without pPVC pieces)

CO; Produced Dry cell mass
Fungal isolates g/l mg/mi
Control Test Control Test
P. chrysosporium PV1 13.07 32,79 0.056 0.106
A. niger PV3 11.37 27.67 0.058 0.089
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Table 46  Gel permeation chromatography analysis of the pPVC (DOP)
fungal degradation (after six months)

Strain Molecular Molecular

weight MW (D) dispersity
(MW/Mn)

Control 84,300 1.680

Lentinus tigrinus PV2 81,928 1.745

P. chrysosporium PV1 81,028 1.759

Aspergillus niger PV3 82,153 1.703

Aspergillus sydowii 82,946 1643

PV4
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Table 4.7  Gel permeation chromatography analysis of the pPVC (DOA)
fungal degradation (after six months)

Strain Molecular Molecular dispersity
weight MW (D) (MW/Mn)

Control 88,000 1.400

L. tigrinus PV2 84,810 1.681

P. chyrososporium 84.017

1.591
PV1
A. niger PV3 82,000 1,640
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Figure 4.17 Fourier transform infrared spectra of PVC (DOP), A) after
treated by Lentinus tigrinus PV2, B) after treated by Aspergillus

sydowii PV4
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Figure 4.18. Fourier transform infrared spectra of PVC (DOA), A) Control, B)
after treated by Phanerochaete chrysosporium PV1
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Figure 4.19. Proton Nuclear magnetic resonance "H NMR spectra, A) control,
B) treated pPVC (DOA) film treated with Phanerochaete
chrysosporium PV1 for six months in liquid media.

Microbial degradation of Polyvinyl chloride (PVC) plastics 81



Chapter 4

Results

4.6. Biodegradation of Polyvinyl Chloride Starch Blends

Polyvinyl chloride starch blended films were incubated on mineral salt agar
medium inoculated with fungal strains. Polyvinyl chloride film showed only the
arowth of Aspergillus niger PV3 (Fig.4.20).

4.6.1. Changes to the surface of PVC starch blends

The surface of the PVC starch blend film totally changed as compared to
control after six months soil burial experiment. The samples were discoloured
and some hyphal growth was visible to the naked eye on the surface of the
films however some cracks and film erosion was also visible (Fig.4.21).

4.6.2. Growth of fungal Isolates on plastics

The Biomass quantification was done for the screening of isolates for
degradation experiments. The isolates were grown in MSM media having
PVC starch blends. The biomass quantification was done on weekly basis.
During 7 weeks incubation in shake flask experiments the maximum growth
was shown by Phanerochaete chrysosporium PV1 that was about 2.97mg/ml,
followed by Aspergillus niger PV3, the Lentinus tigrinus and Aspergillus
sydowii PV (Fig.4.22).

4.6.3. Analysis by Scanning Electron Microscopy (SEM)

Surface analysis of PVC starch blends after microbial treatment showed
changes in the structure of the film. In the treated sample there was erosion
and extensive roughening of the surface There was a notable change on the
surface of treated PVC starch blend after microbial treatment showing
appearance of holes on the polymer surface, there was clear surface erosion
and breakdown of the some part of the film due to Phanerochaete
chrysosporium PV1 activity in shake flask experiment after 3 months. The
fungal growth was also observed on the polymer surface (Fig. 4.23). There
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were also detoriation clearly observed in PVC starch films incubated with

other fungal isolates (observed by light microscopy, results not shown) but
electron micrographs were not taken.

4.6.4. Analysis by Strum test

Polyvinyl chloride with starch blends was treated with fungal isolates for 4
weeks in strum test. Carbon dioxide analysis showed that in case of
Phanerochaete chrysosporium PV1 the total amount of CO; produced was
33.79g/l in test, whereas, in control it was 16.34g/l, however when treated with
Aspergillus sydowii PV4 the total amount of CO, produced was 39.30g/l,
whereas, in control (no PVC pieces) it was 21.07g/l (Table 12). When the
biodegradation potential of the two strains tested was compared
Phanerochaete chrysosporium PV1 than Aspergillus sydowii PV4 (Table 4.8).

The dry cell mass of Phanerochaete chrysosporium PV1 in test was higher
(0.136 mg/ml) than in control (0.056 mg/ml), also the increase in dry cell mass
of Aspergillus sydowii PV4 was observed in test (0.118mg/ml) than control
(0.058 mg/ml) (Table. 4.2).

