
ROTATING UNIVERSES IN GENERAL RELATIVITY THEORY 

KURT GöDEL 

In this lecture I am setting forth the main results (for the most part without 
proofs) to which my investigations on rotating universes have led me so far. 

1. Definition of the type of rotatory solutions to be considered. I am starting 
from the relativistic field equations:1 

[1) R%h — ^9ikR = Tih — \gik 

ind am assuming that: 
1) the relative velocity of masses (i.e. galactic systems) close to each other is 

small compared with c. 
2) no other forces except gravitation come into play. 
Under these assumptions Tik takes on the form: 

[2) Tih = PViVk 

ivhere: 

3) P > 0, 

[4) j V = - 1 , 

md, of course: 

[5) The signature of g^ is + 2 . 

The local angular velocity of matter relative to the compass of inertia can be 
represented by the following vector <o (which is always orthogonal on v) : 

iklm 

(6) œ = 12 (
€_^ )1 /2 aklm 

where the skew-symmetric tensor akim is defined by: 

(7) ak = v (— - — Ì + vi (— - — A + vm (— - — ^ 
k \dxm dxi ) l \dxk dxmJ m \dxi dxkJ ' 

That o) represents the angular velocity relative to the compass of inertia is 
seen as follows: In a coordinate system which, in its origin, is geodesic and 
normal, and in whose origin matter is at rest (i.e. for which in 0: dgik/dxi = 0, 
hh = Vik , v = 1, v* = 0 for i ?£ 4),2 one obtains for w* in 0: 

® wl - i. (£ - £ ) = s (£ è) - à. è)) ' etc-
[9) w4 = 0. 

1 I am supposing thai such measuring units are introduced as make c = 1, Siric/c2 = 1. 
2 A coordinate system satisfying the first two conditions may fittingly be called a "local 

nertial sjnstem". 

175 



176 KURT GÖDEL 

In such a coordinate system, however, since parallel-displacement (in its origin) 
means constancy of the components, the angular velocity relative to the compass 
of inertia, in 0, is given by the same expressions as in Newtonean physics, i.e. 
the right-hand sides of (8) are its components. Evidently w is the only vector the 
first 3 components of which, in the particular coordinate systems defined, coincide 
with the angular velocity computed as in Newtonean physics and the 4dh component 
isO. 

Any Riemann 4-space with some p, Vi defined in it, which everywhere satisfies 
the conditions (l)-(5) and permits of no extension free from singularities, 
and for which, moreover, œ is continuous and 9e 0 in every point, represents a 
rotating universe. However, in the sequel I am chiefly concerned with solutions 
satisfying the following three further postulates (suggested .both by observation 
and theory) : 

1. The solution is to be homogeneous in space (i.e. for any two world fines of 
matter l, m there is to exist a transformation of the solution into itself which 
carries I into m). 

II. Space is to be finite (i.e. the topological space whose points are the world 
lines of matter is to be closed, i.e. compact). 

III. p is not to be a constant. 
Postulate I I I is indispensable also for rotating universes, since it can be 

proved that a red-shift which, for small distances, increases linearly with the distance 
implies an expansion, no matter whether the universe rotates or not. 

As to the question of the existence of rotating solutions satisfying the postulates 
I, II , III , cf. §5. 

2. Some general properties of these solutions. In view of III the equation 
p = const, defines a one-parameter system of 3-spaces. In rotating universes 
these 3-spaces of constant density cannot be orthogonal on the world lines of matter. 
This follows immediately from the fact that akim = 0 is the necessary and 
sufficient condition for the existence of any system of 3-spaces orthogonal on a 
vector field v. 

The inclination of the world lines of matter toward the spaces of constant 
density yields a directly observable necessary afid sufficient criterion for the rotation 
of an expanding spatially homogeneous and finite universe: namely, for sufficiently 
great distances, there must be more galaxies in one half of the sky than in the other half. 

