ECEN 3410 Electromagnetic Waves

- 1. Uniform plane waves (reflection and transmission through different environments, polarization)
- 2. Non-uniform plane waves in a coaxial line and quasi-TEM waves in printed lines (microstrip and CPW).
- 3. Waveguides and resonators that support other modes (field profiles) will be studied:
 - metallic waveguides for RF high power and high-frequency applications (TE,TM),
 - hybrid and evanescent modes in dielectric waveguides (slab guides, rectangular THz dielectric guides, silicon integrated photonics, and optical fibers).
- 4. Basics of beam propagation (Gaussian beams) for optical and millimeter-wave/THz frequencies.
- 5. Return to plane waves to study fundamentals of antennas and propagation.

Maxwell's equations

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S},\tag{19.5}$$

[Faraday's law for a fixed contour, Eq. (14.6) = Maxwell's first equation]

$$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_S \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S},\tag{19.6}$$

[Generalized Ampère's law, Eq. (19.4) = Maxwell's second equation]

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{v} \rho \, dv, \tag{19.7}$$

[Gauss' law, Eq. (7.20) = Maxwell's third equation]

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0. \tag{19.8}$$

[Law of conservation of magnetic flux, Eq. (12.11) = Maxwell's fourth equation]

Gauss' law is based on Coulomb's law MEASURED

Coulomb's torsion balance experiment gave law for electrostatic force:

$$\mathbf{F}_{e12} = \frac{1}{4\pi\,\epsilon_0} \frac{Q_1 Q_2}{r^2} \mathbf{u}_{r12}$$

Charles Augustin de Coulomb (1736 – 1806)

Ampere's law is based on the Biot-Savare law for magnetic forces – MEASURED (~1820)

Jean-Baptiste Biot (1774 – 1862)

Felix Savart (1791-1841)

 $d\mathbf{F}_{12} = I_2 d\mathbf{l}_2 \times \left(\frac{\mu_0}{4\pi} \frac{I_1 d\mathbf{l}_1 \times \mathbf{u}_r}{r^2} \right)$

André-Marie Ampère (1775 –1836) Electrodynamics Unit of electric current

Faraday's law – MEASURED (~1860)

Michael Faraday (1791 – 1867)

Joseph Henry (1797 –1878)

Optics and the speed of light

Joseph Fraunhofer (1787 – 1826)

Augustin-Jean Fresnel (1788–1827)

1675	Romer and Huygens moons of Jupiter	220,000 m/s
1729	James Bradley aberration of light	301,000m/s
1849	Hippolyte Fizeau toothed wheel	315,000m/s
1862	Leon Foucault rotating mirror	298,000±500
1907	Rosa and Dorsey, EM constants	299,710±30
1926	Albert Michelson rotating mirror	299,796±4
1950	Essen and Gordon-Smith, cavity resonator	299,792.5±3.0
1958	K.D. Froome, radio interferometry	299,792.50±0.10
1972	Evenson <i>et al.,</i> laser interferometry	299,792.4562±0.0011
1983	17th CGPM, definition of the meter	299,792.458 (exact)

Maxwell put it all together Maxwell's equations are postulated and based on experiment

James Clerk Maxwell (1831 – 1879)

Maxwell and Heaviside

- 1864: calculated speed of light 310,740,000 m/s
- 1873: Treatise on electricity and magnetism
 - Reduced all previous EM to 20 differential equations with 20 variables
- Oliver Heaviside introduced vector algebra and reduced equations to four

Heaviside on Maxwell's equations

"I remember my first look at the great treatise of Maxwell's when I was a young man... I saw that it was great, greater and greatest, with prodigious possibilities in its power... I was determined to master the book and set to work. I was very ignorant. I had no knowledge of mathematical analysis (having learned only school algebra and trigonometry which I had largely forgotten) and thus my work was laid out for me. It took me several years before I could understand as much as I possibly could. Then I set Maxwell aside and followed my own course. And I progressed much more quickly... It will be understood that I preach the gospel according to my interpretation of Maxwell."

Heaviside's contributions

- Transmission line equations
- "Pupin" coils for long-distance signaling
- Laplace transforms
- Vector calculus
- Cherenkov radiation
- Lorentz force
- Poynting vector
- Predicted existence of ionosphere
- Coined the terms:
 - Inductance (February 1885)
 - Conductance (Sept. 1885)
 - Permeability (Sept 1885)
 - Impedance (July 1886)
 - Admittance (Dec. 1887)

Heinrich Hertz (1857–1894)

First radio waves

First coax, antennas and polarizers

Not so long ago...

Bell Labs mobile radio

Marconi's mobile radio

Copyright 2000 The Telecommunication Museum of Sweden http://www.telemuseum.se/historia/mobtel/mobtfn_2e.html

Not long ago...

Now...

