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ABSTRACT: Shape memory alloy (SMA) has been considered as an actuator for applications that
3 require large force and displacement. Two factors have hampered the usefulness of such actuators: a
hysteretic input-output relation and bandwidth limitations. This paper considers the hysteresis phe-
nomenon from a control point of view. Instead of directly compensating for the hysteresis, which re-
quires an accurate model, we use a closed loop approach which considers the feedback control of the
beam strain. A simple lumped temperature and SMA force/displacement model is used for stability
analysis. We show that with the SMA wire fixed between rigid surfaces, a proportional force feed-
back would render the closed loop stable. However, when SMA is coupled to a flexible structure, the
resulting system can exhibit instability. We then show that a proportional position feedback is stabi-
lizing, but there would be steady-state error. An adaptation scheme can be further added to remove
the steady-state error. The analysis is verified experimentally in a simple experimental setup consist-
ing of a flexible aluminum beam and a Nitinol shape memory alloy wire that applies a bending force

to the end of the beam.

INTRODUCTION

HAPE memory alloys are materials which have the abil-
Sity to “remember” their shape even after large deforma-
tions. Once deformed at a low temperature (in a martensitic
phase), an SMA will remain deformed until heated, when it
returns to the original austenitic phase. SMA can be used as
an actuator: applied thermal energy causes internal phase
transformation (between austenitic and martensitic phases)
which in turn generates a mechanical strain. Although large
force and displacement can be realized with these actuators,
the effectiveness of SMA actuators is typically hampered
by two factors:

1. Hysteresis: The phase transformation is a hysteretic phe-
nomenon (similar to that of ferromagnetic materials) re-
sulting in the output strain dependent on the history of
heat input.

2. Bandwidth Limitation: Due to the typically large heat
transfer time constant, the dynamic response of an SMA
actuator is very slow.

This paper addresses the hysteresis of SMA from a control
perspective. Generally speaking, there are two types of ap-
proaches to deal with hysteretic nonlinearity:

1. Open Loop Compensation: Find a first-principle or phe-
nomenological model, identify the parameters, then in-
vert the model, if possible, to remove or at least amelio-
rate the nonlinearity.

2. Closed Loop Feedback: Use the output error (measured
output subtracting the desired output) to generate the cor-
rective heat input. The output may be the force applied by
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the SMA wire, or the position, or the strain of the structure
to which the SMA wire is connected.

We will describe our recent work on closed loop feedback
compensation of SMA hysteresis.

Because of their light weight and ability to produce large
force and displacement, SMA actuators have been used in a
wide range of applications including large space structures,
robotic arms, medical instruments, and surgical implants.
SMA are commonly used with flexible structures for shape
control, vibration suppression, and tracking control (Bazetal.,
1990, Ikegami et al., 1990, Dickinson et al., 1996). However,
there has been very little work done in controlling SMA, pri-
marily because they are assumed to be essentially static de-
vices. In terms of open loop modeling of the SMA hysteresis,
the Preisach model has often been chosen because of its sim-
ple structure, easy identifiability, invertibility, and imple-
mentability for both simulation and control (Hughes and Wen,
1995). Recently, a passivity based approach has been used to
analyze closed loop stability involving SMA (Madill and
Wang, 1994), and a variable structure type of controller has
also been successfully applied (Grant and Hayward, 1997).

This paper builds on our previous work in Dickinson et al.
(1996) considering controlling a flexible beam with an exter-
nally attached SMA wire at the tip of the beam. Simplifica-
tion of the model developed in Shu et al. (1997) has been
used for stability analysis. It has been shown:in Dickinson et
al. (1996) and Dickinson (1997) that force feedback for a sin-
gle fixed SMA wire is stable by using the Circle Criterion
(Vidyasagar, 1993). When the SMA wire is attached to a
flexible beam, force feedback can now lead to instability. In
this paper, we show that a simple nonlinear strain-feedback
control law is stable. In this control law, a static.nonlinear
map between the desired beam strain and a fictitious desired
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strain needs to be established experimentally. Furthermore,
we show that this fictitious desired strain can be adaptively
updated and obtain a general condition for stability again by

using the Circle Criterion. Experiments have been conducted
to demonstrate the validity of our analysis.