In the first approximation, i.e., for solutions differing little from one spatially 
isotropic, the magnitude of this effect is given by the following theorem: / / 
Ni, N2 are the numbers of galaxies in the two hemispheres into which a spatial 
sphere41 of radius r (small compared with the world radius R) is decomposed by a 

3 Provided, of course, that the atomic constants do not vary in time and space, or, to 
be more exact, provided that the dimensionless numbers definable in terms of the constants 
of nature (such as e2/hc) are the same everywhere. 

4 I.e., one situated in a 3-space orthogonal on v at the point under consideration. 
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plane orthogonal on w, then: 

f1frt \Ni- N2\ 9 \ü*\rRh 
U ' Ni + N2 8 " c2 

öftere /i is Bubble's constant ( = R/R). 
For plausible values of the constants (where œ is estimated from the velocity 

_)f rotation of the galaxies ) this effect is extremely small. But the uncertainty in 
the knowledge of the constants is too great for drawing any definitive conclusions. 

The group of transformations existing owing to I evidently carries each of the 
spaces p = const, into itself, and therefore (the case of isotropy being excluded) 
3an only have 3 or 4 parameters.6 The number 4 (i.e., the case of rotational 
symmetry) cannot occur either. There exist no rotationally symmetric rotating 
universes satisfying the conditions stated in §1.7 The only symmetry around one 
point which can occur is that of one rotation by T. This case will be referred 
_o as the symmetric one. 

In any case the group of transformations must be 3-parameter. Since more
over, owing to II, it must be compact, and since (as can easily be shown) it 
îannot be commutative in rotating universes,8 it follows that the group of trans
formations of any rotating solution of the type characterized in §1 must be isomorphic 
[as a group of transformations) with the right (or the left) translations of a 3-space 
)f constant positive curvature, or with these translations plus certain rotations by an 
ingle ir. Hence also the topological connectivity of space must be that of a 
.pherical or elliptical 3-space. 

The metric gm, can be decomposed (relative to the world lines of matter) 
nto a space-metric gik and a time-metric ^ , by defining the spatial distance 
>f two neighbouring points P i , P2 to be the orthogonal distance of the two 
vorld lines of matter passing through Pi, P2, and the temporal distance to be 
lie orthogonal projection of P i P 2 on one of these two lines. This decomposition 
jvidently is exactly that which (in the small) holds for the observers moving 
Jong the world lines of matter. It has the following properties: 

gik = — v&k , g ih = 9ik + vtvk , 

Del ( ^ ) = Det Q = 0. 

If the coordinate system is so chosen that the œ4-lines are the world lines of 
natter and the ^-coordinate measures the length of these lines, gih takes on 
he form: 

hik 0 
:i2) gik = 

0 0 
6 Cf. my paper in Reviews of Modern Physics vol. 21 (1949) p. 450. 
6 There exists, in every space p = const., a positive definite metric which is carried into 

tself, namely the metric hik defined below. 
7 This even is true irrespective of postulate II (the finiteness of space). 
8 The reason is that the curl of a vector field invariant under a transitive commutative 

;roup vanishes identical!}'. 
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(where hih is positive definite) and the Hubble-constant in the space-direction 
dx7, (orthogonal on v), as measured by an observer moving along with matter, 
becomes equal to: 

1 hik dx% dxk -, y dhik 

2 hid**?' Where hik=d^-

The surface hikXiXk = 1 in the 3-dimensional subspace, orthogonal on v, of the 
tangent space, may be called the ellipsoid of expansion or, more generally, 
the quadric of expansion. 

The theorem about the nonexistence of rotationally symmetric solutions,9 

under the additional hypothesis that the universe contains no closed time-like lines 
(cf. §3), can be strengthened to the statement that the quadric of expansion, 
at no moment of time, can be rotationally symmetric around w. In particular it 
can never be a sphere, i.e., the expansion is necessarily coupled with a deforma
tion. This even is true for all solutions satisfying I—III and gives another directly 
observable property of the rotating universes of this type. 

Moreover the assymmetry of the expansion around w opens up a possibility 
for the explanation of the spiral structure of the galaxies. For, if under these 
circumstances a condensation is formed, the chances are that it will become an 
oblong body rotating around one of its smaller axes; and such a body, because 
its outer parts will rotate more slowly, will, in the course of time, be bent into a 
spiral. It remains to be seen whether a quantitative elaboration of this theory of 
the formation of spirals will lead to agreement with observation. 

