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Abstract

Capacitance is a measure of the ability to store electrons and is conventionally considered to be a con-
stant dependent upon the shape of metal contacts and the dimensions of the system. In general, however,
equipotentials of dielectric systems without metal contacts take the shape of very complex three-dimensional
surfaces resulting from the spatial distribution of discrete electrons. The fundamental definition of capac-
itance, C ≡ Q/V , in which V is the potential within which electrons are confined, requires that the total
capacitance take into account local capacitances of every electron and all cross-capacitances. To circumvent
this complexity, the average total electrostatic potential experienced by each electron is utilized to obtain a
capacitance expression generally appropriate to dielectric systems consisting of few excess electrons without
metallic contacts. The capacitance may then be expressed as an exact function of the total electrostatic
potential energy of the system. The integrity of this expression is demonstrated using a representative
system of N excess electrons confined to a dielectric sphere. The capacitance expression is shown to be
consistent with the conventional capacitance for a single electron dielectric sphere and with C = 4πε0ε

′a
for metallic spheres. A relatively large sphere size is chosen such that the magnetic moment interaction
energy is negligibly small. The capacitance exhibits a non-uniform relationship with respect to N coincident
with shell-filling patterns of the natural atomic system. This classical electrostatic interactions approach
is particularly appealing to the practical development of nanoscale materials and devices as it circumvents
immediate recourse to often unintuitive and complicated quantum mechanical descriptions.
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1. Introduction

The characterization of phenomena resulting
from the confinement of few electrons is central to
the design and development of current and near-
future nanoscale materials. We recently demon-
strated variation of the classical capacitance of di-
electric spheres with the number of stored elec-
trons1a result encouraging further exploration of
classical electrostatic phenomena. Conventionally,
capacitance is measured as a function of the po-
tential difference between two metal contacts. Iso-
lated dielectric systems, however, function in the
absence of well-defined equipotential surfaces. In-
stead, equipotentials take the shape of very com-
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plex three-dimensional surfaces resulting from the
spatial distribution of stored electrons.

We derive a time-independent, electrostatic ca-
pacitance expression for dielectric systems in the
absence of metallic contacts2 based on the fun-
damental capacitance definition, C ≡ Q/V . The
confining potential, V , conventionally given as the
potential difference between two metal surfaces is
replaced by the average electrostatic potential ex-
perienced locally by each electron. The integrity
of the proposed capacitance expression is validated
by numerical agreement with the conventional ca-
pacitance for singleelectron dielectric spheres and
the constant conventional capacitance of metallic
spheres. In the former case, the two models should
agree as the single electron system represents a per-
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fect spherical symmetry in which the charge may be
represented by a single point charge at the origin or
as a uniform surface charge.
The addition or removal of an electron to or

from a dielectric sphere represents capacitance
changes. When compared with neighboring capac-
itance states, a broad trend among even and odd
number states of electrons emerges. With this ob-
servation, each N electron system is proposed to
be treated as a distinct phase characterized by its
unique range of spatial electron symmetries, in or-
der to properly facilitate the development of capac-
itance studies. In particular, electrostatic, time-
independent parameters of a given N electron sys-
tem are considered monophasic, while paramet-
ric variations that occur without electron loss or
gain may be characterized by intraphasic parame-
ters. Parametric variations resulting from electron
loss or gain may then be characterized by inter-

phasic parameters. The conventional capacitance
does not provide for characterization of intraphasic
phenomena. The discrete charge dielectric (DCD)
model presented here, however, exposes a vibrant
intraphasic range of complexity inherent to isolated
nanoscale systems.

