Characterization of 60 GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments

Masaki KOUZAI ${ }^{\# 1}$, Atsuhiro NISHIKATA ${ }^{\# * 2}$, Taiji SAKAI*3 and Soichi WATANABE*4
\# CRADLE, Tokyo Institute of Technology
2-12-1-W9-109, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
* National Institute of Information and Communications Technology
4-2-1 Nukui-Kitamachi, Koganei-shi, Tokyo, 184-8795, Japan

Abstract

In this paper, a precise characterization of focusing beam is performed based on the field distribution measurement and beam reconstruction analysis, in order to enable detailed calculation of focusing beam exposure on the surface of human's skin. To estimate the influence of the experimental condition, we calculated electromagnetic field with varying parameters such as the distance, incident angle. The result suggests that the influence of positioning error is relatively small.

Key words: millimeter wave, lens antenna, electromagnetic field, exposure calculation

I. Introduction

Recently, as the increasing use of millimeter-waves is expected, the anxiety is pronounced about increasing chance for general public to be exposed to millimeter-waves. It is necessary to prevent the adverse effect of millimeter-waves on the living body. The safety guidelines for millimeter-wave are provided [1], [2], [3]. The established mechanism by which the millimeter-waves have influence on living bodies is the thermal effect. Though there have been some investigations for thermal effect of millimeter-wave exposure[4], [5], [6], the experimental knowledge about the thermal sensation phenomena is still insufficient.

II. Analysis of Focusing Beam

A. Electromagnetic field in the free space

Electromagnetic field radiated from a lens antenna focuses with propagation, and mostly concentrates on the beam waist. Therefore, if the field distribution on the plane perpendicular to propagation direction is measured, the majority of power can be covered. We will estimate a beam profile from this field distribution. For convinience' sake, we assume that the measured plane is at $z=0$, the source (lens antenna) is located on $z<0$, and beam is of single frequency.

Assume that the electromagnetic field radiated by the source on $z<0$ is measured on $x y$-plane, and $\underset{\sim}{x}$ - and y component of elctric field is obtained. We define $\tilde{E}_{x}\left(k_{x}, k_{y}\right)$ as a 2-dimentional Fourier-transform of $E_{x}(x, y, 0)$, Fouriertransform and inverse Fourier-transform is represented as

$$
\begin{equation*}
\tilde{E}_{x}\left(k_{x}, k_{y}\right)=\iint E_{x}(x, y, 0) e^{j\left(k_{x} x+k_{y} y\right)} d x d y \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E_{x}(x, y, 0)=\frac{1}{(2 \pi)^{2}} \iint \tilde{E}_{x}\left(k_{x}, k_{y}\right) e^{-j\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y} \tag{2}
\end{equation*}
$$

The integration range is $(-\infty, \infty)$ for every variable and omitted in the expression. Here, the right hand of eq. (2) is considered as the value of plane-wave

$$
\begin{array}{r}
\tilde{E}_{x}\left(k_{x}, k_{y}\right) e^{-j\left(k_{x} x+k_{y} y+k_{0 z} z\right)} \\
k_{0 z}=\sqrt{k_{0}^{2}-k_{x}^{2}-k_{y}^{2}} \tag{4}
\end{array}
$$

on $z=0$. The vector electric field with other component will be written as

$$
\begin{equation*}
\left(\hat{\boldsymbol{x}}-\frac{k_{x}}{k_{0 z}} \hat{\boldsymbol{z}}\right) \tilde{E}_{x}\left(k_{x}, k_{y}\right) e^{-j\left(k_{x} x+k_{y} y+k_{0 z} z\right)} . \tag{5}
\end{equation*}
$$

Here, $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}$ represent the fundamental vectors. Similarly, y component can be calculated, and electric field is expressed as

$$
\begin{align*}
& \boldsymbol{E}(x, y, z)=\frac{1}{(2 \pi)^{2}} \iint\left\{\left(\hat{\boldsymbol{x}}-\frac{k_{x}}{k_{0 z}} \hat{\boldsymbol{z}}\right) \tilde{E}_{x}\right. \\
& \left.\quad+\left(\hat{\boldsymbol{y}}-\frac{k_{y}}{k_{0 z}} \hat{\boldsymbol{z}}\right) \tilde{E}_{y}\right\} e^{-j\left(k_{x} x+k_{y} y+k_{0 z} z\right)} d k_{x} d k_{y} \tag{6}
\end{align*}
$$

