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The algorithms and graphic user interface software package ‘‘OPT-PROx’’ are developed to meet food
engineering needs related to canned food thermal processing simulation and optimization. The adaptive
random search algorithm and its modification coupled with penalty function’s approach, and the finite
difference methods with cubic spline approximation are utilized by ‘‘OPT-PROx’’ package (http://tomake-
choice.com/optprox/index.html). The diversity of thermal food processing optimization problems with
different objectives and required constraints are solvable by developed software. The geometries sup-
ported by the ‘‘OPT-PROx’’ are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error
minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated
under optimal condition. The developed user friendly dialogue and used numerical procedures makes
the ‘‘OPT-PROx’’ software useful to food scientists in research and education, as well as to engineers
involved in optimization of thermal food processing.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Food engineering is the multidisciplinary field of applied
sciences combined with the knowledge of product properties
(Teixeira et al., 1969; Ramaswamy and Marcotte, 2005; Holds-
worth and Simpson, 2007; Erdoğdu, 2008). Food engineering
provides the technological knowledge transfer essential to the
cost–effective production and commercialization of food products
and services. In the development of food engineering, one of the
many challenges is to employ state-of-art mathematical methods
and based on these methods sophisticated dialogue software to de-
velop new products and processes.

There has been significant progress in applying different opti-
mization techniques in food engineering in the last few decades.
Mainly, it became possible because of continuous advances in com-
puter hardware and software allowed researchers to deal with
these optimization techniques using computational resources.
During the last four decades various optimization techniques have
received great attention in food engineering (Holdsworth, 1985;
Nakai, 1982; Erdoğdu, 2008). Holdsworth (1985) has presented a
general review concerned with the mathematical methods for opti-
mizing the effects of heat processing food products, which are
reviewed in relation to microbial destruction, nutrient destruction,
cooking value and loss of quality. A comparison of optimization
ll rights reserved.
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techniques for food product and process development applications
has been given by Nakai (1982). Banga et al. (2003) have presented
the state of the art computer-aided optimization techniques used
to improve food processing, especially focusing in recent develop-
ments using modern optimization techniques. Their potential for
industrial applications was discussed in the light of several
important examples. Finally, future trends and research needs
are outlined. Erdoğdu (2008) presented a book that evaluates the
potential uses and limitations of optimization techniques for food
processing, including classical methods, artificial intelligence-
genetic algorithms, multi-objective optimization procedures,
global, structure, linear mixed integer optimization methods and
computational fluid dynamics.

Thermal processing is one of the most important industrial
technologies of food preservation in the manufacture of shelf sta-
ble canned foods (Teixeira, 1992). This topic is of great interest
due to their numerous applications and potential economic impor-
tance (Ramaswamy and Marcotte, 2005; Holdsworth and Simpson,
2007; Erdoğdu, 2008). Mainly, thermal processing is concentrated
on the following factors: final product safety and quality, total pro-
cessing time and energy consumption. The diversity of thermal
processing objectives impose different optimal requirements to
sterilization processing, which can be determined analytically or
by numerical procedures and based on these procedures sophisti-
cated dialogue software. It is known, that well designed dialogue
software significantly simplifies an engineering calculations pro-
cess from its initial stage consisted of problem definition or (and)
parameterization to the final stage consisted of realizing required
ssing optimization: Algorithms and software. Journal of Food Engineering
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Nomenclature

A sufficiently large number
ai cubic spline coefficients
bi cubic spline coefficients
Cav volume average quality retention, %
C cook or C value, min
Cd desired cook or C value, min
Cd

av desired average quality retention, %
ci cubic spline coefficients
Drefc time required to reduce the concentration of a nutrient

by a factor of 10 at a certain temperature Trefc

Drefc time required to reduce the concentration of a nutrient
by a factor of 10 at a certain temperature Trefs

Dreff time required to reduce the concentration of a nutrient
by a factor of 10 at a certain temperature Treff

Drefq time required to reduce the concentration of a nutrient
by a factor of 10 at a certain temperature Trefq

di cubic spline coefficients
F pedestal probability distribution
F0 integrated lethality, min
Fd

0 required lethality, min
f cubic spline function
H probability density for prospective sub-domain I
h probability density for non-prospective sub-domain I
I prospective sub-domain
Np number of discretization points
Ns number of random search iterations
n number of decision variables
P1 penalty function for lethality
P2 penalty function for average quality retention
P3 penalty function for surface quality retention
P4 penalty function for cook or C value
P5 penalty function used to hold the temperature profile

TnðtÞ in the given range ½T low; Thight�
pmin heuristic parameters of random search
ps assumed probability in step s where the optimal solu-

tion belongs to the prospective domain I
q half the width of prospective interval
qmin heuristic parameters of random search
R set of real numbers
R radius, m
R1 width, m
R2 height, m
R3 depth, m

r radial cylindrical coordinate
S surface quality retention, %
Sd desired surface quality retention, %
T temperature, �C
Trt retort temperature, �C
Tin initial temperature, �C
Tlow lower limit of retort temperature, �C
Thigh higher limit of retort temperature, �C
Treff reference temperature, �C
Trefc reference temperature, �C
Trefs reference temperature, �C
Trefq reference temperature, �C
t time, min
tf final time, min
tleft left limit of process time, min
tright right limit of process time, min
u control vector
VT total volume, m3