2. The DCD model

The DCD model is very practical and intuitive,
consisting of a uniform dielectric sphere of permit-
tivity ε and radius a surrounded by a uniform di-
electric medium of lesser permittivity, ε0. The di-
electric function is assumed to change abruptly at
r a. For the purpose of illustration, a sphere of
radius a = 10nm, ε = 12 and ε′ = 4, is chosen such
that magnetostatic interaction energy (≤ 5 × 10−8

eV for N = 30 electrons) arising from the magnetic
moments of electrons is negligible compared to the
total electrostatic interaction energy (∼ 30eV for
N = 30). For atom-size systems (a ∼ 0.1nm), how-
ever, the magnetostatic interaction becomes signif-
icant (≤ 0.3eV for N = 30).
Since the dielectric constant of the sphere is

greater than the permittivity of the surrounding
medium, electrons in the sphere induce a net-
negative surface charge. Each electron stored in the
dielectric sphere interacts with electrostatic poten-
tials due to all other electrons and induced surface
charges. These interactions may be placed in three
categories: (1) polarizations with surface charges
induced by other electrons, (2) self-polarizations
with the surface charge induced by each electron it-
self, and (3) Coulomb interactions with other elec-

trons. The first two result from electron interac-
tions with the potential solutions of Poissons equa-
tion resulting from polarized surface charges3
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where ri is the source point, rj is the field point,
and Pl(cos γij) are Legendre polynomials for each
angle γij subtended by ~ri and ~rj .

A special case of the DCD model is the presence
of a single excess electron in a dielectric sphere. The
total electrostatic interaction energy of the electron
is given by
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valid for all ri < a, is the net work done in polar-
izing the dielectric sphere. Here, integration over
charge is appropriate as polarization results in an
infinitely divisible surface charge. Note that for self-
polarizations ri = rj in Eq. 1. Consequently, the
self-polarization energy is

Es(ri) =
1

2
eφ(ri). (2)

A factor of 1/2 appears in Eq. 2 as an explicit
consequence of having subtracted the work done by
the electron to polarize an infinitely divisible net
surface charge at the dielectric interface rather than
simply due to arguments of this interaction being a
self-interaction4. The interaction energy must only
account for the interaction of the electron with the
potential at ri.

Having minimized the self-polarization energy,
the electron is intuitively found at the center of the
sphere. Equilibrium configurations of N -electron
systems resulting from minimization of the total
interaction energy, as described previously1,2, are
found to be solutions of the single-shell Thomson
problem5–17 with electron radii, b < a. The Thom-
son problem has been widely studied, accurate solu-
tions of which have emerged in the past two decades
for large values of N .
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3. Monophasic capacitance

The fundamental capacitance definition, C ≡
Q/V , represents the total free charge, Q ≡ Ne,
confined by a total potential, V . Only confined
excess electrons contribute to the total charge, Q.
The polarized surface charge is implicitly taken into
account by the potential, Eq. 1. The ideal charge
configurations of the conventional model, a point
charge at the origin or an infinitely divisible surface
charge, produce spherical equipotentials that con-
form to the shape of the sphere. In the DCD model,
however, equipotentials take the form of compli-
cated three-dimensional surfaces. In general, the
potential with which each electron interacts varies
from site to site. An equivalent system capaci-
tance may be constructed by summing all the lo-
cal electrophasic capacitances of each electron in se-
ries or parallel; however, proper evaluation of cross-
capacitances among regions is formidable. There-
fore, it is appropriate to express the system capaci-
tance using the average total potential experienced
by each electron,

V̄TOT(ri) =
1

N

N
∑

i=1

φi(ri) =
V (N)

N

yielding the definition of monophasic capacitance,

C(N) ≡
Q

V̄TOT(ri)
= N

Q

V (N)
. (3)

The scalar electrostatic potential is the sum of all
component potentials,

V (N) = φC(N) + φP (N) + φS(N).