4.6.5. Analysis of by Gel Permeation Chromatography (GPC)

To confirm the change in the PVC starch blends after fungal treatment the
polymer films were analyzed by gel permeation chromatography. The results
indicated that among the four fungal strains Phanerochaete chrysosporium
PV1 showed maximum decrease in the molecular weight of PVC starch
blends (77,011) than the control (80,275) followed by Lentinus tigrinus PV2
(79,369).The molecular dispersity was decreased as compared to control
molecular dispersity. Aspergillus niger PV3 showed maximum decrease
(1.572) of molecular dispersity (Table 4.9).

The decrease in the molecular weight (Mw) and decrease in molecular
dispersity of PVC (PVC + starch) in shake flask experiment after treatment
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with fungal strains confirms that activity of biodegradation and changes in the
structure of the polymer film.

4.6.6. Analysis of by Fourier Transform Infrared Spectroscopy (FTIR)

Polyvinyl chloride starch blended film treated under shaking condition by
fungal isolate for 3 months was analyzed through FTIR, the resuits showed
that in case of treated samples new peaks were appeared at 3077 cm”
(corresponding to alkenes), also the absorbance of peaks at 2655-2529 cm ™
decreased, a new sharp peak appeared at 1587 cm ' These changes
confirmed the modification in the structure of the polymer films due to fungal
degradation activity (Fig. 4.24).

4.6.7. Analysis by Nuclear Magnetic Resonance (NMR)

By comparing the C'*NMR spectra of the control sample of the PVC starch
blend film and treated sample of the PVC starch blend with Phanerochaete
chrysosporium PV1 clearly showed a chemical shifting and appearance of the
new peaks 29.85, 4158, and 46.05 ppm also significant increase in the
intensity of resonances centered observed. That effect was more pronounced
in the treated starch film (Fig.4. 25).

The Proton NMR spectra of PVC starch blends also showed the change in the
polymer structure due to biodegradation. The signal region for aliphatic
protons (-CHz-CH-ClI) for (-CH2-CH-Cl) was 1.0-5.0 ppm. The total integration
of the region for the control sample 0.3-3.1 ppm was 40.69 ppm while for the
treated sample; integration was increased to 42 .89 in the same region. That
increase in integration also confirmed the change due to fungal degradation
(Fig.4.26).
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Figure 4.20. Growth of fungal isolate Aspergillus niger PV3 on PVC strach
blended film

Figure 4.21. Fungal adherence and attachment on the surface of PVC starch

blends film after six months soil burial experiment
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Figure 4.22. The growth of fungal isolates in mineral salt medium with PVC

starch blends as sole carbon source
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Figure 4.23. Scanning Electron Micrographs of the PVC starch blends film A)
Untreated film; B1) after 3 months shake flask experiment with

Phanerochaete chrysosporium PV1 250 x , (B2) 500x.
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Table 4.8 Dry cell mass and gravimetric analysis of CO; evolution during
breakdown of PVC starch blends by Phanerochaele chrysosporium
PV1 and Aspergillus sydowii PV3 determined through Sturm test after
4 weeks of treatment (control; without PVC+ Starch pieces)

CO; Produced Dry cell mass
Fungal isolates
Control Test Control Test
P. chrysosporium PV1 16.34 32.79 0.056 0.136
A. sydowii PV4 21.07 39.30 0.058 0.118

Table 49  Gel permeation chromatography analysis of the PVC starch
blends fungal degradation (after six months)

Strain Molecular weight | Molecular dispersity
MW (D) (MW/Mn)

Control 80,275 1.991

L. tigrinus PV2 79,369 1.902

P. chrysosporium PV1 77.011 1.731

A. niger PV3 78,866 1572

A. sydowii PV4 79,233 1.759
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Figure 4.24. Fourier transform infrared spectra of Polyvinylchloride starch
blends, A) control, B) after treatment with Aspergillus sydowii PV4 for 3

months.
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Figure 4.25. "CNMR spectra and peak assignments for PVC starch blends
A) Control, B) treated with Phanerochaete chrysosporium PV1
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Figure 4.26. Proton Nuclear magnetic resonance (*H NMR) spectra of PVC
starch blend, A) Control, B) treated with Phanerochaete
chrysosporium PVA.
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DISCUSSION

The list of pollutants which pose environmental and health hazard and are
tough for biodegradation, is long one and includes solvents, wood
preservative chemicals, plasticizers, refrigerants, coal tar wastes, pesticides,
biphenyls, polychlorinated and polybrominated biphenyls, synthetic fibers,

plastics, polyvinyl chloride, polystyrene, detergents like alkyl-benzene
sulphonates and oils.