EXPERIMENTAL SETUP AND DYNAMIC
MODEL FOR A BEAM WITH EXTERNALLY
ATTACHED SMA WIRE

Figure 1 is an outline of the single-link flexible beam test-
bed used in our investigation. The central component is a
flexible beam which is chosen to provide readily measurable
flexibility in the horizontal plane that is independent of grav-
ity (ideally). This beam is driven by a Nitinol SMA wire at-
tached between the hub and the free end of the beam.

The SMA wires consist of 0.008" thick Nitinol wires, ap-
proximately 1.09 m long. These are Flexinol wires made by
Dynalloy with a characteristic transition temperature given
as 90°C and a maximum pull force of 590 g, approximately.
A complication of this configuration is that the wire stress is
a function of the wire strain (and thus the beam strain), and so
independent control of these two variables is not possible
once the wire is connected unless an external force is applied,
e.g., by use of weighted pulley wheel, or by use of a second
SMA wire muscle on the other side of the beam. We have
also included some results using the two-SMA-wire push-
pull type of arrangement. A model of this setup has been de-
veloped in Shu et al. (1997).

To analyze the closed loop behavior, we approximate the
temperature evolution in the wire by a lumped model for the
average SMA wire temperature with convective cooling and
resistive heating:

T=-a(T - T,)+ Bu? ¢}

where the cooling coefficient & = [44(T,D)/C,(T )D] (with
D, i(T,D), and C(T ) the diameter, free heat convection co-
efficient, and heat capacity of SMA, respectively), the heat-
ing coefficient 8 = [p./C,(T )A4?] (with p, the electrical resis-
tivity and 4 the area of the SMA wire), 7, is room
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Figure 1. Experimental testbed schematic.
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Figure 2. Approximate lumped model for SMA wire connected to a
mass-spring-damper system.

temperature, and u is the commanded current through the
SMA wire. The resistive heating of the wire causes the phase
transformation in the SMA.

We approximate the beam by one mode, i.e., a single
mass-spring-damper system with mass M, damping coeffi-
cient B, and spring constant K. The phase transformation is
modeled as an internal lumped displacement, z, as shown in
Figure2. Although we use a one-mode approximation for the
beam model, we believe that the following analysis would be
true for a more detailed beam model as well since the Circle
Criterion type argument would remain valid.

Under the above assumption, the dynamical equation of
the beam is

Mx+Bx+Kx= f @

where x = — L, £ denotes the displacement of the flexible
mode (with Ly, and ¢ the length and strain of the SMA, re-
spectively), and the measured force, f, is given by

f = Ksma (Z - x) (3)

where K, = (Egu0d/L ) is the stiffness of the SMA wire
(with E,,, as the Young’s modulus).

The internal displacement, z, is related to the temperature
by the function

z= Lsma (El +a; (T - Tr )) (4)

with ¢’ the transformation strain of the SMA and @, the ther-
mal expansion coefficient.

The strain ¢, stress g, and temperature 7 are related by the
following set of equations:

e' = HE (5)
J

y (6)
oH +%Aso2 + Aayo(T - T,)

+ pAsyT — pbE — Y** = 0 - (D
where H is the prestrain of SMA, & the martensite fraction,
As=(1/EM)—(1/E*) the elastic compliance difference, Aa; =
aM -a 4 the thermal expansion coefficient difference, pAs,



the entropy difference at the reference state, pb the isotropic
hardening term, and Y** the threshold value of transforma-
tion. The above equations are valid for both forward and re-
verse transformation, but the parameter values for pAsg, pb,
and Y** depend on the direction of the phase transformation.
This accounts for the hysteresis exhibited in shape memory
alloys.

