

Gutachten des Instituts für Siedlungswasserwirtschaft und Abfalltechnik

Prof. Dr. Karl-Heinz Rosenwinkel, Leibniz Universität Hannover

Osnabrück, 9. Dezember 2011

Dr. D. Weichgrebe, Ch. Goletz, M. Huber, H. Sander

Gliederung

- 1 Definitionen
- 2 Auswahl repräsentativer Bohrstellen für verschiedene Frac Fluide
- 3 Mengenbilanz: Input Frac Fluid
- 4 Wasserqualität und Vergleichswerte
- 5 Bilanzierung
- 6 Derzeitige Behandlung des Flowback
- 7 Möglichkeiten der Flowback-Behandlung

1 Definitionen

Frac Fluid

- Flüssigkeit, die in den Untergrund eingebracht wird

Lagerstättenwasser

- im Untergrund in der ursprünglichen Zusammensetzung vorliegendes Wasser
- Haftwasser oder freiverfügbares mobiles Wasser

Flowback

- Flüssigkeit, die nach Frack-Vorgang an die Oberfläche gelangt
- Frac Fluid, Lagerstättenwasser, Wasserdampf mit Anteilen von Frac Fluid und Lagerstättenwasser (kondensiert)

Oberflächenwasser

2 Auswahl repräsentativer Bohrstellen für verschiedene Frac Fluide

Gesteinsart	Bohrstelle	Tiefe [m]	Druck unter Tage [bar]	Druck am Kopf [bar]	Temperatur [°C]
Buntsandstein	Buchhorst T12 ¹	2430 – 2450	50 ³	20 - 25	120
Schiefergestein	Damme 3	1045 – 1530	110 - 150	< 5	80
Carbongestein	Cappeln Z3a ²	3860 – 4120	510	60 - 70	145 - 155

¹ Bahrenborstel Z2 für Lagerstättenwasserqualität

² Goldenstedt Z7a für Flowback-Wasserqualität

³ ursprünglich 300 bis 350 bar

3 Mengenbilanz: Input Frac Fluid

Gesteinsart	Bohrstelle	Anzahl Fracs	Σ Frac Fluid [kg]
Buntsandstein	Buchhorst T12	1	304.353
Schiefergestein	Damme 3	3	12.702.873
Carbongestein	Cappeln Z3a	7	4.095.605

Trägerflüssigkeit

Gesteinsart	Bohrstelle	Menge [kg]	Herkunft	Wasserqualität
Buntsandstein	Buchhorst T12	212.000	Wasserwerk Sulingen	Trinkwasser nach TrinkwV
Schiefergestein	Damme 3	12.095.000	Wasserwerk Holdorf	Trinkwasser nach TrinkwV
Carbongestein	Cappeln Z3a	3.207.250	Brunnenwasser Cappeln	Brunnenwasser entspräche TrinkwV bis auf Eisen, Mangan und Trübung

Frac Fluid – Anteile pro 1000 kg

	Buntsandstein Buchhorst T12	Schiefergestein Damme 3	Carbongestein Cappeln Z3a
Trägerflüssigkeit (Wasser)	696,56 kg	952,15 kg	783,10 kg
Propants (Keramik, Quarzsand)	281,91 kg	46,29 kg	125,14 kg
CO ₂ (Energizer)	-	-	80,55 kg
Tenside	0,26 kg	-	1,20 kg
Breaker	0,29 kg	-	0,40 kg
Stabilisator	3,06 kg	0,84 kg	1,15 kg
Puffer, Hilfsstoffe	0,48 kg	-	0,56 kg
Dichtschlämme	-	-	4,69 kg
Kettenverlängerer, Vernetzer	2,76 kg	-	3,03 kg
Biozid	0,01 kg	0,04 kg	0,04 kg
Lösungsmittel	3,91 kg	-	0,14 kg
Reibungsreduzierer Wasser	-	0,69 kg	-
Gelbildner	0,17 kg	-	-
KCI-Salze	10,57 kg	-	-
Σ	1000 kg	1000 kg	1000 kg