X non-empty set of feasible decisions
x vector of decision variables axial coordinate
x0 center point of prospective domain I
xi

r right bound of decision variable xi

xi
l left bound of decision variable xi

x� global optimal solution
y axial coordinate
z axial coordinate
z axial coordinate
zf temperature change needed to reduce the D-value one

log cycle, �C
zs temperature change needed to reduce the D-value one

log cycle, �C
zs temperature change needed to reduce the D-value one

log cycle, �C
zq temperature change needed to reduce the D-value one

log cycle, �C

Greek letters
a thermal diffusivity coefficient, m2 s�1

U objective or merit function
m volume of the prospective domain I
e accuracy of the final result
n uniformly distributed random variable
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computations. Various types of computer software have been
developed for simulation and optimization of the thermal food
processing over the last few decades. The first computer program
was developed in 1969 by Teixeira and others (Teixeira et al.,
1969) to carry out a computer model for optimization of nutrient
retention in thermal processing of conduction heated foods using
a finite-difference technique. In 1975 Teixeira and others (Teixeira
et al., 1975) have developed a computer program to show the
advantages of a variable retort temperature (VRT) process over
the traditional constant retort temperature (CRT) one. Hayakawa
(1977) designed a group of programs to compute parametric
values for thermal processing evaluation. Mishkin (1982) devel-
oped a computer program for modified Complex method to opti-
mize a food dehydration process. Newman and Holdsworth
(1989) presented a set of computer programs for determining the
temperature distribution in objects of various geometric shapes.
Silva et al. (1992) have developed a Pascal program to model and
optimize heat sterilization of conduction-heated food. Banga
et al. (1991, 1994) presented a new integrated controlled random
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
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search for dynamic systems (ICRS/DS) algorithm and based on this
algorithm a computer program for optimization the thermal pro-
cessing of conduction-heated food considering several objective
functions. Sablani and Ramaswamy (1995) developed thermal pro-
cess simulation program for canned foods under mechanical agita-
tion. Chen and Ramaswamy (2007) developed a graphic user
interface (GUI) software for thermal process calculation. It was de-
signed to be applicable to different retort thermal processing sys-
tems such as constant and variable retort temperature processing
with different types of foods such as solids, liquids, and liquids
containing particles in containers of different shapes and sizes.
Various software packages were developed by Erdogdu et al.
(1998, 1999, 2000), they are the following: (1) software, that calcu-
lates the optimum variable temperature profiles using the geome-
try options, objective functions, and constraints chosen by the
user; (2) software to automate the calculation of heat transfer coef-
ficient for irregular or regular (infinite and finite slab, infinite and
finite cylinder, sphere) geometries; this software significantly facil-
itates and automates the calculation of heat transfer coefficient for
ssing optimization: Algorithms and software. Journal of Food Engineering
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various shapes and heating conditions; (3) windows-based soft-
ware tool to predict internal temperatures, shrinkage, moisture
loss, yield loss, and lethality for different sizes of shrimp, which
made this program a useful tool in making cooking decisions.
Sharma et al. (2011) have developed an Excel-based software for
optimization the design of a falling-film evaporator system for milk
concentration for multiple objectives; the Excel Worksheets were
used by the authors for interfacing, calculation of particular objec-
tives and constraints, while the multi-objective optimization algo-
rithm was implemented inside the Excel Macro (Visual Basic for
Application). Halder et al. (2011) have developed a software pack-
age that can simulate food safety by combining a physics-based
model of food processes with the kinetics of microbiological and
chemical changes to provide bacterial or chemicals amounts at
any time and any location in the food during processing; the soft-
ware package graphic user interface was built using Java Develop-
ment Kit with the physics-based models solved in the background
using COMSOL Multiphysics, a finite-element-based commercial
modeling package. Balsa-Canto and Banga (2010, 2011) have
presented a MATLAB based toolbox for advanced modeling and
identification using global optimization (AMIGO). AMIGO is a pow-
erful tool, which can be utilized for dynamic optimization of ther-
mal food processing, including real-time optimization problems
(Alonso et al., 2011).

The validation of computer simulation models is essential prior
to actual use. The two following approaches were successfully per-
formed to validate the software packages or computer programs
mentioned above (Chen and Ramaswamy, 2007): (i) comparison
of the developed models to the actual application, in other words,
a developed model is evaluated on the basis of how well the model
predictions match with the observed phenomena (Halder et al.,
2011); (ii) comparison of the model with the output of other cur-
rent models, which have been confirmed to be reliable (Chen and
Ramaswamy, 2007). Since the retort thermal processing is a ma-
ture processing technology, several analytical theoretical models
for heat penetration and the various formula’s methods for process
calculations have been developed and confirmed by volumes of
research and practical applications (Chen and Ramaswamy, 2007).

Reference to the thermal processing optimization and simula-
tion techniques and software, including commercial software pack-
ages, can be found in the following publications: Lund (1982),
Holdsworth (1985), Chen and Ramaswamy (2007), Banga et al.
(1991, 2003), Chazala (1998), Erdoğdu (2008), and Halder et al.
(2011).

Therefore, the objective of this research consists of development
a user-friendly GUI software package to meet such food engineering
need as thermal food processing simulation and optimization.