The conventional capacitance of an isolated dielec-
tric sphere may be expressed by

C(ε) =
Q2

2E(ε)
(4)

with the conventional energy given by

E(ε) =
Q2

8πε0a

(

1

ε′
−

1

ε

)
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Evaluation of the monophasic capacitance, Eq. 3,
for ε = 12, 24, 120 and 1200 for a sphere of ra-
dius 10nm with ε′ = 4 numerically agrees with
Eq. 4 for N = 1 (Fig. 1). The monophasic ca-
pacitance given by the DCD model converges to
the constant conventional capacitance of a metallic
sphere, C = 4πε0ε

′a, as ε grows very large (Fig. 1).
Based purely upon a fundamental definition, the
monophasic capacitance represents a significant im-
provement upon our previous capacitance for dis-
crete electron systems1.

Figure 1: Comparison of monophasic capacitance with con-
ventional values. The monophasic capacitance, C(N) ≡

Ne/V (N), converges to the conventional capacitance, C =
4πε0ε′a, of a conducting sphere for large dielectric constant
and in general for N = 1. Here, a = 10nm and ε′ = 4

4. Interphasic phenomena

As a rule of thumb, the addition of an electron to
the sphere lowers the capacitance as the sphere loses
capacity for additional electrons. However, results
of the DCD model demonstrate that lower spatial
symmetry corresponds to lower monophasic capaci-
tance. A comparison of interphasic capacitance dif-
ferences, δC = |C(N)−C(N−1)|−|C(N)−C(N+
1)|, yields a trend of monophasic capacitances for
even [N ] phases, shown in Fig. 2a, that are closer in
value to the monophasic capacitance of neighboring
[N−1] phases than to [N+1] phases. Consequently,
even-N phases tend to have greater capacity for an
additional electron than odd-N phases, indicating
that even-N phases lie lower in energy than odd-N
phases. Indeed, a plot of interphasic energy differ-
ences (Fig. 2b) also clearly bears out this resulting
even/odd trend.
Symmetry differences between neighboring

phases may be directly studied. For exam-
ple, the interphasic capacitance difference
∆C+(N) = C(N) − C(N + 1) represents ca-
pacitance loss for each [N ] electron phase with
the addition of an electron. This interphasic
capacitance yields pronounced non-uniformities
as shown in Fig. 3. When an electron is removed
from an [N + 1] phase, the resulting [N ] phase has
a greater capacity for electrons. Thus, ∆C + (N),
is generally positive and diminishes as N becomes
very large as expected. Smaller differences indi-
cate closer proximity of odd-N capacitances to
neighboring [N + 1] phases.
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Figure 2: Interphasic differences. (a) Interphasic capacitance differences, indicate a broad trend of lower even-N phases
representing monophasic capacitance states lying closer to the preceding [N − 1] phase than the neighboring [N + 1] phase.
These lower values represent phases with greater electrostatic capacity than odd-N phase values. The vertical scale is magnified
to accentuate features for N ≥ 14. (b) Interphasic energy differences, also exhibit even-numbered phase energies lying closer
to preceding [N − 1] phases than neighboring [N + 1] phases, indicating greater even-N symmetries. Note the trend reversal
in the region 24 < N < 29 for both capacitance and energy.

Figure 3: Interphasic capacitance ∆C+(N) = C(N)−C(N +1). The interphasic capacitance associated with electron addition
indicates a trend of greater capacity losses associated with odd-N phases than even-N phases. The vertical scale is magnified
to accentuate features for N ≥ 8.
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5. Intraphasic phenomena

To examine parametric variations exclusively as-
sociated with electron symmetry, it is necessary to
hold fixed the total charge (number of electrons)
in the system. To examine one such intraphasic
variation, consider the symmetry change involved
in the process of moving an electron from a partic-
ular equilibrium [N ] configuration to the center of
the sphere. The electron moved to the origin con-
tributes to the perfect spherical symmetry of the
system while the remaining N−1 electrons form an
[N − 1] symmetry about the origin. The resulting
[N − 1, 1e] configuration has symmetry identical to
the [N − 1] phase without an electron at the origin.
The process described may be considered a sym-
metric loss of an electron from the sphere just as
the conventional electrostatic image of an electrons
charge is moved to infinity. The amount of work
required to perform this symmetry change may be
evaluated within the DCD model and is collected in
Fig. 4a for each [N ] phase from which an [N−1, 1e]
configuration is obtained (that is, an N−1 electron
symmetry with one electron at the origin). The con-
ventional model inadequately provides for no work
done in this process, as the total charge on the sys-
tem is unchanged.
The symmetric loss of an electron is the equiva-