Informations- und Dialogprozess über die Sicherheit und Umweltverträglichkeit der Fracking Technologie für die Erdgasgewinnung

Flüchtige Substanzen

- Bestimmung der flüchtigen Substanzen anhand von Analysen der Gasphase am Bohrkopf
- Flüchtige Substanzen sind z.B. Benzol, Naphthalin, PAK, BTEX, u.ä.
- Analyse und Auswertung dieser Substanzen in Flowback und Lagerstättenwasser in Bearbeitung

Nicht flüchtige Substanzen – Lagerstättenwasser Bahrenborstel Z2

		bei einem Druck am Kopf von			Grenzwerte			Empfehlung
Parameter	Einheit	50 bar	56 bar	65 bar	TrinkwV	A 40 ¹	A 51 ¹	WHO
Eisen	mg/l	175,0	250,0	125,0	0,2	3		
Chlorid	mg/l	195000	202000	110000	250			
Gesamthärte	°dH	2330	2760	980				
Natrium	mg/l	104000,0	98900,0					
Kalium	mg/l	3070,0	3430,0					
Calcium	mg/l	13000,0	15400,0					
Magnesium	mg/l	909,0	1110,0					
Blei	mg/l		210,0		0,01	0,5	0,5	0,01
Zink	mg/l		520			2	2	
Sulfat	mg/l	160,0	79,0		240			

¹ Anhänge der AbwasserVerordnung (AbwV)

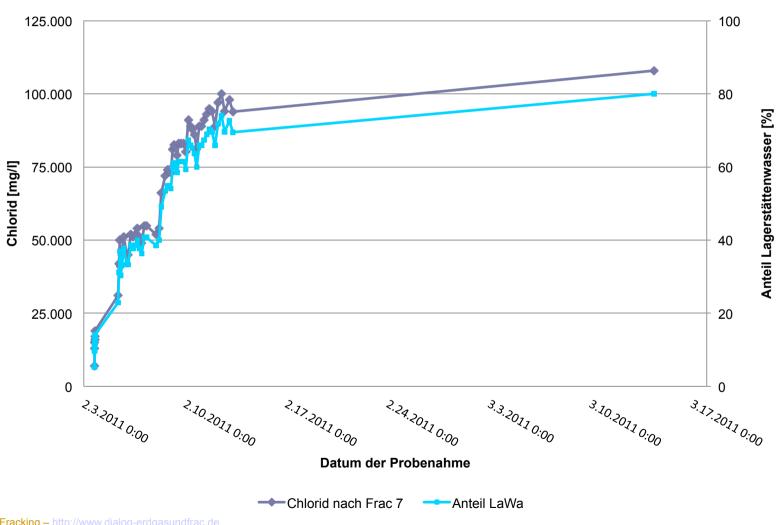
Nicht flüchtige Substanzen – Flowback Buchhorst T12 (Frac vom 27.07.11)

		Datum			Grenzwerte			Empfehlung
Parameter	Einheit	02.08.11	04.08.11	06.08.11	TrinkwV	A 40 ¹	A 51 ¹	WHO
Eisen	mg/l	k.A.	k.A.	k.A.	0,2	3		
Chlorid	mg/l	33300	30400	24400	250			
Gesamthärte	°dH	165	155	130				
Natrium	mg/l	16800	15300	12800				
Kalium	mg/l	7510	5960	4420				
Calcium	mg/l	1090	1040	799				
Magnesium	mg/l	72,0	81,4	79,3				
Blei	mg/l	<0,3	<0,3	<0,3	0,01	0,5	0,5	0,01
Zink	mg/l	1,2	3,2	2,4		2	2	
Sulfat	mg/l	1100	890	810	240			

¹ Anhänge der AbwasserVerordnung (AbwV)