2. Material and methods

2.1. Heat transfer models for thermal sterilization of foods

2.1.1. Finite cylinder
In the particular case of a cylindrical container with radius R

and height 2L, the mathematical model describing heat transfer
by conduction is a mixed boundary problem, as follows (Teixeira
et al., 1969):

@T
@t
¼ a

@2T
@r2 þ

1
r
@T
@r
þ @

2T
@z2

 !
ð1Þ

where T is temperature, t is time, r and z are radial and vertical loca-
tions within the container, and alpha (a) is the thermal diffusivity of
the product.

The model has the following initial and boundary conditions (by
symmetry):
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TðR; z; tÞ ¼ TrtðtÞ; ð2Þ
Tðr; L; tÞ ¼ TrtðtÞ; ð3Þ
@T
@r
ð0; z; tÞ ¼ 0; ð4Þ

@T
@z
ðr;0; tÞ ¼ 0; ð5Þ

Tðr; z;0Þ ¼ Tin; ð6Þ

where Trt(t), t2 [0, tf] will be the retort temperature as a function of
time, and Tin is the initial temperature at t = 0.

2.1.2. Sphere
The basic mathematical model for determining the temperature

distribution in a spherical object of radius R can be presented as
follows (Erdogdu and Balaban, 2003b; Holdsworth and Simpson,
2007):

@T
@t
¼ a

@2T
@r2 þ

2
r
@T
@r

 !
; ð7Þ

subject to the following initial and boundary conditions (by symmetry):

TðR; tÞ ¼ TrtðtÞ; ð8Þ
@T
@r
ð0; tÞ ¼ 0; ð9Þ

@T
@z
ðr; tÞ ¼ 0; ð10Þ

Tðr;0Þ ¼ Tin: ð11Þ
2.1.3. Rectangular parallelepiped
The mathematical model for determining the temperature dis-

tribution in a rectangular-shaped container of dimensions 2R1 �
2R2 � 2R3 can be presented as follows (Luikov, 1968):

@T
@t
¼ a

@2T
@x2 þ

@2T
@y2 þ

@2T
@z2

 !
; ð12Þ

subject to the following initial and boundary conditions:

Tð�R1; y; z; tÞ ¼ TrtðtÞ; ð13Þ
Tðx;�R2; z; tÞ ¼ TrtðtÞ; ð14Þ
Tðx; y;�R3; tÞ ¼ TrtðtÞ; ð15Þ
Tðx; y; z;0Þ ¼ Tin: ð16Þ
2.2. Problem statement for thermal sterilization of foods

The lethality constraint can be specified as follows: (i)
F0ðtf ÞP Fd

0, where Fd
0 is the final required lethality and is calculated

according to the following equation:

F0ðtÞ ¼
Z tf

0
10

ðT�Treff Þ
zf dt; ð17Þ

where T is the temperature at the critical point or cold spot, nor-
mally the geometric center of the container (in the case of conduc-
tion-heated canned foods), Treff is the reference temperature and zf

is the thermal resistance of the microorganisms (in this case,
Treff = 121.11 �C and zf = 10 �C).

The quality retention constraint is specified as follows: (ii)
Cav ðtf P Cd

av Þ, where Cd
av is the desired volume-average final qual-

ity retention value and is calculated as shown in the following
equation (Holdsworth, 1985; Awuah et al., 2007):

Cavðtf Þ ¼
1

VT

Z VT

0
exp � ln 10

Drefc

Z tf

0
10

ðT�Trefc Þ
zc dt

� �
dVT ; ð18Þ
ssing optimization: Algorithms and software. Journal of Food Engineering
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where Trefc is the reference temperature, zc and Drefc are kinetics of
degradation of nutrients.

The surface retention is as follows (Holdsworth, 1985; Awuah
et al., 2007)

Sðtf Þ ¼ exp � ln 10
Dfefs

Z tf

0
10

ðT�Trefs Þ
zs dt

� �
; ð19Þ

where Trefs is the reference temperature, zs and Drefs are kinetics of
degradation of nutrients, and the surface retention constraint can
be specified as follows: (iii) Sðtf ÞP Sd , where Sd is the desired final
surface retention value.

Also a common relationship for estimating quality losses is the
‘‘Cook or C value’’ which was originally proposed by Mansfield
(1962), and is calculated as shown in the following equation
Holdsworth, 1985; Awuah et al., 2007):

Cðtf Þ ¼
Z tf

0
10

ðT�Trefq Þ
zq dt; ð20Þ

where zq and Trefq represent the z-value and reference temperature
for the most heat labile component. The z-value for cooking degra-
dation, ranging from 25 �C to 47 �C, corresponds to sensory attri-
butes, texture softening, and color changes. The z-value of 33.1 �C
and Trefq equal to 100 �C are often used to compute a cook value
describing the overall quality loss (Lund, 1986; Wang et al., 2003).
The cook value constraint is specified as follows: (iv) Cðtf Þ 6 Cd,
where Cd is the desired minimum final cook value.

The following types of single thermal process optimization
problems were considered over the last few decades (Abakarov
et al., 2009a):

(1) Find such a retort function, Trt(t), T low 6 TrtðtÞ 6 Thight, where
the final quality retention Cav(t) is maximized, while the final
process lethality, Fd

0, is held to a specified minimum (Teixeira
et al., 1975; Silva, 1994a; Banga et al., 1991; Erdogdu and
Balaban, 2002; Chen and Ramaswamy, 2002; García et al.,
2005; Erdoğdu, 2008).