3. Rotation and time-metric. The formulae (6), (7), (11) show that it is, in 
the first place, the time-metric (relative to the observers moving along with 
matter) which determines the behaviour of the compass of inertia. In fact a 
necessary and sufficient condition for a spatially homogeneous universe to rotate is 
that the local simultaneity of the observers moving along with matter be not integrable 
(i.e., do not define a simultaneity in the large). This property of the time-metric 
in rotating universes is closely connected with the possibility of closed time-like 
lines. 

The latter anomaly, however, occurs only if the angular velocity surpasses a 
certain limit. This limit, roughly speaking, is that value of | w [ for which the 
maximum linear velocity caused by the rotation becomes equal to c; i.e., it is 
approximately c/R if, at the moment considered, the space-metric in the 3-space 
p = const, does not differ too much from a space of the constant curvature 
1/R2. The precise necessary and sufficient condition for the nonexistence of closed 
time-like lines (provided that the one-parameter manifold of the spaces p = 

9 This theorem makes it very likely that there exist no rotating spatially homogeneous 
and expanding solutions whatsoever in which the ellipsoid of expansion is permanently 
rotationally symmetric around w. « 
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const, is not closed) is that the metric in the spaces of constant density be space-like.10 

This holds for solutions satisfying all conditions stated in §1. 
For these solutions, also, the nonexistence of closed time-like lines is equivalent 

with the existence of a "world-time", where by a world-time we mean an assignment 
of a real number t to every space-time point, which has the property that t 
always increases if one moves along a time-like line in its positive direction.11 

If in addition any two 3-spaces of simultaneity are equidistant and the difference 
of t is their distance, one may call it a metric world-time. If the spaces of constant 
density are space-like, a metric world-time can be defined by taking these 
3-spaces as spaces of simultaneity. Evidently (up to transformations t = f(t)) 
this is the only world-time invariant under the group of transformations of the 
solution. 

4. Behaviour of the angular velocity in the course of the expansion. No matter 
whether postulates I—III are satisfied or not, the temporal change of co is described 
by the following theorem: In a coordinate system in which the X-lines are the 
world lines of matter, gu = — 1 everywhere, and moreover ga = 0 (for i 9e 4) on the 
X-axis, one has along the whole X-axis: 

(13) u(-g)112 = "h112 = const. (i = 1, 2, 3). 

The proof can be given in a few lines: Evidently v = 1, v% = 0 (for i ^ 4) 
everywhere; hence: Vi = gu . Substituting these values of Vi in (7), one obtains 
on Xi : 

(14) aAik = ^ ~ , am = 0. 
dXi dxk 

But dga/dXi = 0 (because the #4-lines are geodesies and g^ = — 1). Hence by (14), 
dakim/dx* = 0 on Xi. Hence by (6) also, d(œ(—g)ll2)/dxé = 0 on I 4 . 

The equation (13) means two things: 
A. that the vector a> (or, to be more exact, the lines lu whose tangent every

where has the direction a>) permanently connect the same particles with each 
other, 

B. that the absolute value | co | increases or decreases in proportion to the 
contraction or expansion of matter orthogonal on co, where this contraction or 
expansion is measured by the area of the intersection of an infinitesimal spatial 
cylinder4 around l„ (permanently including the same particles) with a surface 
orthogonal on lu . 

Since in the proof of (13) nothing was used except the fact that the world 
10 This condition, too, means that at the border separating the two cases the linear veloc

ity caused by tbe rotation becomes equal to c, if by this linear velocity is understood the 
velocity of matter relative to the orthogonals on the spaces of constant density. 

11 A time-like vector is positive if it is contained in the same half of the light-cone as 
the vector v. 
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lines of matter are geodesies (and in particular the homogeneity of space was 
not used), (13), and therefore A, B, also describe the behaviour of the angular 
velocity, if condensations are formed under the influence of gravitation;12 i.e., 
| co |, under these circumstances, increases .by the same law as in Newtonean 
mechanics. 