Next, let us separate the electric field in TE(transverse electric)- and TM(transverse magnetic)-waves.

$$
\begin{align*}
\boldsymbol{E}= & \frac{1}{(2 \pi)^{2}} \iint \\
& {\left[\boldsymbol{p} f_{\mathrm{TE}}+\left(\boldsymbol{q}-\frac{k_{t}}{k_{0 z}} \hat{\boldsymbol{z}}\right) f_{\mathrm{TM}}\right] e^{-j \boldsymbol{k}_{0}^{+} \cdot \boldsymbol{r}_{d k_{x}} d k_{y}} } \tag{7}
\end{align*}
$$

The first term in the [] represents the TE-wave, and the second term represet the TM-wave. \boldsymbol{p} and \boldsymbol{q} are orthogonal unit vectors on $x y$-plane.

$$
\begin{align*}
\boldsymbol{p} & =\frac{k_{y}}{k_{t}} \hat{\boldsymbol{x}}-\frac{k_{x}}{k_{t}} \hat{\boldsymbol{y}} \tag{8}\\
\boldsymbol{q} & =\frac{k_{x}}{k_{t}} \hat{\boldsymbol{x}}+\frac{k_{y}}{k_{t}} \hat{\boldsymbol{y}} \tag{9}\\
k_{t} & =\sqrt{k_{x}^{2}+k_{y}^{2}} \tag{10}
\end{align*}
$$

\boldsymbol{r} is the position vector, \boldsymbol{k}_{0}^{+}is the wave-number vector in the free space

$$
\begin{align*}
\boldsymbol{k}_{0}^{+} & =k_{x} \hat{\boldsymbol{x}}+k_{y} \hat{\boldsymbol{y}}+k_{0 z} \hat{\boldsymbol{z}} \tag{11}\\
k_{0 z} & =\sqrt{k_{0}^{2}-k_{t}^{2}} . \tag{12}
\end{align*}
$$

$f_{\mathrm{TE}}, f_{\mathrm{TM}}$ are calculated from equations below.

$$
\begin{gather*}
f_{\mathrm{TE}}=\boldsymbol{p} \cdot \tilde{\boldsymbol{E}}_{t}=\frac{k_{y}}{k_{t}} \tilde{E}_{x}-\frac{k_{x}}{k_{t}} \tilde{E}_{y} \tag{13}\\
f_{\mathrm{TM}}=\boldsymbol{q} \cdot \tilde{\boldsymbol{E}}_{t}=\frac{k_{x}}{k_{t}} \tilde{E}_{x}+\frac{k_{y}}{k_{t}} \tilde{E}_{y} \tag{14}
\end{gather*}
$$

Next, for the analysis of the living body exposed to the millimeter-wave beam, we assume the multi-layered medium (N-layers) on $z \geq z_{1}$. For each $n=1, \cdots, N$, the n-th layer has the complex relative permittivity $\varepsilon_{r n}$, and convers $z_{n} \leq z<z_{n+1}$. The N-th layer is semi-infinite $\left(z_{N+1}=\infty\right)$, and every layer has relative permeability $\mu_{r}=1$. Eq. (7) is expanded so that it includes backward wave, electromagnetic field in the n-th layer is calculated as