(2) Find such a retort function, Trt(t), T low 6 TrtðtÞ 6 Thight, where
the surface quality retention S(t) is maximized, while the
final process lethality, Fd

0, is held to a specified minimum
(Banga et al., 1991; Silva et al., 1994b; Noronha et al.,
1996; Ansorena and Salvadori, 2011).

(3) Find a retort function, Trt(t), T low 6 TrtðtÞ 6 Thight, such that
the final process time tf is minimized subject to the same
lethality requirement above, while the quality retention
must not fall beneath some specified minimum (Banga
et al., 1991; Erdoğdu, 2008; Abakarov et al., 2009b);

(4) Find a retort function, Trt(t), T low 6 TrtðtÞ 6 Thight, where the
cook value S(t) is minimized, while the final process lethal-
ity, Fd

0, is held to a specified minimum (Silva, et al., 1992;
Hendrickx et al., 1993; Chen and Ramaswamy, 2002);

(5) Find a retort function, Trt(t), T low 6 TrtðtÞ 6 Thight, such that
the final process time tf is minimized subject to the same
lethality requirement above, while the quality retention
must not fall beneath some specified minimum, and energy
consumption must not exceed a specified maximum; mini-
mum and maximum values are computed at constant retort
temperature profiles (Almonacid-Merino et al., 1993).

The thermal process optimization problem was also posed and
solved as a multi-objective optimization problem. Erdogdu and
Balaban (2003a) utilized the weighing and lexicographic ordering
methods coupled with the modified complex method to determine
the variable process temperature profile during thermal processing
to maximize the volume average or surface retention of a nutrient
in conduction heated foods of different geometries (a sphere and a
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
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finite cylinder). Sendín et al. (2004, 2010) described an efficient
and robust multi-criteria optimization method which can be suc-
cessfully applied to large dynamic systems, like those arising from
the modeling of thermal processing of foods. The aim of the multi-
criteria optimization problem was to find the time-dependent tem-
perature profile to simultaneously: (1) maximize the overall reten-
tion of a nutrient, (2) maximize the surface retention of a quality
factor, and (3) minimize the total process time. Abakarov et al.
(2009, 2011) utilized a multiobjective optimization and decision
making technique for the thermal sterilization of packaged foods.
The multiobjective optimization approach used in that study was
based on the optimization of aggregating functions by an adaptive
random search algorithm. The numerical results obtained for the
multiobjective test problems and for the thermal processing prob-
lem showed that the proposed approach can be effectively used for
solving multiobjective optimization problems arising in the food
engineering field.

In the general case, the function Trt(t) over t e [0:tf] can be
parameterized using Np points, and during each time interval
t0k ¼ ½tk; tkþ1Þ, k e 0:(Np � 1), the value of Trtðt0kÞ remains constant
at uk (Teixeira et al., 1975; Banga et al., 1991, 2003; García et al.,
2005). However, in this case, the use of a cubic spline in approach-
ing global optimization problems with random search technique
can produce superior results over discrete step-wise functions
(Simpson et al., 2008), mainly because the cubic spline approxima-
tion allows for significantly reducing the number of decision vari-
ables and therefore the necessary number of objective function
computations to reach the global solution. Therefore, the approxi-
mation by the cubic spline was utilized in this study in order to
find optimal VRT profiles.

In the general case, the single-thermal-process optimization
problem utilizing the cubic spline approximation can be presented
as (Abakarov et al., 2009a):

Uðu1;u2; . . . ;uNP�1; tf Þ ¼ tf þ P1 þ P2 þ P3 þ P4 þ P5

!min; tf 2 ½tleft;tright�; ð21Þ

where ui, i e 1:(Np � 1) are the control variables, tleft and tright are the
left and right limits of process time, respectively; tleft and tright can
be obtained from the following expressions:

Fd
0 ¼

Z tright

0
10

ðTlow�Tref Þ
z dt; ð22Þ

Fd
0 ¼

Z tleft

0
10

ðThight�Tref Þ
z dt; ð23Þ

P1, P2, P3, P4 are the penalty functions for lethality, average quality
retention, surface quality retention and cook value, respectively;
the following expressions can be used as penalty functions
(Abakarov et al., 2009a):

P1 ¼
Xtf

t¼0

A� Fd
0 � F0ðtÞ þ jFd

0 � F0ðtÞj
� �

; ð24Þ

P2 ¼
Xtf

t¼0

A� Cd
av � CavðtÞ þ jCd

av � CavðtÞj
� �

; ð25Þ

P3 ¼
Xtf

t¼0

A� Sd � SðtÞ þ jSd � SðtÞj
� �

; ð26Þ

P4 ¼
Xtf

t¼0

A� CðtÞ � Cd þ jCd � CðtÞj
� �

; ð27Þ

where A is a penalty parameter (Himmelblau, 1972), and P5 is the
penalty function that was used simultaneously with the cubic
spline approximation in the search process in order to hold the
autoclave temperature profile Trt(t) in the given range [Tlow, Thight]
(Abakarov et al., 2009a):
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 1. The 2-dimensional pedestal frequency distribution transformations during
the entire random search process: (a) shows the pedestal frequency distribution
used for the first algorithm iteration; (b) shows the pedestal frequency distribution
can be obtained in the middle of the search process; (c) shows the pedestal
frequency distribution for the final algorithm iteration transformed to the d-
function) (Abakarov et al., 2009a).
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P5 ¼
Xtf