Thus, the internal displacement z of Equation (4) is related
to the temperature, stress, and strain through a general hys-
teresis function

T>0
T<0

g.(T,¢,0),

ga(T,e,0), ®

z=g(T,e,0)= {

where g, and g;are two scalar monotonically increasing func-
tions with g, lying strictly below g, for the same range of 7.

POSITION FEEDBACK CONTROL

To compensate for the hysteresis through static open-loop
inversion is approximate at best, and involves careful experi-
mentation for parameter identification off-line. We explore
the feedback control approach in this section. Feedback con-
trol for SMA has not been extensively explored in the litera-
ture, mainly due to the assumption that the low bandwidth
character of SMA renders it essentially a static device. We
have shown in Dickinson et al. (1996) that the dynamic re-
sponse cannot be ignored. Sampling rate in a sample-data
implementation greatly affects the steady state oscillation,
and, in certain configurations, even small feedback gains can
lead to instability. In terms of stability analysis, a passivity
approach has been proposed to show closed loop stability of
a simple SMA feedback experiment using the proportional
feedback (Madill and Wang, 1994). In Dickinson et al.
(1996) we use a phase plane based argument for the stability
of a simple proportional feedback system. We verified our
results experimentally, but we still observed sizable steady
state oscillation.

In this section, we will demonstrate that the control law in
Dickinson et al. (1996) can be modified in simple ways to
render the closed loop system stable. The Circle Criterion is
applied to show the closed loop stability even for a general
hysteresis model as given in Equation (8).

In Dickinson et al. (1996) we have considered the follow-
ing control law which is essentially proportional feedback:

X >x4
x < x4

07
“zﬂm—m, ©)

where £ is a non-negative gain chosen by the designer, x is
the measured beam deflection, and x, is the desired beam
deflection. The motivation of this control law is straightfor-

ward: if the position output is below the setpoint, apply
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more heat to the wire, if the position output is above the set-
point, remove heat and let the spring in the system pull the
beam back. In experimenting with this control law, we ob-
served that for £ relatively small, x would reach a steady
state below the setpoint. When £ is increased, the steady
state error reduces and eventually fall into a limit cycle
about the setpoint.

The closed loop behavior observed with the controller
Equation (9) is due to the fact that x; does not correspond to
the steady state of the closed loop system. Let the steady state
temperature and spring displacement be (7*,x*). Then from
Equations (1) and (2), we have

T* = ﬂf‘ (xg — x*)+ T, (10)

Kt = K o g(T*, £%,0%) (In

" where K = K + K,,,,,, and (¢*,0*) are the steady state strain

and stress in the SMA wire. We assume that when 7=T* ¢ =
e* and o = o*. This assumption simplifies our stability
analysis. Though it is not true in general, it is a reasonable
approximation since g usually does not strongly depend on
¢ and 0.

In Equation (10), to include both the heating and cooling in
the analysis, we use a nonlinear gain &, to denote the gain
switching between the two cases:

R i 2

Defining the error variables as .
Ox=x—x* (13)
OT=T~T* (14)

Equations (2) and (1) become

MO% + BOx + Kox = K 4,0 [g(T, €,0) = g(T*, &*,0%)]
(15)
OT = —adT — Bkox - (16)
The closed loop system is shown in the block diagram form

in Figure 3. The error system can be written in the following
compact form: ‘

X = AX + BV
Y =Cx an

V=¢)=-(g(¥ +T*¢,0) - g(T* &*,0%)
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Figure 3. Feedback block diagram of closed loop system with fixed Xg4.

where

6T - —'ﬂk_y 0
X=lox|, 4a=[% O |
Ox 0 —— —-—
M
(18)
0
B=| C=[ 0 0
KS”IQ - ]
M

All of the eigenvalues of 4 are stable:

eigenvalues(4 ) = {—a,— ﬁ (B ++/B? — 4MK),
1 _
-7 (B~ B? — 4MK)}

The closed loop system exactly fits the form of the classic
Lur’e Problem (Vidyasagar, 1993) (see Figure 4).