$$
\begin{align*}
& \left\{\begin{array}{c}
\boldsymbol{E} \\
\boldsymbol{H}
\end{array}\right\}= \\
& \frac{1}{(2 \pi)^{2}} \iint\left[a_{n \mathrm{TE}}\left\{\begin{array}{c}
\boldsymbol{p} \\
Z_{n \mathrm{TE}}^{-1}\left(\boldsymbol{q}-\frac{k_{t}}{k_{n z}} \hat{\boldsymbol{z}}\right)
\end{array}\right\} f_{\mathrm{TE}}\right. \\
& \left.+a_{n \mathrm{TM}}\left\{\begin{array}{c}
\boldsymbol{q}-\frac{k_{t}}{k_{n z}} \hat{\boldsymbol{z}} \\
Z_{n \mathrm{TM}}^{-1}(-\boldsymbol{p})
\end{array}\right\} f_{\mathrm{TM}}\right] . \\
& e^{-j \boldsymbol{k}_{n}^{+} \cdot\left(\boldsymbol{r}-z_{n} \hat{\boldsymbol{z}}\right)} d k_{x} d k_{y}+ \\
& \frac{1}{(2 \pi)^{2}} \iint\left[b_{n \mathrm{TE}}\left\{\begin{array}{c}
\boldsymbol{p} \\
Z_{n \mathrm{TE}}^{-1}\left(-\boldsymbol{q}-\frac{k_{t}}{k_{n z}} \hat{\boldsymbol{z}}\right)
\end{array}\right\} f_{\mathrm{TE}}\right. \\
& \left.+b_{n \mathrm{TM}}\left\{\begin{array}{c}
\boldsymbol{q}+\frac{k_{t}}{k_{n z}} \hat{\boldsymbol{z}} \\
Z_{n \mathrm{TM}}^{-1} \boldsymbol{p}
\end{array}\right\} f_{\mathrm{TM}}\right] . \\
& e^{-j \boldsymbol{k}_{n}^{-} \cdot\left(\boldsymbol{r}_{-z_{n+1}} \hat{\boldsymbol{z}}\right)} d k_{x} d k_{y}, \\
& z_{n}<z<z_{n+1}, \quad n=1, \cdots, N, \tag{15}\\
& k_{n z}=\sqrt{k_{0}^{2} \varepsilon_{r n}-k_{t}^{2}} \tag{16}\\
& \boldsymbol{k}_{n}^{ \pm}=k_{x} \hat{\boldsymbol{x}}+k_{y} \hat{\boldsymbol{y}} \pm k_{n z} \hat{\boldsymbol{z}} \tag{17}\\
& Z_{n \mathrm{TE}}=\eta_{0} \frac{k_{0}}{k_{n z}} \tag{18}\\
& Z_{n \mathrm{TM}}=\eta_{0} \frac{k_{n z}}{k_{0} \varepsilon_{r n}} \tag{19}\\
& \eta_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \tag{20}
\end{align*}
$$

III. Field Measurement

We measured the amplitude and phase of electric field radiated from millimeter-wave lens antenna by using Nearfield measurement system. Figure 1 shows two kinds of lens antennas under test, and its frequency is 60 GHz .

As shown in Figure 2, the open-ended waveguide probe is located in front of lens antenna under test. We defined

Fig. 1. Two kinds of lens antennas under test.
the coordinate axes, such that z-axis is beam propagation direction, x-axis is horizontal, and y-axis is vertical direction. Electromagnetic wave radiated from lens antenna is mainly horizontally-polarized wave.

Fig. 2. Near-field measurement system.

Table I shows the measurement condition. Figure 3 shows the field intensity E_{x} and E_{y} measured on $x y$-plane. It can be seen that E_{x} focuses elliptically, and the maximum value of E_{y} is less than that of E_{x} by 20 dB . Here we defined 0 dB as the maximum value of $\left|E_{x}\right|$ on measured plane.

TABLE I
MEASUREMENT CONDITIONS OF TWO KINDS OF LENS ANTENNAS

Lens antenna	A	B
F	150 mm	270 mm
Measurement interval $(\Delta x, \Delta y)$	1 mm	2 mm
Measurement area	$100 \mathrm{~mm} \times 100 \mathrm{~mm}$	$200 \mathrm{~mm} \times 200 \mathrm{~mm}$
Measurement plane (z)	$0, \pm 10, \pm 50 \mathrm{~mm}$	$0, \pm 10 \mathrm{~mm}$

IV. Calculation Results

A. Reconstruction in free space

The electric field distribution of millimeter-wave beam is reconstructed from measured E_{t}. Namely, $\left.\boldsymbol{E}_{(} x, y, z\right)$ on

Fig. 3. Field E_{x} or E_{y} 's intensity of lens antenna A measured on $x y$ plane.
arbitrary z is calculated from $\boldsymbol{E}_{t}(x, y, 0)$. Figure 4 shows the beam profile of lens antennas. For each cross-section, the field intensity distribution is normalized with the maximum value. It can be seen that the lens antenna A has larger focusing angle and narrower beam waist than lens antenna B. Figure 5 shows the reconstructed field intensity distribution on $x z$ plane, especially around the focus. We defined 0 dB as the maximum value in the calculation area, and uses this definition in the following figures. It can be seen that the lens antenna A has less uniformity along z-axis. The half-width spheroidal area has different lengths for each directions. The half-width length for each axis is shown in Table II.