The objectives of the present study were the isolation of Polyvinyl chloride
degrading microorganisms from the soil inoculated with sewage sludge, and
to study the degradation potential of the microbes in laboratory. The detailed
investigation of the microbial adherence and degradation of the PVC and
pPVC containing DOP, DOA and starch blend was carried out.

Most biodegradation of plastics has been focused on polyurethanes (Bentham
et al. 1987 Kay et al, 1991; Barrat ef al, 2003) bacterial polyesters
(Mergaert et al., 1996) and nylon (Deguchi et al,, 1997). By contrast there are
only fewer studies reporting the pPVC degradation in situ (Upsher, 1984,
Webb et al.,2000).There are some studies reporting on partial degradation of
PVC by white rot fungus under elevated oxygen level (Kirbas et al.,1889).

The PVC and pPVC thin films were buried in sewage sludge soil for ten
months for isolation of PVC and pPVC degrading microbe. Otake ef al.,(1995)
examined several polymers that had been buried under soil for more than 32
years, It was found that a remarkable degradation was indicated for low-
density polyethylene thin films, which were in direct contact with sewage
sludge. Soil burial has been reported previously for PVC and pPVC by a
number of researchers (Domb ef al., 1997: Hamid, 2000; Colin et al., 1981;
Seal & Pantke, 1988). The soil burial experiment were performed for isolation
of microorganisms and to check their degradation potential also for other
plastics (Pagga et al.,1995; Tosin et al.1996; Degli-innocenti ef al., 1998,
Ohtaki et al.,1998; Tuominen ef al., 2002). The isolated microorganisms were
mostly fungi that showed maximum adherence and biodegradation of the PVC

and pPVC. The results of present study are in accordance with Barratt ef al.,
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(2003). In our experiments after 10 months soil burial the surface of the PVC
was heavily colonized and some hyphal growth was visible to the naked eye
at the surface of the films (Fig.4.3). The physical properties of the pPVC were
significantly altered due to plasticizer utilization (Sabev et al., 20086).

Fungi play important role in biodegradation studies due to its ability to secrete
extracellular enzymes (Bennett and Faison, 1997). The fungal growth on
polymer surface is not necessarily in accordance with other assessment
methods for quantitative analysis of polymer biodeterioration, because fungal
growth on polymer surface can be even or invisible (Semenov et al., 2003).
Degradation of plastic material did not related with colonization of films by
microorganisms (Whitney, 1996).The plastic surface serve as a source of
energy for adhering microorganisms, Griffin and Uribe, (1984) reported pPVC
as a carbon source for the microorganisms. The fungal isolates were using
the plastic as carbon and energy in the present study when the isolates were
inoculated on mineral salts agar and liquid media containing plastic film as
growth substrate.

The change in the color of the PVC film was observed in our soil burial
experiment (Fig. 4.3). Visual observation showed that due to soil burial and
shake flask experiment there was change in color and appearance of the PVC
and pPVC fims surface also the fungal hyphal growth was observed on the
films after soil burial experiments. Changes in film and fungal growth on the
PVC-pleellulose sample were visible with the naked eye (Kaczmarek and
Bajer 2007). It was found that an unaided visual observation of modified
polyethylene film incubated with A. niger revealed irregular yellow and brown
spots on the surface of the samples (Labuzek et al., 2003). Coulthwaite et al.,
(2005) reported that bacterial and fungal growth on the polymer surface can
bring the discoloration pPVC samples due to microbial spoilage. The
polyester discoloration during soil burial experiment (Dale and Squirrel 1990)
was due to fungal activity (Pathirana and seal 1985). Fungal colonization and
discoloration of rigid PVC/wood-flour composite was observed after 4 weeks
of incubation. Aureobasidium pullulans was one of the predominant fungi
causing the pPVC biodegradation (Benjamin et al., 2004, Webb et al., 2000).
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Many microbes produce pigments that can diffuse into polymers and cause
undesirable permanent staining (Kneale, 2002). However some bacterial spp.
was isolated after soil burial experiment but they did not show good adhesion
and degradation of PVC and pPVC. Bacterial growth might be inhibited by
desiccation or in-situ acidification of pPVC (Hollande & Laurent, 1997
Martinez et al., 1996).