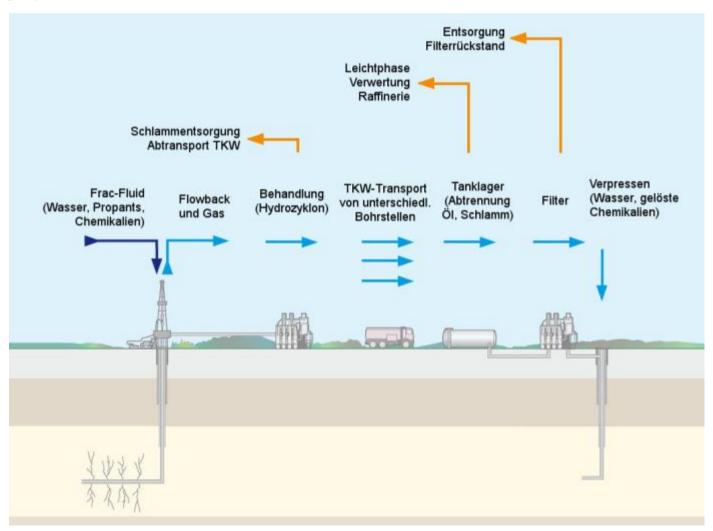
5 Bilanzierung

Allgemeines


- bezogen auf Input (Frac Fluid) nach 2-3 Monaten Flowback von ca.
 23 % (Mittelwert aller Messungen weltweit), aber darin enthalten sind Frac Fluid und Lagerstättenwasser
- Bilanzierung Frac Fluid im Flowback möglich über
 - Salzkonzentrationsverlauf
 - (1,5-Naphthalindisulfonat)
 - Isotopenverhältnis
- verlässliche Messungen erforderlich