For SMA, the derivative of g with respect to T'is typically
bounded between two positive numbers:

0<ac= ag <) 19
<a= <
a(oT) (19
0 : y
+ u x=Ax+Bu
_O y=Cx+Du
z O(et)

Figure 4. Feedback control system describing the Lur’e Problem.

over the range of possible ¢ and ¢. It then follows that ¢ is
sector bounded in [a,b]:

" doT? < p(8TIT < boT| (20)

A sufficient condition for the global closed loop asymp-
totic stability is given by the Circle Criterion (Vidyasagar,
1993) which states that the Nyquist plot of

G(s)=C(sI — A)"'B
= Bk,K gpa (s + @)~ (Ms? + Bs + K )7 @2

has to remain outside of the disk that is symmetric about the
real axis and intersecting the real axis at [-(1/a), —(1/5)]. The
general shape of the Nyquist plot of G is shown in Figure 6.
Clearly, if k, (fixed as a constant gain) is sufficiently small,
the closed loop system is asymptotically stable. As defined in
Equation (12), &, is either 0 or k£ depending on the sign of (x —
xz). When &, = 0 (i.e., x > x;), the system is always stable.
Physically, this corresponds to the control being shut off, and
the spring restoration force of the flexible beam brings x back
toward x,. When k, = & (i.e., x <x,), the system would be sta-

dT

Figure 5. Sector-bounded nonlinearity ¢.
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Figure 6. Circle criterion for controller with fixed xg.

ble provided £ is sufficiently small. Physically, this means
that the SMA wire is heated and the contractive force in-
creases x toward x,.

Summarizing the discussion above, the following design
procedure is proposed for a globally asymptotically stabiliz-
mg controller given by Equation (9).

1. Choose a feedback gain & sufficiently small to ensure sta-
bility.
2. For the chosen &, experimentally characterize the x, = x*
mapping (stored as a table).
. Find the inverse of the mapping from the previous step.
4. Apply the SMA controller as described in Equation (9).
Then x = x* in the steady state.

w

In a sample-data implementation, we still expect a certain
amount of steady-state oscillation which should reduce in
amplitude with increasing sampling frequencies.

ADAPTIVE CONTROLLER

In the controller presented in the previous section, the
mapping from x,to x* has to be generated for each specified
value of £. Since the precise model parameters for SMA are
rarely available, the mapping would need to be obtained ex-
perimentally. This is clearly problematic if one needs to tune
the feedback gain 4 for the desired performance. In this sec-
tion, we propose a simple adaptation strategy that estimates
x4 rather than using the pre-computed x* to x, mapping. The
motivation is simple, ifx is below x*, then x,should increase,

u2 B ~
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and, conversely, if x is above x*, then x, should decrease. In
other words, the estimate for x, £, is governed by

2y = —y(x—x*) (22)

where the initial condition £ (0) is the “best guess” of x;fora
given x*. The control law Equation (9) is now modified to

0, x>%X
- ’ d
ut = {k(id — %), x<iy (23)
The steady state condition is now given by
"Bk
= B (F5 - )+ T, (24)
a
Kx* = K jag(T*,8%,0%) 25)

where X7 is the steady-state value of £;. The closed loop sys-
temn is shown in the block diagram form in Figure 7.

Defining the error state as before, including an extra one
for fd,

5xd = )’C\‘d —f;

The closed loop system can again be written as Equations
(17), with the augmented (A, B, C) as

—a —Bk, 0 Pk,

oT
0 1 0

0 )_
X = CSJC s A= 0 _ £
6xd 0 _,]}‘,4

(26)

£
S+ 0 ~ 8O.£)

. Ksma x

Ms2 +Bs+7(—

Figure 7. Feedback block diagram of closed loop system with adaptive x.
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Figure 8. Circle criterion for controller with adaptive xg.