lent of ionizing a single electron from the system.
Indeed, utilizing only Coulomb interaction compo-
nents of the total energy, reducing electron radii
to quantum mechanical radii18, and assuming the
permittivity of free space, ε0, a plot of these ener-
gies (Fig. 4b) bears a striking resemblance to a plot
of empirical ionization energies19 of neutral atoms
(Fig. 4c). Similarities among inter-period energy
trends are noted including rising outer p-shell en-
ergies and the wavy trend of outer d-shell energies.
The DCD model yields energies comparably larger
than established ionization energies, owing to as-
sumptions of permittivity and atom size that may
later be treated as variational parameters within a
broader classical theory.

6. Electrostatic shell-filling

Non-uniformities in Fig. 4a are uniquely coinci-
dent with abrupt differences in electron shell sym-
metries of the atomic structure. The larger differ-
ences at N = 3, 5, 11, and 19, for example, are co-
incident with the start of new electron shells asso-
ciated with elements having atomic numbers Z = 3
(Li), Z = 5 (B), Z = 11 (Na), and Z = 19 (K),

Figure 4: Intraphasic energy. (a) W+ = E(N − 1, 1e)
due to symmetric loss of an electron. Note that non-
uniformities coincident with electron shell changes in the
natural atomic structure. (b) Using quantum mechanical
radii and ε = ε0, coincides with (c) known ionization ener-
gies of neutral atoms.

respectively. These electrostatic non-uniformities
represent parametric shifts due to spatial symme-
try changes between 1s and 2s shells, 2s and 2p
shells, 2p and 3s shells, and so forth. Interestingly,
the region in which the even/odd trend is violated
in Fig. 2 (24 < N < 29) is bounded by Z = 24 (Cr)
and Z = 29 (Cu) which have half-filled 4s shells
that violate Hunds rule of shell-filling, for example.
The non-uniformity at N = 21 is not as pronounced
as others, perhaps owing to the proximity of the 3d
energy to 4s energy. Within the DCD model, the
close proximity of energies is demonstrably a con-
sequence of similar spatial symmetries. As well,
each period ends (N = 2, 10, and 18) with ener-
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gies that tend to be lower than the general trend
as do filled p-shells of noble elements that have low
ground state energies.

7. Discussion and comments

From a purely classical electrostatic foundation,
the DCD model provides a rich and vibrant range of
phenomena of particular interest to the nanoscale
science of confined charge systems. Among the
primary results obtained using this model, much
emphasis is placed on the symmetry of collections
of discrete electrons. Consequently, the model is
based on the discrete, rather than the wave, nature
of electrons characteristic of classical mechanics.
The model is highly intuitive, practical and compu-
tationally efficient as it draws upon well-established
electrostatic principles appropriately applied to sat-
isfy the necessary boundary conditions of nanoscale
materials as opposed to assumptions made with
continuum and periodic systems as often found in
solid state theories.
Indeed, as solutions of the established single-shell