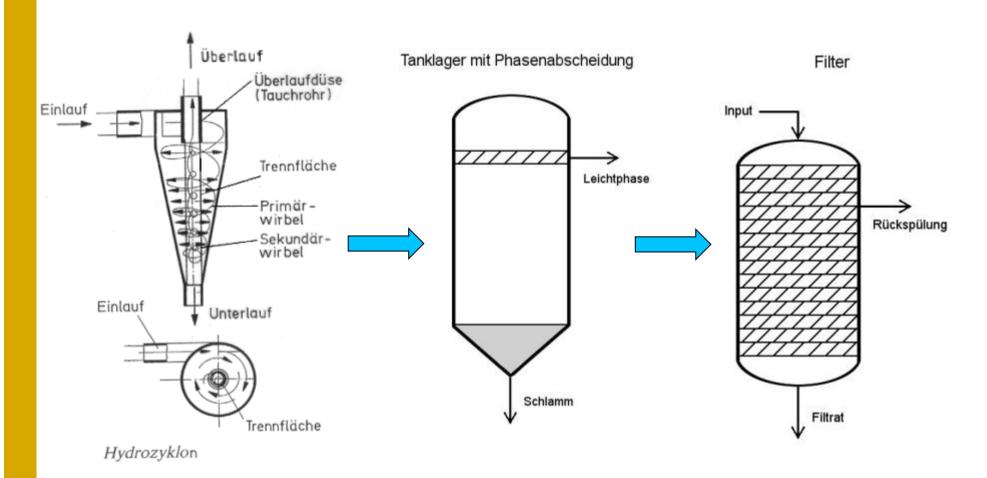
5 Bilanzierung

Flowback Cappeln Z3a (Frac 7 vom 03.02.11) - Salzkonzentrationsverlauf



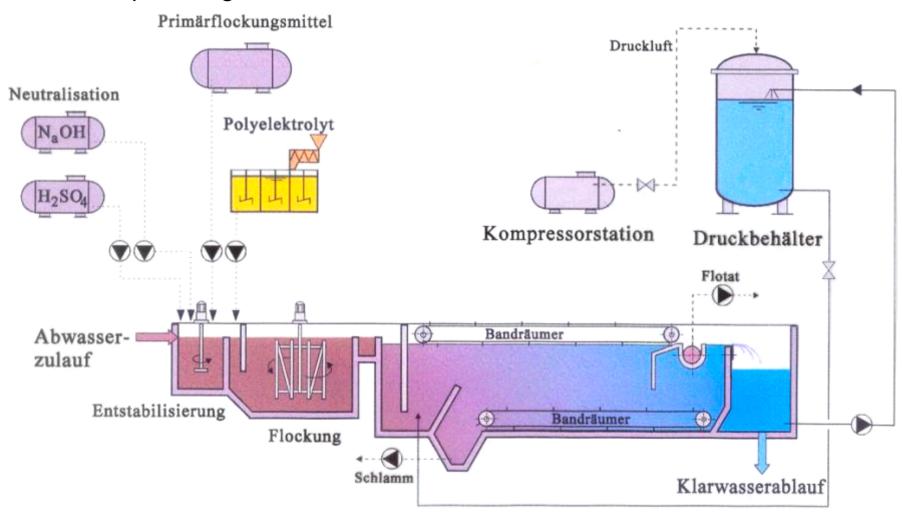
6 Derzeitige Behandlung des Flowback

Übersicht

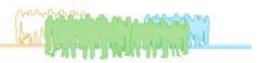


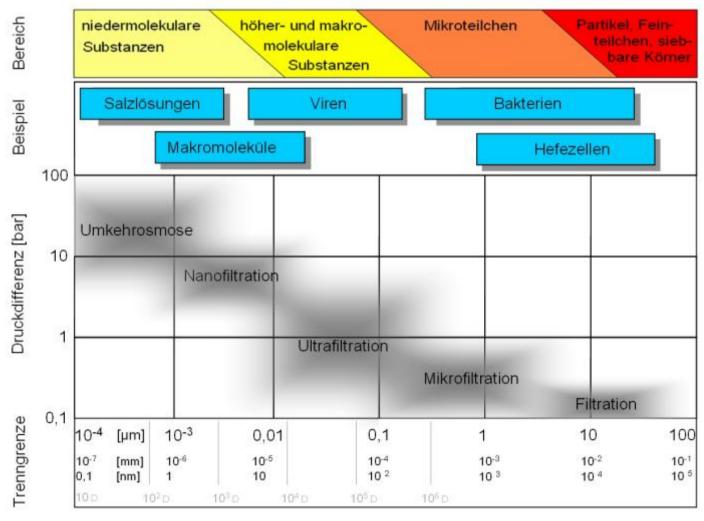
6 Derzeitige Behandlung des Flowback

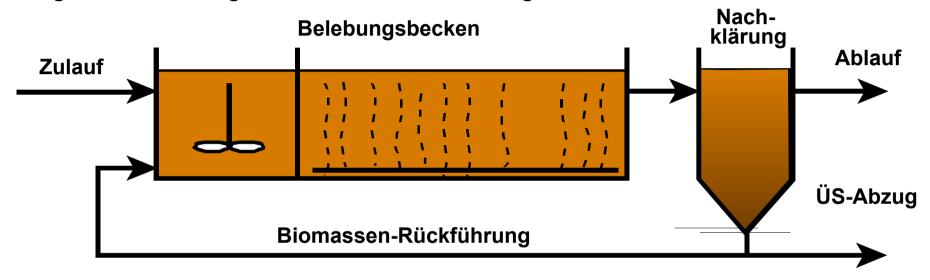
Behandlung des Flowbacks an der Förder- und Verpressbohrung

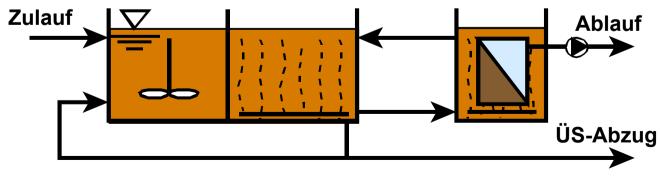


- Verpressen
- Wiedereinsatz zur Verdrängung von Öl aus Lagerstätten
- Mitbehandlung in kommunalen Kläranlagen
- Weitgehende Aufbereitung zum Beispiel für den Wiedereinsatz als Frac Fluid mit folgenden Verfahren
 - Druckentspannungsflotation
 - Membranfiltration
 - UV-Behandlung
 - Eindampfung
 - Elektrokoagulation