t¼0

A� jT low � TrtðtÞj þ jThight � TrtðtÞj þ ðT low � ThightÞ
� �

ð28Þ

The penalty parameter A is normally taken as a large positive
number in order to ensure that the magnitude of the penalty term
is large relative to the magnitude of objective function (in this case
the value A = 1000 was used). For the candidate VRT profiles with no
limit violation, the penalty function values become zero and the va-
lue of merit function (21) is equal to the objective function value. On
the other hand, if there is any violation in the lower or upper limit of
the decision variables, a corresponding penalty value based on the
amount of violation is added to the objective function. Since, this
penalty value is proportional to the distance to the feasible domain,
the adaptive random search algorithm will lead to finding such solu-
tions or VRT profiles that all the given constraints are satisfied.

2.3. Cubic spline approximation

The name spline comes from the thin flexible rod, called a spline,
used by draftsmen to draw smooth curves through a series of discrete
points (Hoffman, 2001). The spline is placed over the points and either
weighted or pinned at each point. Due to the flexure properties of a
flexible rod, the slope and curvature of the rod are continuous at each
point. A smooth curve is then traced along the rod, yielding a spline
curve. Given n + 1 total points xi; i 2 1 : ðnþ 1Þ, n intervals, and
n � 1 interior grid points, xi; i 2 1 : n. A cubic spline is to be fit to
each interval. Thus,

fiðxÞ ¼ ai þ bixþ cix2 þ dix3; i 2 1 : n; ð29Þ

defines the cubic spline in interval i; xi 6 x 6 xiþ1; i 2 1 : n. Since
each cubic spline has four coefficients and there are n cubic splines,
there are 4n coefficients to be determined. Thus, 4n boundary con-
ditions, or constraints, must be available. In the cubic spline ap-
proach, the following constraints are applied.

(1) The function values, fiðxÞ ¼ fi; i 2 1 : n , must be the same in
the two splines on either side of xi at all of the (n � 1) inte-
rior points. This constraint yields 2(n � 1) conditions.

(2) The first derivative of the two splines on either side of point
xi must be equal at all of the (n � 1) interior points. This con-
straint yields (n � 1) conditions.

(3) The second derivative of the two splines on either side of
point xi must be equal at all of the (n � 1) interior points.
This constraint yields (n � 1) conditions.

(4) The first and last spline must pass through the first (i.e., x1)
and last (i.e., xn+1) points. That is f1(x1) = f1 and fn(xn+1) = fn+1.
This constraint yields 2 conditions.

(5) The curvature f 00ðxÞmust be specified at the first (i.e., x1) and
last (i.e., xn+1) points. That is, f 001 ðx1Þ ¼ f 001 and f 00n ðxnþ1Þ ¼ f 00nþ1.
This constraint yields 2 conditions.

When all of the conditions given above are assembled, 4n linear
algebraic equations are obtained for the 4n spline coefficients ai, -
bi, ci, and di; i 2 1 : n. This set of equations can be solved by Gauss
elimination (Hoffman, 2001).

2.4. Adaptive random search algorithm

Let the global optimization problem be formulated as follows, in
which some continuous objective function of a decision variable is
to be minimized over a set of candidate decision variables:

UðxÞ !min
x2X

; ð30Þ

where: X ¼ ½0;1�n � Rn is a non-empty set of feasible decisions (a
proper subset of Rn), x = hx1, x2, . . ., xni e X is a real n-vector decision
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food processing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 2. Worksheet for determination of heat transfer coefficient.
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variable, and U : Rn ! R is a continuous objective function. It is
supposed, that all of the constraints are included in the objective
function (30) by utilizing a penalty function approach (Himmelblau,
1972).

The adaptive random search method belongs to a specific class
of global stochastic optimization algorithms (Zhigljavsky and
Zilinskas, 2008). This class of algorithms is based on generating
the decision variables from a given probability distribution, and
the term ‘‘adaptive’’ consists of modifications to the probability
distribution utilized in the searching process, which, throughout
the whole search process, act as minimum computations of the
objective function, locating global solutions (Tikhomirov, 2006;
Abakarov et al., 2009a). A discrete analogue of the normal distribu-
tion – the pedestal probability distribution – is utilized in the adap-
tive random search algorithm. After every calculation of problem
(1), the pedestal distribution of x = hx1, x2, . . ., xni is modified so that
the probability of finding the optimal value of the objective func-
tion is increased.

Let Ii � X be a prospective interval for variable xi; i 2 1 : n and
2q be the width of each prospective interval. Let I be a Cartesian
product of sets Ii; i 2 1 : n. For the random search algorithm I is
interpreted as a prospective sub-domain with center point
x0

i ; i 2 1 : n. It is assumed that the optimal solution of problem
(30) always belongs to the prospective sub-domain I with the
probability not less than 0.5 (Tikhomirov, 2006). Thus, the proce-
dure of the adaptive random method can be described as follows
(Abakarov et al., 2009a):

(1) Set the total number of random search iterations Ns.
(2) Set the center point x0

i ; i 2 1 : n, as the center point of the
initial prospective sub-domain I.
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
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(3) Generate a new value of vector xs e X from the current ped-
estal probability distribution Fs(xs�1).