Thomson problem are obtained in this work, some
resulting trends are readily verified using numeri-
cal solutions found in the literature7,10. However,
such solutions only involve Coulomb interaction en-
ergies among electrons on a fictitious unit sphere
and any mechanism to appropriately vary the size
of each system. Here, we have chosen to minimize
the total interaction energy of electron ensembles
within a dielectric sphere model to include polar-
ization interactions. Furthermore, only here is a
classical electrostatic identification made with the
periodic table of elements for which the Thomson
problem was originally proposed5 in 1904 through
inherent symmetry properties of discrete electrons
confined to a spherical system. Thus, we have pre-
sented a valid extension of the classical Thomson
model of the atom. From a broad perspective,
the atomic system is a collection of electrons con-
strained to a spherical spatial symmetry. The simi-
lar symmetries of the atomic and dielectric systems
allows us to conclude that inter-shell energy dif-
ferences derive from classical electrostatic solutions
of Poissons equation in the time-independent do-
main which represent salient features of the time-
dependent Schrödinger equation.
A useful component of the DCD model is the

proposed monophasic capacitance as it is directly
proportional to spatial electron symmetry. Greater
symmetry corresponds to greater capacitance owing

to lower electrostatic energy. The monophasic ca-
pacitance represents an improvement over existing
expressions as it bears out, and is substantiated by,
unique correspondences with natural atomic sys-
tems and has been shown to result in an even/odd
trend unprecedented in any classical model. The
latter feature substantiates our proposed argument
to treat each Nelectron system as a distinct phase
characterized by its unique range of spatial symme-
try properties.
Parametric, time-dependent changes within a

phase, however, such as intraphasic capacitances,
should be born out in detail by any electrodynamic
model utilizing differential capacitances, for exam-
ple, Cd = dQ/dV in the range of possible dV
when dQ = 0. A rapid interphasic transition may
be represented by C∆ = ∆Q/∆V in which the
rapid change in charge may be well approximated
by ∆Q → e. Alternatively, slow phase transitions
may be represented by the differential Cd = dQ/dV
as dQ → 0. Characterization of interphasic phe-
nomena is governed by the dynamics of each phase
transition, details of which are not contained in
time-dependent capacitance models in the litera-
ture4,20–22.
Continued usefulness of the DCD model depends

upon utilization and understanding of underlying
spatial symmetry properties from which all physi-
cal properties derive as hinted by the usefulness of
density functionals that replace the role of wave-
functions in conventional quantum mechanics. As
well, a Jellium-like model may be constructed to ac-
count for the difference of net-charge between the
atomic and dielectric systems. The non-uniformity
of induced surface charges in the DCD model is a
reflection of internal Thomson electron geometries.
However, distributions of protons in atomic nuclei
that create the potential well in which electrons are
confined are also not spherically uniform.
The dielectric boundary of our model is chosen

as a sharp interface for the purpose of illustra-
tion, providing a specific system size whereas no
true boundary exists in atomic systems from which
inside and outside may be rigidly defined. The
maxima of quantum mechanical probability distri-
butions, Ψ∗Ψ, are typically used as atomic radii.
The key to the single-shell Thomson model is use
of the electron radius as a fitting parameter just as
the monophasic spatial symmetry is independent
of electron radius. Here, capacitance is strictly de-
fined within the volume of the entire sphere while it
is conventionally defined per unit length or unit vol-
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ume within a much broader system. An enhanced
DCD model with variable radius may be developed
to overcome obstacles associated with system size
for direct comparison with the periodic table of el-
ements and for use with a variety of nanoscale sys-
tems.
The DCD model provides a better understand-

ing of design and performance issues associated
with small nanoelectronic devices that operate in a
regime of negligible magnetic interactions and pro-
vides for details of current and near-future measure-
ments not possible in conventional classical models.
A magnetostatic component may be developed to
complement the DCD model that may provide an
even richer model of atomic and nanoscale phenom-
ena.
A new classical-quantum theory may emerge

that more closely resembles density functional the-
ory23–25 than standard quantum mechanics as the
spatial symmetry properties of discrete charges is
here shown to play a significant role. Both DFT
and quantum mechanics rely upon solutions of the
Schrödinger equation while here a classical con-
nection to atomic shell filling by solutions of the
Poisson equation has been demonstrated. The
DCD model provides a richly detailed description
of timeindependent phenomena of nanoscale elec-
tronic, biological and chemical systems in use today
and the near future.
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