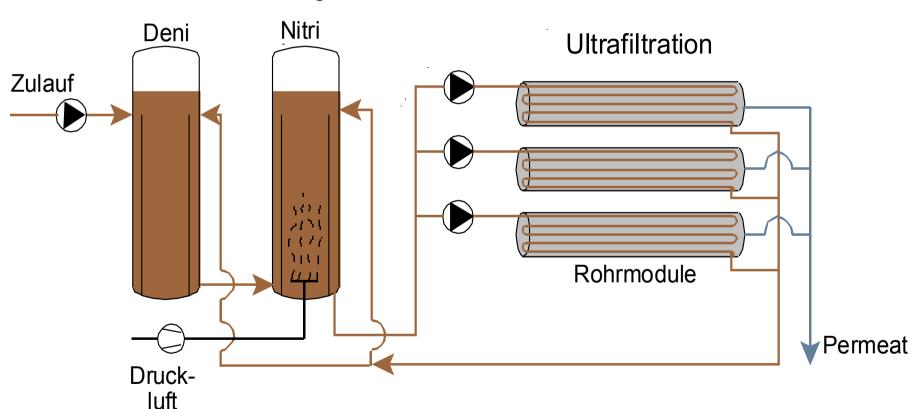

Druckentspannungsflotation


Membranfiltration

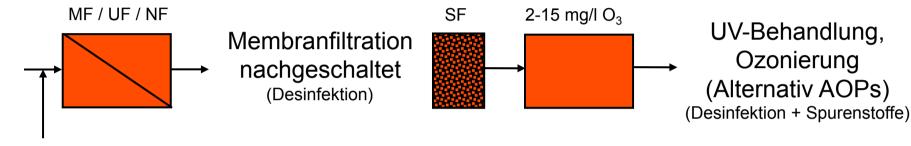


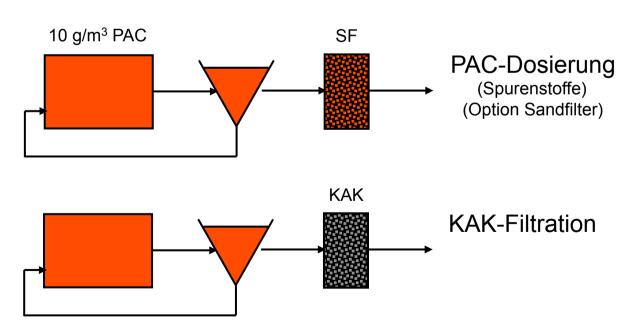
Gegenüberstellung herkömmliche Belebung - Membranbioreaktor

Belebungsbecken

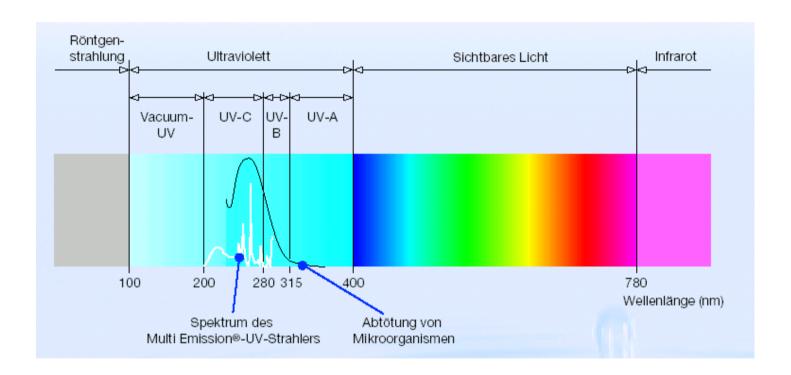

Biomassen-Rückführung

Verfahrensschema Biomembran


Druckbelebung



Erweiterte Lösungen


(Option PAC-Dosierung)