In our study the four fungal strains were isolated on the basis of their
adhesion and degradation potential from soil burial experiment and were
further tested for their degradation potential. The isolated fungi belonged to
white rot spp. and Aspergillus spp. and identified as Phanerochaete
chrysosporium PV1, Lentinus tigrinus PV2, Aspergillus niger PV3 and
Aspergillus sydowii PV4. Filamentous fungi are generally capable of attaching
to the hydrophobic surfaces through the formation ‘of hydrophobic proteins
(Kershaw and Talbot, 1998). The white-rot fungi are capable of extensively
degrading lignin (a heterogeneous polyphenalic polymer) within lignocellulosic
substrates (Aghoury et al, 2006; Eaton and Hale 1993). Significant
depolymerization was observed in PVC under ligninolytic culture conditions
when seven white rot fungal species were evaluated for their ability to
depolymerize polyvinylchloride (Kirbas et al., 1999).

Fungal growth was normally identified with basic morphological techniques
only to genus level. However further identification was done by rDNA
sequencing (Guarro et al., 1999: Kurtzman and Robnett, 1998). |dentification
was done on the basis of 5.88, 18S, 28S and Internal transcribed (ITS)
regions (Kurizman and Robnett, 1898) .

In the case of PVC, it is known that some of its plasticizers and stabilizers can
be attacked by microorganisms; most plasticizers can be utilized by fungi and
bacteria as a source of carbon, Some plasticizers such as phthalates,
adipates, and sebacates were found to support growth of a large number of
microorganisms (Wilhelm ef al., 2003; Juneson et al., 2002; Murad et al,
2007).
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In our study pPVC (DOP, DOA) and starch blends of PVC showed better
microbial adhesion and degradation than the pure PVC. Gumargalieva et al,,
(1999) showed that the loss of a dialkyl phthalate (not specified) plasticizer for
PVC under the influence of surface biodegradation by the microscopic fungus
Aspergillus niger was much faster than the loss without fungal overgrowth.
Both bacteria (Booth et al.,1968 and Eaton et al.,1982) and fungi (Lee et
al.2007: Berk et al., 1957 and Roberts et al.,1986) can degrade ester-based
plasticizers and phthalic acid esters (Chen et al., 1997, Peciulyte , 1997; Wang
et al.,1997; Ejlertsson et al,1996; Inman et al.,1984: O'Connor et al.,1983).
Rhodococcus erthropolis was reported for degradation of dibutyl phthalate
and bis (2-ethylhexyl) phthalate (Anon, 1994; Cheng et al., 1986). The fungus
effectively removes plasticizer from the surface of the material by
biodegradation (Gumargalieva et al., 1999).

Microbial colonization of synthetic plastic films is normally slow, which affects
the total period of biodegradation (Kaczmarek and Bajer 2008). In our study
the pPVC (DOP) showed better degradation potential than (DOA). Loss of
plasticizers from pPVC due to microbial degradation results in brittieness,
shrinkage, and ultimately failure of the pPVC in its intended application.
Adipate plasticizers were shown to be more susceptible to microbial
hydrolysis than phthalate plasticizers (Kaczmarek and Bajer 2006;
Yabannavar and Bartha, 1994; Berk, 1857, Nalli ef al., 2002).

In our study the pPVC and starch blends of PVC showed more adhesion of
the microorganisms on the polymer surface than the pure PVC that was more
rigid and consist of the carbon-carbon main chain that is hardly biodegradable
(Chandra and Rustigi, Kawai, 1995; Tusji and Suzuyoshi, 2002). Plasticized
PVC increases the susceptibility of the polymer for microbial degradation
(Richard et al., 2007; Booth et al., 1968; Eaton & Ribbons, 1982).

In the present study Scanning Electron Microscopy demonstrated changes in
physical structure of the PVC and pPVC (DOP) when they were exposed to
the fungal strains in soil burial and shake flask experiments. There were
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notable changes on the surface of treated PVC film after microbial treatment
showing initial pattern of degradation of the PVC fiim (Fig.4.6). After
biodegradation, the appearance of numerous holes and change in surface
structure of p-PVC and PVC-starch blend were observed confirming, the
biodegradation of the plasticizer and starch present in the PVC sample. A
number of cracks and round holes were also reported on the eroded film
surface through scanning electron microscopy by Kaczmarek and Bajer
(2007), Martin et al., (2007) and Zhao et al., (2005).

