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Abstract

Estimation of divergence times is usually done using either the

fossil record, or sequence data from modern species. We provide an

integrated analysis of palaeontological and molecular data to give

estimates of primate divergence times that utilize both sources of

information. The number of preserved primate species discovered in

the fossil record, along with their geological age distribution, is

combined with the number of extant primate species to provide

initial estimates of the primate and anthropoid divergence times.

This is done by using a stochastic forwards-modelling approach

where speciation and fossil preservation and discovery are simulated

forward in time. We use the posterior distribution from the fossil

analysis as a prior distribution on node ages in a molecular analysis.

Sequence data from two genomic regions (CFTR on human

chromosome 7 and the CYP7A1 region on chromosome 8) from 15

primate species is used with the birth-death model implemented in

mcmctree in PAML to infer the posterior distribution of the ages of

14 nodes in the primate tree. We find that these age estimates are

older than previously reported dates for all but one of these nodes.

To perform the inference, a new approximate Bayesian computation

algorithm is introduced, where the structure of the model can be

exploited in an ABC-within-Gibbs algorithm to provide a more

efficient analysis.

Key words: primate divergence, approximate Bayesian

computation, palaeontological data, molecular phylogeny, inferring

node ages
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Fossil evidence is the only direct source of information about

long-extinct species and their evolution. Morphological similarities between

extant species and fossil remains are used to infer the existence of ancestral

species during the geological period to which the fossil is allocated.

Conditional on there being no classification or dating error, the fossil’s age

provides a minimum bound for the divergence time of the evolutionary

lineage it represents.

Sequence data from extant species provide an indirect source of

information about evolutionary history. The pattern and variability

observed in homologous sequences of DNA from different species contains

traces of the history of the divergence and evolution of the phylogeny, and

mathematical models of evolution can be used to combine our knowledge of

genetics with the sequence data to extract information about evolutionary

history, particularly divergence times. Many methods and models have

been proposed with this aim, but all rely in some way on fossil evidence, as

an external source of information must be used to calibrate the substitution

rate. Fossil evidence is used to provide initial estimates for node ages in

phylogenetic trees, which are then updated in light of molecular evidence.

Yang and Rannala (2006) found that, for divergence time estimates based

on sequence data, the largest source of uncertainty came from the fossil

calibration dates used.

Although fossils provide good explicit minimum bounds on the age of a

clade, maximum bounds need to be inferred rather than measured, and

thus are inherently uncertain. Uncertainty about a maximum bound on the

node age has been dealt with in various ways in molecular analyses,
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typically by relying upon a subjective judgement about the node age based

on the age of the oldest fossil (i.e., a maximum bound, or the weight of the

tail in a more general prior distribution).

In this paper we use a database of recorded fossil species combined with

a model of speciation to find a model-based estimate of node ages. These

estimates are then used as prior distributions for estimating molecular

divergence times. The benefit of introducing an element of process

modelling into the analysis of the fossil record is that it moves the

subjective judgements further from important quantities and allows us to

utilise more of the fossil record, thus letting data play a larger role in the

analysis. In determining the expected gap between the age of the oldest

fossil and the divergence time, a key influence is exerted by rates of fossil

preservation and discovery, which are unknown and believed to vary

through time (e.g., Foote et al., 1999; Smith and Peterson, 2002; Tavaré

et al., 2002; Soligo et al., 2007; Paul, 2009). We use the pattern of species

diversity through the Cenozoic and the number of extant primate species to

estimate the sampling rate and the divergence time of the primates. The

posterior distributions from the fossil analysis are used as the prior

distribution in the molecular analysis to estimate a posterior distribution

for the divergence time that uses both the fossil and molecular records more

fully than previous analyses.

The paper is organised as follows. The first section describes the

analysis of the fossil record. The following section contains the molecular

analysis and the final section contains a discussion. The details of the

inference procedure used in the analysis of the fossil data are given in the
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appendix, where we introduce a new variant on the MCMC-ABC

(Marjoram et al., 2003) algorithm in order to improve the efficiency of our

analysis.