The eigenvalues of 4 are the same as in the previous case, ex-
cept that there is an additional eigenvalue at the origin. The
Circle Criterion can once again be applied to check the
closed loop asymptotic stability. The forward transfer func-
tion can be computed to be

G(s)=C(sl— A)'B

= BkKma (s+y)™ (s + @) (Ms? +Bs+ K )~
(27)

The general shape of the Nyquist plot of G(s) is as shown in
Figure 8. For y sufficiently small, the intersection of the plot
with the real axis is proportional to k,. Therefore, for k [in
Equation(12)] and y sufficiently small, the closed loop sys-
tem is globally asymptotically stable.

To gain some insight on the dependence of the closed loop
stability on the controller parameters, a heuristic method is to
apply the Mean Value Theorem and replace ¢(37) by

@' 0T [¢'() = Kanag ()] for some 7 € [0,0T ]. The
closed loop 4 matrix then becomes

- -Bk, 0 Bk,

0 o 1 0
A=|Kma /( y - 5 _ ﬁ
M & Ty Tu

0 -y 0 0

Treating g'(n) as a constant scalar, the characteristic polyno-
mial of 4 is

det (Al — A)= M~ (M* + (B + aM)A3
+ (K +aB)A? + (aK + g' )BkK g0 A

+g ,(77 )ﬂksK.s'ma y )

The Routh-Hurwitz Criterion can be applied to determine the
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stability of this system. It follows that the system would be
stable if k, and y are chosen sufficiently small.

Extensions

There are several possible extensions of the approach pre-
sented in this paper. It is possible to replace the gain switch in
Equation (12) to, for example,

k7
kx={_k;

Stability is assured in both fixed x, case and adaptive case x4
if ky is chosen to be sufficiently small. This modification may
be advantageous to weaken the spring restoration force when
x> x4 which, if uncompensated, may cause large overshoot,
leading to large oscillations.

It is also possible to attach an opposing SMA wire to cause
a push/pull type of action. If the feedback gain & is chosen to
be the same for both wires, &, can be considered as a constant
irrespective of the sign of (x —x,). The stability analysis pre-
sented before also remains valid.

x<xy

x> Xxy (28)

EXPERIMENTAL RESULTS

The controllers developed in the previous sections have
been implemented on the one-link flexible beam tested. The
SMA wire was connected between the hub end and the free
end of the flexible beam. The strain gages on the beam were
used to measure the strain.

Some experimental results were obtained using the three
different controllers described in the previous sections. The
desired beam strain was chosen to be 50 ustrain. Figure 9
shows the strain response for the first controller Equation (9)
with k=30. For each x,, the closed loop system would reach a
steady state. The corresponding x* is recorded. This allows a
monotonic map from x, to x* to be constructed. This map is

Beam Strain: fs=20 Hz, k=30
60 T . . .

Py
o
T

Strain (x1e-6)
@
[=]

20r

4
Time (sec)

Figure 9. Strain response: controller of Equation (9) with k = 30.
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Inverse Map w/ k=30 Beam Strain: fs=20 Hz, k=30, gamma=5
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Figure 10. inverse mapping with k = 30. Figure 13. Strain response: adaptive controller (k = 30, y = 5).
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Figure 11. Strain response: controller with mapping (k = 30).

Beam Strain: fs=20 Hz, k=30, gamma=0.5 Beam Strain: fs=20 Hz, k=5, gamma=20
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Figure 12. Strain response: adaptive controller (k = 30, y = 0.5). Figure 18. Strain response: adaptive controller (k = 5, y = 20).

il

Figure 14. Strain response: adaptive controller (k = 30, y = 20).
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Beam Strain w/ 1 SMA Wire (k=100, fs=20 Hz)
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Beam Strain w/ 2 SMA Wires (k,=100, k2=50, fs=20 Hz)

60 T 60 " T T T
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: 40
: ®
: =
g 30 1
: s
: b : : :
! : : ' i
o 1 0 " . "
) 2 10 0 2 4 6 8 10

Time (sec)

Time (sec)

Figure 16. Strain response: 1-wire vs. 2-wires.

numerically inverted (see Figure 10) and used in the control-
ler Equation (9). The experimental result shown in Figure 11
is indeed asymptotically stable as predicted. The remaining
steady-state error is due to error in the inverse map.