(4) Compute the value of the objective function Us = U(xs) and
calculate a minimal value of the objective function in step
s by using the formula
Us
min ¼ minfUs;Us

ming ð31Þ

(5) If Us
min < Us�1

min set the center point x0 = xs.
(6) Modify the pedestal probability distribution.
(7) s: = s + 1.
(8) If s < Ns then go to step 2.
(9) End.

In order to modify the pedestal probability distribution (step 5),
the following formulas are used (Abakarov et al., 2009a):

� to calculate the probability density hs for step s, s e 1:Ns, the fol-
lowing formula is used:
ssing o
hs ¼ 1� ps

1� v s
; ð32Þ
where vs is the volume of prospective sub-domain of random
search which we have in steps (v0 = 1) and ps is the assumed prob-
ability in steps where the optimal solution of problem (1) belongs
to the prospective sub-domain I;

� to calculate current volume vs and assumed probability ps, the
basic random search method uses the following expressions:
ptimization: Algorithms and software. Journal of Food Engineering
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Fig. 3. Thermal food processing optimization worksheet.

Table 1
Parameters utilized in the thermal process simulation study (Erdogdu and Balaban,
2002; Simpson et al., 2008; Sendín et al., 2010).

Product Case study A Case study B Case study C

Pork pure Tuna fish –

Can 307 � 409 RO-1150 Sphere
Diameter (m) 0.0875 0.15 0.032
Height (m) 0.1160 0.07 –
a (m2 s�1) 1.5443 � 10�7 1.143 � 10�7 1.54 � 10�7

T0 (�C) 45 25 40
Microorganism Bacillus

stearothermophilus
Clostridium
botulinum

Bacillus
stearothermophilus

z (�C) 10 10 10
Dreff (s) 240 15 240
Treff (s) (�C) 121.11 121.11 121.11
Quality factor Thiamine Luminosity (L-

Hunter value)
Thiamine

zc (�C) 25.56 44.00 35.00
Drefc (s) 10,716.0 88,000.0 10,716.0
Trefc (s) (�C) 121.11 121.11 121.11
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qsþ1 ¼ qsð2eÞ
1

Ns ; q0 ¼ 1
2
; ð33Þ

v s ¼ ð2qsÞn; ð34Þ

where e is the given accuracy;

ps ¼
ssðpmin�1Þ

smin
þ 1; if 0 6 v s

6 vmin;

vsð1�pminÞ
1�vmin

þ pmin�vmin
1�vmin

; if vmin 6 vs
6 1:

8<
: ð35Þ
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
(2012), doi:10.1016/j.jfoodeng.2012.02.013
Variables pmin and qmin (vmin = (qmin)n) are two heuristic param-
eters in the adaptive random search which allow tuning the algo-
rithm to different types of problems in accordance with the known
physical properties of the system under consideration.

To generate a new value of vector xs e X from the current pedes-
tal probability distribution (step 2), the following subroutine is
used (Abakarov et al., 2009a).

(1) n: = RAND(), where RAND() is a function which returns a
value uniformly distributed over(0, 1).

(2) For i = 1 to n.
(3) If n < hs then xs

i ¼ xi
r þ ðxi

r � xi
lÞ � RANDðÞ, where ai and bi are

the left and right bounds, respectively, of decision variable xi.
(4) Else xs

i ¼ x0
i � qþ 2q� RANDðÞ.

(5) End If
(6) End For

During the search process, a random search generates random
vector values x0; x1; . . . ; xs, calculates problem (30), accumulates
information about the solved problem and transforms the pedestal
frequency distribution according to the computations performed.
Transformations consist of reducing the deviation of the pedestal
distribution (or prospective sub-domain I # X) around the mean
(or the center point x0

i ; i 2 1 : n), which is the current best solution
x0 2 X; f ðx0Þ < f ðxjÞ; 8j 2 1 : s. Fig. 1b shows that the pedestal fre-
quency distribution can be obtained in the middle of the search
process, and now the points of domain X, in terms of probability
density, can be divided into two non-overlapping subsets, where
h and H are the probability densities of the non-prospective and
the prospective sub-domains, respectively. Fig. 1c shows the ped-
estal frequency distribution for the final algorithm iteration trans-
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 4. Case study A: iso-lethality curve obtained for a target lethality of Fd
0 ¼ 12, and curve showing thiamine retention as a function of equivalent CRT processes.

Table 2
Final quality (thiamine) retentions for each equivalent process.

CRT (�C) Time (min) Average quality (%)

110 262 36.04
112 205 40.96
115 154 45.67
118 125 47.76
120 111 48.22
122 101 48.11
125 90 47.25
127 84 46.36
130 76 44.65
132 72 43.47
135 67 41.62
137 64 40.42
140 60 38.71
VRT (1) 88.4 48.22
VRT (2) 111 50.85
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formed to the d-function, known as Dirac delta function (Hormand-
er, 1983), and it is assumed that for any point x0 of the final pro-
spective sub-domain I, the following condition holds:
jx0i � x�i j 6 e; 8i 2 1 : n. In the sense of probability distribution,
the Dirac delta function is the limit of a sequence of functions
whose graphs become thin, tall peaks around the pointxast

(Hormander, 1983).
2.5. ‘‘OPT-PROx’’ software package

Borland C++ Builder 6.0 was used to create the ‘‘OPT-PROx’’ GUI
software.1 ‘‘OPT-PROx’’ software contains two worksheets oriented
to the numerical determination of heat transfer coefficient (Fig. 2),
and to the thermal processing optimization (Fig. 3). The adaptive
random search algorithm coupled with penalty functions ap-
proach, and the finite difference method with cubic spline approx-
imation are utilized by ‘‘OPT-PROx’’ for simulation and
optimization of the thermal food processes. The mean square error
minimization principle is utilized in order to estimate the heat
1 ‘‘OPT-PROx’’ software is freely available at http://tomakechoice.com/optprox/
index.html.
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transfer coefficient of food to be processed under optimal
condition.