The pPVC degradation was more obvious in pPVC (DOP). Phthalate
plasticizers have far less susceptible to microbial hydrolysis compared to
adipate plasticizers as previously reported (Shailaja et al., 2008, Berk ef al.,
1957: Eaton & Ribbons, 1982; Frankland et al., 1990; Nalli et al., 2002). Due
to fungal (Aspergillus niger) adherence complete change in the surface
structure of the treated (DOP) film was observed as the appearance of cracks
and holes indicating that fungal strain was utilizing pPVC as sole carbon
source in shake flask experiment with mineral salt media after 6 months. The
results are in accordance with (Sabev et al, 2006). Scanning Electron
Microscopy studies demonstrated that A. pullulans colonized pPVC in the
absence of other microorganisms and therefore acts as a primary colonizer of
pPVC. A. pullulans was increasingly recognized as the major causative agent
of defacement of various diverse materials, such as painted surfaces (Cooke
1959 and Winters et al.,1976) and wood (Kaarik, 1974), in addition to pPVC
exposed to tropical conditions (Hamilton 1983 and Upsher ef al., 1984).

In our study, in the treated sample of (PVC+ Starch) there was erosion and
extensive roughening of the surface, due to Phanerochaete chrysosporium -
PV1 treatment appearance of holes and cracks on the polymer surface were
observed (Fig 7.30). Incorporation of starch into plastics, not only showed
influence on its mechanical properties but also increased the susceptibility of
plastics to microorganism (Fanta et al., 1992: Imam et al., 1993; Shogren et
al, 1992; Sung & Nikolov, 1992). Some changes on the surface of the starch
were reported after 80 days biodegradation study (Arevalo et al, 1996)
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Vikman ef al.,, (1995) reported the enzymatic degradation of the starch base
polymer. The growth of fungi was observed on both PVC-P and PVC-
P/cellulose samples (Kaczmarek and Bajer, 2006).

Sturm test (ASTM D5209-91) was commonly employed for evaluation of the
biodegradability of polymer materials (Muller et al., 1892; Domb et al., 1997,
Hamid, 2000: Calmon, 2000; Shah et al., 2008). In the present study this
technique was used to check the biodegradation of PVC and pPVC. The
results showed a difference in the amount of carbon dioxide produced in test
and control bottles indicating greater breakdown of the polymer in the test
than the control. Increased amount of CO; produced during the
biodegradation of pPVC was also reported by (Yabannavar and Bartha, 1994,
Martin et al., 2007).

It has been reported that the degradation of PVC by the chain scission
reaction usually results in a decrease in weight-average molecular weight
(Mw) with a possible increase in number average molecular weight (Mn)
whereas the degradation by the cross linking of macromolecules results in an
increase in Mw with a decrease in Mn (Torikai and Hasegawa, 1999). In our
study change in weight-average molecular weight (Mw) and (Mn) number
average molecular weight was observed. The average molecular weight (Mw)
of the pure PVC was decreased but decrease in molecular weight was more
obvious in pPVC (in case of DOA and DOP), however starch blended PVC
also showed decrease in molecular weight and increase in molecular
dispersity. Sombatsompop et al., (2003) reported that addition of LDPE
initially increased the Mw of PVC however the Mw decreased on latter stages,
but no increase on Mn of the PVC by addition of LDPE. The GPC results
confirmed the existence of a random-type degradation pathway of PVC as
reported by Andrea et al., (2002) for PVA. Fast decreases in Mn values of the
poly butylene adipate were observed after 25 days of biodegradation (Zhao et
al, 2005). The number average molecular weight (Mn) was decreased and
average molecular weight (Mw) increased, also the increase in molecular
dispersity was observed during 3-6 months soil compositing of plasticized
polyvinyl chloride (pPVC) (Kaczmarek and Bajer, 2006). Studies with the
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same results of thermal or photochemical degradation of PVC were reported
(Rabek, 1996 and Starnes, 2002).

The index of molecular motion measured by a dynamic mechanical test and
by pulse NMR is applicable for evaluation of degradation (Mifune et al.,, 1991;
Fukumori et al., 1992). In our study *CNMR spectra of the control sample the
signal at 14.26 ppm was attributed to CH, while the signal at 32.03 ppm was
assigned to CH-CI carbon. While In addition to these signals some more
signals have appeared in the range 29-47 ppm in treated film of PVC in shake
flask experiment for six months with Phanerochaete chrysosporium. The
increase in number of signals indicated that some chemical change/shifting
were took place in the polymeric material (Fig. 4.9). Sombatsompop et al.
(2003) revealed that the changed chemical structures of PVC in LDPE/PVC
blends during melt blending by *C NMR (Sombatsompop et al,, The changes
in the structure of the polymer during biodegradation of poly (vinyl alcohol),
the chemical shifts were observed by '"HNMR spectra (Andrea et 2l 2002
Chiellini et al.,2002).