To avoid the explicit construction of the inverse map, we
apply the adaptive controller as in Equations (22) and (23).
The feedback gain k remains fixed at 30. Figure 12 shows
the strain response for the adaptive controller with y = 0.5
which almost completely removes the steady-state error (as
compared to the fixed x, case). Increasing y to 5 decreases
the rise time as shown in Figure 13 (but now produces an
overshoot). The steady-state error remains almost zero. In-
creasing the adaptive gain still further to y = 20 causes a
limit cycle type of behavior in the closed loop system (Fig-
ure 14). Using the same y value but decreasing k to 5 (Figure
15), once again stabilizes the system. This confirms our
analysis that the product of k and y needs to be chosen suffi-
ciently small.

Finally, an opposing SMA wire was attached to the experi-
mental testbed to examine push/pull type of action. The feed-

Beam Strain w/ 2 SMA Wires (k1=100, k_=50, y=10, fs=20 Hz)
80 . , . .

o2}
o
T

'

0
o

x1e-6,
g( )

Strain
w
S

n
[=]

-
(=]

6
Time (sec)

Figure 17. Strain response: push/pull using adaptive controller.

back gains were chosen to be k; = 100 and &, = 50, where k of
Equation (12) is‘k, for the first SMA wire and &, for the sec-
ond SMA. Two different feedback gains have been used
since the two SMA wires are mounted slightly differently,
affecting their respective effectiveness. The experiment was
run first for the fixed x, case. When compared to the experi-
mental result using only one SMA under the same condi-
tions, the magnitude of the oscillations was slightly reduced
(see Figure 16). Applying the adaptive case of the controller
withy = 10 produced a very small steady-state error (Figure
17). As shown in Figure 18, even further reduced oscillations
can be obtained by increasing the sampling frequency.
Overall, the experimental results show excellent qualita-
tive agreement with the theoretical analysis. The controller
that uses fixed x, produces a good result, but the mapping
from x* and x,; must be obtained for each different value of k.
The adaptive controller that estimates x, can be tuned (ad-
Jjusting both £ and y) to produce good results. If the gains are
chosen too high, instability may result. Preliminary experi-
mental results look promising for using opposing SMA wires

Beam Strain w/ 2 SMA Wires (k,=100, ka—a‘SO, =10, f =50 Hz)
70

soHk -

(¢4
Q

S
Q
f

w
Q
H

Strain (x1e-6)

0 2 4 6 8
Time (sec)

Figure 18. Strain response: effect of sampling.
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as the results show improvement over using only a single
SMA actuator.

CONCLUSIONS

SMA is an important material for smart structures because
of its light weight and ability to produce relatively large force
and displacement. This paper addresses the closed loop feed-

‘back control for SMA without the explicit identification of
the hysteretic SMA behavior. We use a thermodynamic con-
stitutive model of SMA combined with a single mode model
of the flexible beam to qualitatively analyze the closed loop
stability of the system. In our past work, we applied a nonlin-
ear proportional feedback to the SMA system and found that
for sufficiently small gain the closed loop system is stable but
can have significant steady-state error. In this paper, we
modify the controller to include a mapping that compensates
for the steady-state error and show that the closed loop sys-
tem is globally asymptotically stable. However, the required
mapping must be calculated or identified for each different
controller gain. This requirement is removed by further
modifying our controller to include an adaptive update for
the steady-state value of the displacement output. The closed
loop system is again shown to be globally asymptotically
stable provided that the gains are chosen sufficiently small.
Experiments in our laboratory confirm the qualitative analysis
for each of the controllers. Though the analysis in this paper is
based on set point control, the set point can be made time vary-
ing for trajectory tracking. We have experimentally shown
that the closed loop bandwidth is approximately -2 Hz.
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