USING THE FOSSIL RECORD

Fossil calibrations are essential when dating evolutionary events. Even if

the analysis primarily uses molecular data, fossil evidence is used to provide

prior distributions for one or more nodes in the phylogeny. This

information is then used to calibrate the molecular clock, and thus has

consequences for estimation of other node ages. Early analyses using the

molecular clock to date divergence times typically treated the oldest fossil

representative as if it estimated the age of the node without error (Graur

and Martin, 2004; Hedges and Kumar, 2004). This progressed to

introducing uncertainty by specifying a range of possible values with hard

bounds representing the limits of the uncertainty (Thorne et al., 1998),

with zero probability assigned to ages outside of this range. Fossil evidence

is well suited to providing a good hard minimum bound on the age of a

node based on the oldest fossil representative, with the level of accuracy

limited only by the accuracy of taxonomic assignment of the fossil and of

the dating procedure used. However, the fossil record does not directly give

any information regarding a maximum bound on the age (Benton and

Donoghue, 2007; Steiper and Young, 2008). Thus, hard bounds are often

either overconfident, where they are set too low, or too conservative, where

unrealistically high maximum bounds are used. Yang and Rannala (2006)
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moved beyond the use of uniform distributions for calibration dates to allow

general prior distributions, which can incorporate more information about

the calibration age. These allow for most of the probability to be placed on

dates near to the minimum bound, but with long tails to account for the a

priori unlikely event that the node age is actually much older than the fossil

evidence suggested. They chose prior distributions by fitting a parametric

form (a gamma distribution) to estimated maximum and minimum bounds

on the node age, allowing for 5% uncertainty outside this range.

However, the fossil record contains more information about a node age

than that contained solely in the oldest fossil ascribed to a particular

lineage. The age of the oldest fossil may be the single most informative

piece of data, but other parts of the record can help reduce the uncertainty

in any estimate and provide a more nuanced picture. By considering more

of the fossil record, we can move from using prior distributions based on the

oldest fossil, to distributions based on a wider appreciation of the fossil

record and its underlying processes. The distribution of fossil ages contains

information about the diversity (number of species) of a phylogeny through

time. When combined with extant diversity counts, this can be used to

infer the sampling rate or completeness of the fossil record (Tavaré et al.,

2002; Soligo et al., 2007; Wilkinson and Tavaré, 2009). For periods and

phylogenies with high sampling rates, we expect the age of the oldest

known fossil to be close to the divergence time of the phylogeny, whereas if

the sampling rate is low, we expect the range of values possible for the gap

between the oldest fossil and the root of the phylogeny it represents to be

much more variable. For terrestrial vertebrates, the completeness (the
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proportion of species that have been preserved and then discovered in the

fossil record) is generally believed to be low. For example, Martin (1993)

and Tavaré et al. (2002) estimate the completeness of the primate fossil

record to be less than 7%, compared with an estimate of 29% for dinosaurs

(Wang and Dobson, 2006).

Model for the Fossil Data

The model for the fossil data can be thought of in two parts: (i) speciation

and (ii) fossilisation and recovery. The speciation model describes the

growth of the number of species (the diversity) from a common ancestor to

the observed extant diversity, whereas the fossilisation and recovery model

describes how the phylogeny is recorded in the known fossil record.

To model speciation we use a continuous-time inhomogeneous binary

Markov branching process (Harris, 1963). To aid description we use the

language of family trees and refer to the direct descendants of a species as

its offspring. Let Z(t) denote the number of species extant at time t, where

t = 0 denotes the present. The age of the oldest known fossil representative

is used as an absolute minimum bound on the age of the clade. The root of

the tree is placed at this age plus τ million years, where τ represents the

temporal gap between the oldest primate fossil and the primate divergence

time. We assume that two species are present at this time and that each

species lives for an exponentially distributed period of time with mean 1/λ

before becoming extinct. Upon its extinction, at time t say, it is replaced

by either zero or two new species with probability p0(t) or p2(t) = 1 − p0(t),
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respectively. The birth and death probabilities p0(t) and p2(t) can be

determined by fixing a parametric form for the expected population size at

time t, i.e., EZ(t) = f(t;ψ), where ψ are unknown parameters to be

estimated. We initialise the branching process with two species, and

consider the tree to have two sides, corresponding to Haplorhini and

Strepsirrhini in the primate phylogeny. Because the root of the tree

represents the crown-divergence time, we require both sides of the tree to

be present at time t = 0, modelling the fact that there are extant

Haplorhini and Strepsirrhini. We condition both sides of the tree on

non-extinction by using rejection sampling (Ripley, 1987), by simply

disregarding simulations that go extinct on either side of the tree. Note

that if we do not condition on non-extinction, we would be modelling a

point of divergence along the stem lineage, defined by the taxa included in

the fossil data, rather than the crown-divergence time (Soligo et al., 2007).