The following types of objective functions and constraints are
supported by ‘‘OPT-PROx’’ software. Types of objective functions:

� minimization of total processing time,
� minimization of cooking value,
� maximization of surface quality retention,
� maximization of average quality retention.

Optimization constraints for:

� surface quality retention,
� average quality retention,
� cook value,
� thermal lethality value,
� total thermal processing time.

The geometries supported by the ‘‘OPT-PROx’’ are the following:

� cylinder,
� rectangle,
� sphere.

The developed ‘‘OPT-PROx’’ graphic user interface allows the
easy formulation of the required optimization problems through
combining the mentioned above optimization objectives, con-
straints and geometries (Fig. 3).

3. Results and discussions

3.1. Case study A: thermal processing under constant retort
temperature profiles

All numerical results presented in this research were obtained
utilizing the ‘‘OPT-PROx’’ software package. Computations were
performed on notebook with Intel, Triple-Core CPU, 2.40 GHz,
3.0 GB of RAM. As a first step, it was found all those combinations
of constant retort temperature and processing time for the condi-
tions listed in Table 1 that would deliver the same final target value
of lethality (Sendín et al., 2010; Simpson et al., 2008). In this numer-
ical experiment, a target lethality of Fd

0 ¼ 12 min was chosen to
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 5. Case study A: optimum VRT profile for minimization processing time from adaptive random search algorithm using cubic spline approximation and 5000 evaluations
of objective function (‘‘OPT-PROx’’ window).

Fig. 6. Case study A: optimum VRT profile, resulting center temperature profile and accumulated lethality curve for minimization processing time problem.
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produce the iso-lethality curve shown in Fig. 4. Each point on this
curve defines a CRT and processing time resulting in a final target
lethality. For each of these equivalent processes, the final level of
quality (thiamine) retention CðtÞ was calculated, and presented as
an optimization curve in Fig. 4 and Table 2.
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
(2012), doi:10.1016/j.jfoodeng.2012.02.013
We can see from Fig. 4 and Table 2 that the maximum level of
thiamine retention possible with a constant retort temperature
(CRT) was 48.22% over the range of possibilities, which could be
as low as 36.04%. The optimum CRT process for this product is
one in which the retort temperature is held constant at 120 �C,
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 7. Case study A: optimum VRT profile for maximum thiamine retention from adaptive random search algorithm and 5000 evaluations of objective function (‘‘OPT-PROx’’
window).

Fig. 8. Case study A: optimum VRT profile, resulting center temperature profile and accumulated lethality curve for maximum thiamine retention problem.
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with a corresponding process time (time between steam on and
off) of 111 min.

3.2. Case study A: Minimization processing time problem

This numerical experiment deals with searching for the opti-
mum VRT profile to minimize processing time within the
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
(2012), doi:10.1016/j.jfoodeng.2012.02.013
constraints of assuring both minimum required target lethality
and quality retention. Thus, the search routine was restricted in
two ways, first to satisfy the lethality constraint of Fd

0 = 12 minutes,
and secondly that the quality thiamine retention could not fall be-
low 48.22%. The result obtained by ‘‘OPT-PROx’’ with 5000 itera-
tions of adaptive random search is shown in Figs. 5 and 6 and in
Table 2 (see VRT(1)). The computation time spent by ‘‘OPT-PROx’’
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 9. Case study B: iso-lethality curve obtained for a target lethality of Fd
0 ¼ 9, and curve showing surface retention of luminosity as a function of equivalent CRT processes.
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for the computation of optimal temperature profile was equal to
14.53 min. In this case, the thiamine retention of 48.22% was
achieved with a further reduction in processing time from
111 min down to 88.4 min, thus the processing time was reduced
on 12.47%.
3.3. Case study A: maximizing overall quality (nutrient) retention

The numerical experiment was to see if any further improve-
ment in thiamine retention would be possible with an optimum var-
iable retort temperature profile within the upper and lower limits of
retort temperature in the range of this study (100–150 �C) and for
the processing time equal to 111 min. The result, obtained with
5000 iterations of adaptive random search algorithm, shows that
an optimum VRT process could further increase maximum thiamine
retention only modestly to 50.85% from the 48.22% possible with
the optimum CRT process (see Figs. 7 and 8 and Table 2, VRT(2)).
The computation time spent by ‘‘OPT-PROx’’ for the computation
of optimal temperature profile was equal to 15.45 min. This result
shows that little benefit was gained from increasing significantly
the processing time from 88.4 to 111.0 min, which is in accordance
with the studies reported earlier (Teixeira et al., 1975; Banga et al.,
1991; Durance, 1997; Abakarov et al., 2009b).
Table 3
Final levels of surface retentions (luminosity) for each equivalent process.