The C™*NMR spectra of treated PVC + starch film clearly showed a chemical
shifting and appearance of the new peaks at 42.55, 44.19 46.05ppm and also
significant increase in the intensity of resonances centered observed at 42.55
and 43.88ppm. This effect was more pronounced in the treated starch film
(Fig.4.25). The loss of starch from polyethylene during biodegradation brought
changes in the structure of the polymer indicated by chemical shifting of the
peaks by *C NMR spectra (Dave et al., 1997; Cheng et al., 1986).

The increase in integration from 43.28 to 43.39 in 'H- NMR spectra of
pPVC(DOA) treated with P. Chrysosporium PV1 (Fig.4.19) clearly indicated
that during the process, some of the protons have been exhausted. Therefore,
it is suggested that decrease in integration in the peaks was due to fungal
activity that bring changes in the polymer structure.'H NMR analysis of
plasticizers adipate and succinate showed that the relative content of adipate
units in the polymer chain decreased after biodegradation, while that of
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succinate units increased. Indicating that the adipate units were more easily
attacked by Aspergillus versicolor than are succinate units (Zhao et al., 2005).

In our study the FTIR spectroscopy was also used to observe changes in the
molecular structure of the polyvinyl chloride and pPVC (DOP, DOA) and
starch blended PVC as reported by others (Martin-Franchetti et al, 2007;
Santoro & Koestler, 1991). FTIR spectroscopy was used to examine the
structural changes in the melt blends of PVC (Sombatsompop et al., 2004).
The clear change in the spectra was observed in our results, the appearance
of new peaks at 2370-2350 cm ! (corresponding to O-H) region indicating the
change in the structure of the PVC also peaks shorten at 2277-2250 cm ™
showing significant change due to microbial degradation (Fig.4.8).
Biodegradation of pPVC brought some structural changes in the FTIR spectra
of the polymer (Kaczmarek and Bajer 2006). In the PVC spectrum, the bands
typical for C-H stretching and deformation vibrations were present in 2800~
3000 and 1500-1300 cm™ ranges, respectively. The bands due to skeletal
vibrations below 1300 cm™ were also present. Three other bands (at 693,
636 and 610 cm”) were attributed to the carbon-chloride stretching
frequencies, and they were useful in monitoring the process of PVC
dehydrochlorination. The FTIR spectra of Poly (Vinyl alcohol) showed a sharp
decrease in the bands and peaks of the polymer (Amanda et al., 2001; Okaya
and lkari, 1992).

The photo-oxidative degradation of polymers did not always facilitate
progressive attack by microorganisms, because the oligomer fractions
produced during photo-oxidation may support microbial growth, but polymers
with a high molecular weight resulted in little or no growth. In our study the
changes in FTIR analysis were more obvious in PVC film initially treated with
UV. UV treatment breakdown the backbone of the polymer and brought
change in the polymer structure, the peaks shorten and almost disappear at
2980-2910 cm™ (corresponding to Alkyl segment) also new peaks appeared at
2380-2340 cm ' (corresponding to O-H) indication the better biodegradation
activity in UV treated films. The results showed that some of the double bonds

of PVC were cleaved by microbial strain (Fig. 4.9). The results were in
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accordance with the Volke-Sepulveda ef al., 2002 and Matsunaga and
Whitney, 2000). Another study reported that the biodegradation of inert
material such as PE, PVC takes more than 10 years and that of degradable

material containing UV sensitizers takes 2 years or less (Albertsson and
Karlsson, 1880).

Several attempts to introduce some naturally occurring polymers of microbial
or plant origin, such as starch, Kiatkamjornwong et al., (1999) and cellulose,
Daneault and Kokta (1986) into a synthetic polymer structure have been
reported. The resulting products have shown appreciable biodegradability of
the naturally occurring fraction of the plastic mixture (Milstein et al., 1992).