UV-Behandlung

UV-Behandlung

Anhang

Frac Fluid – Buchhorst T12

	Masse		Anteil	
Gesamtmenge	304352,60	kg	100,00	%
Proppants	85800,00	kg	28,19	%
Wasser	212000,00	kg	69,66	%
Chemikalien (gesamt)	6552,60	kg	2,15	%
Nicht gefährliche Chemikalien	4964,40	kg	1,63	%
- davon Salze wie KCl etc.	3306,56	kg	1,09	%
- davon Stärke	716,56	kg	0,24	%
Gefährliche Chemikalien	1588,20	kg	0,52	%
Giftige Chemikalien	13,25	kg	0,00	%
Gesundheitsgefährdende Chemikalien	1480,61	kg	0,49	%
Ätzend wirkende Chemikalien	174,16	kg	0,06	%
Umweltgefährdende Chemikalien	202,35	kg	0,07	%

Buntsandstein

Frac Fluid - Damme 3

	Masse		Anteil	
Gesamtmenge	12702873,10	kg	100,00	%
Proppants	588000,00	kg	4,63	%
Wasser	12095000,00	kg	95,21	%
Chemikalien (gesamt)	19873,10	kg	0,16	%
Nicht gefährliche Chemikalien (oh. CO ₂)	6350,02	kg	0,05	%
Gefährliche Chemikalien	13523,08	kg	0,11	%
Giftige Chemikalien	6413,20	kg	0,05	%
Gesundheitsgefährdende Chemikalien	2640,33	kg	0,02	%
Ätzend wirkende Chemikalien	46,00	kg	0,00	%
Umweltgefährdende Chemikalien	6413,20	kg	0,05	%

Schiefergestein

Frac Fluid – Cappeln Z3a

	Masse		Anteil	
Gesamtmenge	4095607,00	kg	100,00	%
Proppants	512529,00	kg	12,51	%
CO2, flüssig - Anteil	329900,00	kg	8,05	%
Wasser	3207250,00	kg	78,31	%
Chemikalien (gesamt)	45928,00	kg	1,12	%
Nicht gefährliche Chemikalien	14508,00	kg	0,35	%
Gefährliche Chemikalien	31420,00	kg	0,77	%
Giftige Chemikalien	5769,00	kg	0,14	%
Gesundheitsgefährdende Chemikalien	24018,00	kg	0,59	%
Ätzend wirkende Chemikalien	1544,00	kg	0,04	%
Umweltgefährdende Chemikalien	720,00	kg	0,02	%

Carbongestein

Frac Fluid – Goldenstedt Z7a

	Masse		Anteil	
Gesamtmenge	4139262,53	kg	100,00	%
Proppants	639495,00	kg	15,45	%
Wasser	3492656,86	kg	84,38	%
Chemikalien (gesamt)	7110,67	kg	0,17	%
Nicht gefährliche Chemikalien	1523,30	kg	0,04	%
Gefährliche Chemikalien	5587,37	kg	0,13	%
Giftige Chemikalien	283,28	kg	0,01	%
Gesundheitsgefährdende Chemikalien	3880,16	kg	0,09	%
Ätzend wirkende Chemikalien	368,88	kg	0,01	%
Umweltgefährdende Chemikalien	726,97	kg	0,02	%
Umweltgefährdende Chemikalien WGK 3	6,76	kg	0,00	%