The direction of co, even in a homogeneous universe, need not be displaced 
parallel fco itself along the world lines of matter. The necessary and sufficient 
condition for it to be displaced parallel at a certain moment is that it coincide with one 
of the principal axes of the quadric of expansion. For, if P , Q are two neighbouring 
particles connected by co, then, only under the condition just formulated, the 
direction PQ at the given moment, will be at rest relative to the compass of 
inertia (in order to see this one only has to introduce the local inertial system 
defined in §1 (cf. footnote 2) and then argue exactly as in Newtonean physics). 
Since however (because of A) the direction of co coincides permanently with the 
direction of PQ, the same condition applies for the direction of co. This condition 
however, in general, is not satisfied (only in the symmetric case it is always 
satisfied). 

The fact that the direction of ca need not be displaced parallel to itself might 
be the reason for the irregular distribution of the directions of the axes of rotation 
of the galaxies (which at first sight seems to contradict an explanation of the 
rotation of the galaxies from a rotation of the universe). For, if the axis of 
rotation of the universe is not displaced parallel, the direction ofjbhe angular 
momentum of a galaxy will depend on the moment of time at which it was 
formed. 

5. Existence theorems. I t can be shown that, for any value of X (including 0), 
there exist oo8 rotating solutions satisfying all conditions stated in §1. The same is 
true if in addition it is required that a world-time should exist (or should not exist). 
The value of the angular velocity is quite arbitrary, even if p and the mean 
world radius (at the moment under consideration) are given. In particular, there 
exist rotating solutions with X = 0 which differ arbitrarily little from the spatially 
isotropic solution with X = 0. 

Thus the problem arises of distinguishing, by properties of symmetry or 
simplicity, certain solutions in this vast manifold of solutions. E.g., one might 
try to require that the universe should expand from one point and contract 
to one point. 

6. Method of proof. The method of proof by which the results given above were 
obtained is based on postulate I of §1. This postulate implies that all world lines 
of matter (and all orthogonals on the spaces of constant density) are equivalent 
with each other. It is, therefore, sufficient to confine the consideration to one 

12 Of course, only as long as the gas and radiation pressure remain small enough to be 
neglected. 
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neh world line (or one such orthogonal). This reduces the problem to a system of 
rdinary differential equations. 
Moreover, this system of differential equations can be derived from a Hamil-

onean principle, i.e., it is a problem of analytical mechanics with a finite number 
f degrees of freedom. The equations of relativity theory, however, assign definite 
alues to the integrals of energy and momentum, so that the relativistic problem 
3 a little more special than the corresponding one of analytical mechanics. 
The symmetric case, by means of the integrals of momentum, can be reduced 

3 a problem with three degrees of freedom (gi, g2, g%), whose Lagrangean function 
3ads as follows: 

is) ( i : ^ + ^[2Z^-(E^)2]+ , r Jg1/2 + 2(î + g)1" 
{KhOiÇk g i i 0i(ff2 - g*)2) \ gi/ 

rhere g = g\g2g* and V is a constant which determines the velocity of rotation. 
lie general case can be reduced to a system of differential equations of the 
fch order. 

7. Stationary rotating solutions. It might be suspected that the desired par-
cular solutions (cf. §5 above) will have a close relationship to the stationary 
omogeneous solutions, and it is therefore of interest to investigate these, too. 
>y a stationary homogeneous solution we mean one whose group, for any two 
oints P, Q of the whole 4-space, contains transformations carrying P into Q. 
These solutions can all be determined and expressed by elementary functions. 

>ne thus obtains the following results: 
1. There exist no stationary homogeneous solutions with X = 0. 
2. There exist rotating stationary homogeneous solutions with finite space, no 

\osed time-like lines, and X > 0; in particular also such as differ arbitrarily 
ttle from Einstein's static universe. 
The world lines of matter in these solutions, however, are not equidistant: 

eighbouring particles of matter, relative to the compass of inertia, rotate 
round each other, not in circles, but in ellipses (or, to be more exact, in rotating 
llipses). 
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