In our study PVC+ starch film after three months shake flask experiment with
Aspergillus sydowii showed clear change in the structure of the polymer films,
the new peaks appeared at 3077 cm™ (corresponding to alkenes), also the
absorbance of peaks at 2665-2529 cm’ decreased, a new sharp peak
appeared at 1587 cm 1. The spectra of biodegraded starch showed only a
small difference from the spectrum of the original starch: a small increase in
O-H stretching due to the enzymatic degradation products of starch was
observed (Moreno-Chulim et al., 2003; Suresh et al., 1999). Dave et al.,(1997)
reported FTIR spectra of the loss of starch from polyethylene during
biodegradation bring changes in the back bone structure of the polymer by
shortening of the peaks. Arevalo et al. (1996) reported change in the spectra
of biodegraded starch, as the broad stretching of O-H and minor stretching
band of C-H at 2921 em™.
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CONCLUSIONS

From the present study it was concluded that:

1-

Soil and sewage sludge contain microorganisms fungi that are able to
bring about some degradation of synthetic polymers.

The fungal isolates showing adherence and growth on the surface of
Polyviny! chloride films indicated their ability to utilize Polyvinyl chloride
as a source of nutrient.

The increase is the biomass of the fungal strains incubated with the
polymer (PVC, pPVC and starch blended PVC) in mineral salt media
indicated the utilization of the plastics as a carbon source.

Production of carbon dioxide during the Sturm test indicated positive
degradability test for the polyvinyl chloride film.

The four isolated fungal strains Phanerochaete chrysosporium PV1,
Lentinus tigrinus PV2, Aspergillus niger PV3 and Aspergillus sydowii
showed good degradation potential of polymer (PVC and pPVC starch
blended PVC), however Phanerochaete chrysosporium PV1 showed
better degradation potential then others.

The changes in the peaks of the FTIR spectra of the test samples as
compared to control is an indication of breakdown of plastics (PVC,
pPVC and starch blended PVC) as a result of fungal treatment.

Scanning Electron Microscopy indicated the changes in surface of the
treated films of plastics (PVC, pPVC and starch blended PVC) after
fungal degradation in soil burial and shake flask experiments.
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10-

11-

Gel Permeation Chromatography indicated the decrease in the
molecular weight of the treated films of the plastics (PVC, pPVC and
starch blended PVC due to fungal degradation. The decrease in the
molecular weight could be either degradation by cross linking or
degradation by chain scission reaction that brings change in the
molecular weight and molecular dispersity of the plastics.

The change in the integration and appearance of some new peaks in
CNMR and 'HNMR spectra confirmed the change in polymer (PVC,
pPVC and starch blended PVC after microbial degradation.

The pure PVC showed slow rate of degradation as compared to pPVC
and starch blended PVC due to rigid nature of pure PVC.

It can also be concluded from our studies that extensive research and

complete understanding is required to find the better solution of
degrading plastics. The degradation potential of the isolated fungal
strains can be enhanced to get better degradation results of the
synthetic plastics.
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FUTURE PROSPECTS

+ The enzymatic degradation of the plastics (PVC, pPVC and starch blended
PVC) could be done.

+ The application of the enzyme in natural condition could be checked.

» The development of new processes for production of degradable synthetic
plastics, bioplastics and natural plastics and methods to be used for their
biodegradation require intensive research and large capital expenses and
must be scaled-up to be economically competitive.
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Phylogenetic tree of Phanerochaete chrysosporium PV1
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Phylogenetic tree of Aspergillus niger
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Apperdix

Phylogenetic tree of Aspergillus sydowii
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Appendix

Nucleotide Sequence of isolated fungal strains
Phanerochaete chrysosporium PV1
ITS1 partial, 5.8S, ITS2 and 28S partial 589

TTAACGAGTAACTGAACAGGTTGTAGCTGGCCTCTCGGGGCATGTGCACGCCTGELT
CATCCACTCTTCAACCTCTGTGCACTTGTTGTAGGTCGGTAGAAGAGCGAGCATCCT
CTGATGCTTTGCTTGGARGCCTTCCTATGTTTTACTACAAACGCTTCAGTTTAAGRA
TGTCTACCTGCGTATAACGCATCTATATACAACTTTCAGCAACGGATCTCTTGGCTC
TCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGARTTGCAGAATTCAG
TGAATCATCGAATCTTTGAACGCACCTTGCGCTCCCTGGTATTCCGGGGAGCATGCC
TGTTTGAGTGTCATGGTATCCTCAACCTTCATAACTTTTTGTTATCGAAGGCTTGGA
CTTGGAGGTTGTGCTGGCTTCTAGTCGAGTCGGCTCCTCTTAAATGTATTAGCGTGA
GTGTAACGGATCGCTTCGGTGTGATAATTATCTGCGCCGTGGTCGTGARGTAACATA