Carbongestein

Lagerstättenwasser

Bohrfeld Hengstlage				Grenzwerte		
Parameter	Einheit	MAX	TrinkwV	Anhang 40	Anhang 51	WHO
Antimon	μg/l	5,0	5			20,0
Arsen	μg/l	73,0	10	100	100	10,0
Barium	mg/l	10,2		2		0,7
Benzol	μg/l	10900,0	1			10,0
Blei	μg/l	4450,0	10	500	500	10,0
Cadmium	μg/l	215,0	5	100-200		3,0
Calcium	mg/l	19800,0				
Chlorid	mg/l	167200,0	250			
Chrom, gesamt	μg/l	50,0	50	500	500	50,0
Chromat	μg/l	100,0				
Cyanide, gesamt	μg/l	10,0	50			
Cyanide, leicht freisetzbar	µg/l	10,0		200-1000	200	
Dichte bei 20 °C	g/l	1184,1				
Eisen	mg/l	84,0	0,2	3		
Fluorid	μg/l	1530,0	1500	50000		1500,0
Gesamthärte	mmol/l	554,0				
Hydrogencarbonat	mg/l	185,0				
Kalium	mg/l	2370,0				
Kobalt	μg/l	50,0				
(W-Index	μg/l	63000,0				
Kupfer	μg/l	575,0	2000	500	500	2000,0
₋eitfähigkeit/25 °C	mS/cm	160,0				,
ithium	mg/l	22,5				
Magnesium	mg/l	1100,0				
Molybdän	μg/l	50,0				
Naphthalin	μg/l	250,0				
Natrium	mg/l	65900,0	200			
Nickel	μg/l	25,0	20	500	1000	70,0
PAK, gesamt	μg/l	368,8	0			
oH-Wert		6,9	zw 6,5 - 9,5			
Quecksilber	μg/l	55,0	1	50	50	
Selen	μg/l	5,0	10	1000		
Strontium	mg/l	1250,0				10 [Bq/l]
Sulfat	mg/l	915,0	240			
Summe BTEX	μg/l	26150,0				
ink .	μg/l	218000,0		2000	2000	
Zinn	μg/l	125,0		2000		

InfoDialog Fracking – http://www.dialog-erdgasundfrac.de

Lagerstättenwasser

Bohrfeld Hengstlage					Grenzwerte		Empfehlung
Parameter	Einheit	MAX	MIN	TrinkwV	Anhang 40	Anhang 51	WHO
Antimon	μg/l	5,0	5,0	5			20,0
Arsen	μg/l	73,0	0,5	10	100	100	10,0
Barium	mg/l	10,2	0,1		2		0,7
Benzol	μg/l	10900,0	2420,0	1			10,0
Blei	μg/l	4450,0	25,0	10	500	500	10,0
Cadmium	μg/l	215,0	5,0	5	100-200		3,0
Calcium	mg/l	19800,0	1,0				
Chlorid	mg/l	167200,0	2,1	250			
Chrom, gesamt	μg/l	50,0	10,0	50	500	500	50,0
Chromat	μg/l	100,0	50,0				
Cyanide, gesamt	μg/l	10,0	10,0	50			
Cyanide, leicht freisetzbar	μg/l	10,0	10,0		200-1000	200	
Dichte bei 20 °C	g/l	1184,1	998,4				
Eisen	mg/l	84,0	4,0	0,2	3		
Fluorid	μg/l	1530,0	200,0	1500	50000		1500,0
Gesamthärte	mmol/l	554,0	0,1				
Hydrogencarbonat	mg/l	185,0	30,0				
Kalium	mg/l	2370,0	1,0				
Kobalt	μg/l	50,0	10,0				
KW-Index	μg/l	63000,0	800,0				
Kupfer	μg/l	575,0	10,0	2000	500	500	2000,0
Leitfähigkeit/25 °C	mS/cm	160,0	0,1				
Lithium	mg/l	22,5	0,1				
Magnesium	mg/l	1100,0	1,0				
Molybdän	μg/l	50,0	10,0				
Naphthalin	μg/l	250,0	18,0				
Natrium	mg/l	65900,0	1,0	200			
Nickel	μg/l	25,0	5,0	20	500	1000	70,0
PAK, gesamt	μg/l	368,8	30,0	0			
pH-Wert		6,9	5,6	zw 6,5 - 9,5			
Quecksilber	μg/l	55,0	0,5	1	50	50	
Selen	μg/l	5,0	5,0	10	1000		
Strontium	mg/l	1250,0	0,1				10 [Bq/l]
Sulfat	mg/l	915,0	1,0	240			
Summe BTEX	μg/l	26150,0	4660,0				
Zink	μg/l	218000,0	25,0		2000	2000	
Zinn	μg/l	125,0	25,0		2000		

InfoDialog Fracking - http://www.dialog-erdgasundfrac.de