CRT (�C) Time (min) Surface retention (luminosity) (%)

115 204 79.29
116 193 79.31
117 183 79.27
118 175 79.16
119 168 79
120 161 78.75
121 156 78.46
122 150 78.16
123 145 77.8
124 141 77.38
125 137 76.92
VRT (3) 148.1 80.0
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3.4. Case study B: thermal processing under constant retort
temperature profiles

In this case study the thermal sterilization of canned tuna fish is
considered (Sendín et al., 2010). As a first step, it was found all
those combinations of constant retort temperature and processing
time for the conditions listed in Table 1 that would deliver the
same final target value of lethality. A target lethality of Fd

0 =
9 min was chosen to produce the iso-lethality curve shown in
Fig. 9. For each of these equivalent processes, the final level of sur-
face retention (luminosity) S(t) was calculated, and presented as an
optimization curve in Fig. 9 and Table 3. We can see from Fig. 9 and
Table 3 that the variation in the surface retention of luminosity
was relatively small (the maximum and minimum levels of surface
retention were equal to 79.31% and 76.92%, respectively), which is
in accordance with the study reported earlier by Sendín et al.
(2010). The optimum CRT process for this case is one in which
the retort temperature is held constant at 116 �C, with a corre-
sponding process time of 193.0 min.
3.5. Case study B: minimization processing time problem

This numerical experiment deals with searching for the opti-
mum VRT profile to minimize processing time within the con-
straints of assuring both minimum required target lethality and
surface retention of luminosity. Thus, the search routine was re-
stricted in two ways, first to satisfy the lethality constraint of
Fd

0 ¼ 9 min, and secondly that the surface retention of luminosity
could not fall below 80.0%. The result obtained by ‘‘OPT-PROx’’
with 5000 iterations of adaptive random search is shown in Figs.
10 and 11 and in Table 3 (see VRT(3)). The computation time spent
by ‘‘OPT-PROx’’ software for the computation of optimal tempera-
ture profile was equal to 33.6 min. In this case, the thiamine reten-
tion of 80.0% was achieved with a further reduction in processing
time from 193.0 min down to 148.1 min, thus the processing time
was reduced on 23.3%.
3.6. Case study C: VRT optimization for spherical geometry

This numerical experiment deals with searching for the opti-
mum VRT profile to maximize surface quality (nutrient) retention
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 10. Case study B: optimum VRT profile for minimization processing time from adaptive random search algorithm using cubic spline approximation and 5000 evaluations
of objective function (‘‘OPT-PROx’’ window).

Fig. 11. Case study B: optimum VRT profile, resulting center temperature profile and accumulated lethality curve for minimization processing time problem.
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for spherical geometry within the constraint of assuring mini-
mum required target lethality Fd

0 equal to 9 min. We also compare
the optimization results obtained by ‘‘OPT-PROx’’ software with
results found in literature by Noronha et al. (1993) and by (Erdog-
du and Balaban, 2002), where the quasi-Newton multivariable
and the Complex optimization algorithms were successfully
applied. Thermal and physical properties for these studies are
listed in Table 1. The result obtained by ‘‘OPT-PROx’’ with 5000
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
(2012), doi:10.1016/j.jfoodeng.2012.02.013
iterations of adaptive random search is shown in Figs. 12 and
13. The computation time spent by ‘‘OPT-PROx’’ for the computa-
tion of optimal temperature profile was equal to 23.66 min. The
final surface thiamine retention was found to be 82.48% for this
case, which is almost similar to the values 83.5% and 83.68%, re-
ported by Noronha et al. (1993) and by Erdogdu and Balaban
(2002), respectively. The total processing time computed by
‘‘OPT-PROx’’ software was equal to 18.43 min, which is very
ssing optimization: Algorithms and software. Journal of Food Engineering
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Fig. 12. Case study C: optimum VRT profile for maximum thiamine retention from adaptive random search algorithm and 5000 evaluations of objective function (‘‘OPT-
PROx’’ window).

Fig. 13. Case study C: optimum VRT profile, resulting center temperature profile and accumulated lethality curve for maximum surface quality (nutrient) retention problem.
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similar to the value 18.04 min reported by Erdogdu and Balaban
(2002) (see Fig. 13).

4. Conclusions and future direction

Findings from this study would suggest that the developed
user-friendly interfaces and the utilized numerical approaches
Please cite this article in press as: Abakarov, A., Nuñez, M. Thermal food proce
(2012), doi:10.1016/j.jfoodeng.2012.02.013
make the simulation and optimization of the thermal food pro-
cessing easy and adaptable. The ‘‘OPT-PROx’’ software is valuable
to find the improvements in different objective functions for dif-
ferent geometrical shapes and for different processing conditions.
The agreement between the computations performed by ‘‘OPT-
PROx’’ and the computation results obtained by other researches
was consistently good under different processing conditions,
ssing optimization: Algorithms and software. Journal of Food Engineering
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which also demonstrate the reliability of the developed software.
Therefore, we would suggest that the ‘‘OPT-PROx’’ software pack-
age can be useful to food scientists in research and education, as
well as to engineers involved in optimization of thermal food pro-
cessing. The possible direction for future research is to develop
the version of ‘‘OPT-PROx’’ software, which will be able to tackle
multi-criteria decision making problems arising in thermal pro-
cessing of canned foods.
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