AGCTTGCGCTTCTAACCGTCCTTCAGTTGGACAACTTACTTTGACATCTGACCTCAA
ATCAGGTAGGACTACCCGEG

Aspergillus sydowii PV2
ITS1, 5.8S, ITS2 AND 28S partial

CTGAGTGCGGGCTGCCTCCGGGCGCCCAACCTCCCACCCGTGAATACCTAACACTGT
TGCTTCGGCGGGEAGCTCCCTCGEEEGCGAGCCGCCGGEGACTACTGAACTTCATGT
CTGAGAGTGATGCAGTCTGAGTCTGAATATAAAATCAGTCAAAACTTTCAACRATGG
ATCTCTTGGTTCCGGCATCGATGARGARCGCAGCGAACTGCGATARGTARTGTGAAT
TGEAGAATTCEGTGRETCETCGEGTCTTTGAﬁEGCACﬁTTGCGCCCCCTGGCATTCC
GGGGGGCETGCCTGTCCGEGCGTEATTGCTGCCC&TCA&GCCCGGCTTGTGTGTTGG
GTCGTCGTCCCCCCCGGGGGRCGGGCCCG&E&GGCAGCGGCGGCACCGTGTCCGGTC
CTCGEGCGTATGGGGCTTThTCEECCGCTCGRCTEGGGCCGGCCGGGCGCCAGCCGA
CGTCTECAECCATTTTTCTTCAGGTTGRCETCGGETCEGGT&GGGATECCCGCTG&E
CTTAAGCATATCAATAAGCGGAGGA

Aspergillus niger PV3,
5.8S, ITS2 and 28S partial

CCGETGCGGGTCCTTTGGGCCCABCCTCCCBTCCGTGTCTETTGTHCCCTGTTGCTT
CGGCGGGCﬂCGCCGCTTGTCGGCCGCCGGGGGGECECCTCTGCCCCCCGGGCCCGTG
CCCGCCGGHGHCECCEACECGBACACTGTCTGAARGCGTGCRGTCTGRGTTGATTGR
BTGﬂERTChGTTAABACTTTCRACEATGGATCTCTTGGTTCCGGCATCGETGAAGAA
CGCRGCGAEATGCGATERCTEETGTGAATTGC&GEATTCHGTGHRTCBTCGEGTCTT
TGRACGEACETTGCGCCCCETGGTATTCCGGGGGGCAIGCCTGTECGEGCGTCETTG
CTGCCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCCGGGGGGHCGGE
CCCGAEHGGCHGCGGCGGCHCCGCGTCCGHTECTCGEGCGTHTGGGGCTTTGTCRGE
TGCTCTGTRGGATTGGCCGGCGCCTGCEGECGTTTTCCREECATTCTTTCCHGGTTG
ACCTCGGATCAGGTAGGGATACCCGCT
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Appendix A-1

Lentinus tigrinus PV4
Final 18S partial, ITS1, 5.8S, ITS2 and 28S partial

TTCCGTAGGTGAACCTGCGGAAGGATCATTATCGAGTTTTGAAACGGGTTGTAGCTG
GCCTTCCGAGGCATGTGCACGCCCTGCTCATCCACTCTACACCTGTGCACTTACTGT
GGGTTTCAGGAGCTTCAAGGGCGTTTCTTACGCCGGAGT TGTGACTGGGCCTACGTT
TACTACAAACTCTTACAAGTATCAGAATGTGTATTGCGATGTAACGCATCTCTATAC
AACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCG
ATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGC
GCTCCTTGGTATTCCEAGGAGCATGCCTGTTTGAGTGTCATGAAATTCTCAACCTAR
CGGGTTCTTAACGGGACTTGCTTAGGCTTGGACTTGGAGGCTCTTGTCGGCTTGCTT
TCGTCAAGTCGGCTCCTCTCAAATGCATTAGCTTGGTTCTTTGCGGATCCGGCTCAC
GGTGTGATAATTGTCTACGCCGCGACCGTTGAAGCGTTTTAATGGGACTAGCTTCTA
ACCGTCTCCTCGCGAGACAGCATTCATCGAACTCTGACCTCAAATCAGGTAGGACTA
CCCGCGTA
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