TABLE II
HALF-WIDTH OF ELECTRIC FIELD INTENSITY FOR EACH AXIS.

	$x[\mathrm{~mm}]$	$y[\mathrm{~mm}]$	$z[\mathrm{~mm}]$
Antenna A	5.7	7.5	52.2
Antenna B	9.9	12.9	122.9

Fig. 4. Reconstructed field intensity on $x z$-plane.

B. Incidence to living-body model

We modelled the living body as a two-layered object which has skin layer and fat layer, and calculated the electromagnetic field when exposed to millimeter-wave focusing beam. The skin layer has finite thickness, and the fat layer has semiinfinite thickness. In addition, we calculated on the threelayered model with muscle. Since there is little difference in the result, we adopt two-layered model. Table III shows relative permittivity and loss tangent of body tissues used in calculation. These parameters are obtained by estimation formula [7].

TABLE III
BODY TISSUES' PARAMETERS AT 60 GHz .

tissue	relative permittivity $\left(\varepsilon_{r}\right)$	loss tangent $(\tan \delta)$
Skin (dry)	7.98	1.37
Skin (wet)	10.2	1.16
Fat	3.13	0.27
Muscle	12.9	1.23

On millimeter-wave exposure experiment, it is difficult to keep exposing in an ideal condition. Therefore, to estimate the influence of the difference of the experimental condition, we calculated electromagnetic field with varying the skin surface position, incidence angle, skin moisture and thickness of skin.

1) skin surface position: Figure 6 shows peak field intensity in the skin when the skin surface position varies in z-direction. Lens-antenna A's variation is strongly asymmetric with respect to $z=0$, and rapidly declines when skin surface moves away from the focus. On the other hand, lens antenna B having longer focal length has gradual charasteristics. For example, the positioning error of $\pm 5 \mathrm{~mm}$ shall result in 0.8 dB deviation for lens antenna A and 0.1 dB for lens antenna B. Table IV shows the maximum value of field intensity and powerdensity in freespace, and SAR in the skin when incident power is normalized to 1 W for each lens antenna. Here, the value of

Fig. 5. Reconstructed field intensity on $x z$-plane around focus.

TABLE IV
MAXIMUM VALUES OF FIELD INTENSITY, POWER DENSITY AND SAR AT FOCUS, WHEN INCIDENT POWER IS NORMALIZED TO 1 W .

Lens antenna	A	B
Maximum field intensity $E \max [\mathrm{~V} / \mathrm{m}]$	2.65×10^{3}	1.62×10^{3}
Maximum power density $P \max \left[\mathrm{~mW} / \mathrm{cm}^{2}\right]$	1.86×10^{3}	6.98×10^{2}
Maximum SAR[W $/ \mathrm{kg}]$	4.74×10^{4}	1.78×10^{4}

clarify the thermal sensation dependency of duration, exposure area, and exposure position.

References

[1] International Commission on Non-Ionizing Radiation Protection, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," 1998.
[2] IEEE Std C95.1, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz ."
[3] Telecommunication Technology Council, "Radio-Radiation Protection Guidelines for Human Exposure to Electromagnetic Fields", TTC Report No. 38 (1990) (in Japanese).
[4] O. P. Gandhi and A. Riazi, Absorption of Millimeter Waves by Human Beings and its Biological Implications, IEEE Trans. Microwave Theory Tech., vol.MTT-34, no.2, 1986, 228-235.
[5] F. Gustrau and A. Bahr, W-Band Investigation of Material Parameters, SAR Distribution, and Thermal Response in Human Tissue, IEEE Trans. Microwave Theory Tech., vol.MTT-50, No.10, 2002, 2393-2400.
[6] T. Konno et al., A Fundamental Study of Warmth Sensation Produced by Millimeter-Wave Exposure, IEICE technical meeting of EMCJ, vol.104, no.150, Hokkaido, Japan, 2004, 61-66.
[7] S.Gabriel, R.W.Lau and C.Gabriel: "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues", Phys. Med. Biol. 41, pp.2271-2293 (1996).