This model provides simulated numbers of species extant through time,

given a value for the crown divergence time. To simulate sample fossil data

sets, we introduce two different observation models, a simple binomial

model, and a more complex Poisson sampling model. Note that it is not

possible to date fossils precisely. The fossil data shown in Table 1 are

resolved at the epochal level, and for each epoch we have counts of the

number of generally recognized primate morphospecies known to have lived

during that epoch. Our observation models simulate the number of fossils

discovered in each of the 14 epochs in the Cenozoic {Di}14
i=1 given the

number of species {Ni}14
i=1. In the binomial model each species in epoch i

has probability αi of being preserved and then discovered as a fossil,
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regardless of the length of time the species was extant. This gives

Di ∼ Binomial(Ni, αi), where Ni is the number of species extant during any

part of epoch i.

The Poisson model assumes that each species present in any given

epoch has an equal probability of being discovered as a fossil for each year

it is extant. Consequently, longer-lived species will have a higher

probability of preservation and discovery than shorter-lived species. Assume

that fossil finds occur along the branches present in epoch i as the points of

a Poisson process of rate βi. Each species is recorded at most once during

an epoch, regardless of whether there are multiple points along its branch,

so that a species that lived for duration t in epoch i has probability 1− e−βit

of being discovered in the fossil record during that epoch. It is known that

the rates of fossil preservation and discovery have varied through time, for

example because rocks from different geological epochs are not present in

accessible locations in equal abundance (Raup, 1976; Peters and Foote,

2001; Smith and Peterson, 2002; McGowan and Smith, 2008). Added to

this are complications regarding sampling locations (Western Europe and

North America are better sampled than Africa or Asia, for instance) and

variation in habitable latitudes as climate and the availability of dispersal

routes changed through time. For example, primates are thought to have

originated in more southern latitudes, spreading northwards at the

beginning of the Eocene, and again in the Miocene, as a result of globally

warmer climates (and of developing land bridges in the case of the

Miocene), while retreating from more northern latitudes as a result of

climate cooling, for example towards the end of the Eocene and beginning
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of the Oligocene (e.g., Krause and Maas, 1990; Martin, 1993; Soligo and

Martin, 2006; Andrews and Kelley, 2007; Soligo, 2007; Martin et al., 2007).

For this reason, we allow the observation process to vary in intensity

between epochs, and write α = (α1, α2, . . . , α14) and β = (β1, . . . , β14).

Both the binomial and Poisson sampling models are phenomenological

in nature, rather than process models of the complex underlying processes.

Fossil deposition and preservation rates will depend on a variety of factors

for each species, such as habitat, location, and population size. Similarly,

the classification of fossils and the identification of new species are

processes prone to error, with opinions over dates and classifications

changing over time. It would be hard to model all these processes as the

data available for parameter estimation is limited. Instead, we use simple

statistical models that try to approximate the net effect of the interaction

of the various processes, in order to find a mathematical description of the

observations without paying too much attention to the individual processes.

An important extension to this model is to consider the effect of the

mass-extinction event that took place at the Cretaceous-Tertiary (K-T)

boundary 65 Ma (1 Ma = 106 years ago). There is no direct fossil evidence

as to whether primates existed during the Cretaceous, so the importance of

the K-T boundary when dating the divergence time is unclear. However, if

primates lived at this time it is highly likely they were also affected by the

event. We can include the effect of the K-T crash by making each species in

the simulation extinct with probability p at the K-T boundary at t = −65

Myr (millions of years). Extinctions are assumed to occur independently for

each species, and we assume that species wiped out at the K-T boundary
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have no offspring. Thus, the diversity in the simulation just after the K-T

boundary has a binomial distribution with parameters (n, p) = (Z(−65), p).

We treat p as an unknown parameter and estimate it in the inference. We

estimate the divergence time both with and without (p = 0) the K-T crash

model to examine its importance.

Inference

The previous section described the forwards model, a stochastic mapping

from unknown parameters θ := (τ,ψ,β,α, λ, p) to sample fossil data sets

{Di}
14
i=1. The model is stochastic and any particular combination of

parameters can lead to a wide variety of behaviour. To estimate divergence

times we must solve the inverse problem and use the fossil observations Dobs

and the number of extant species N0 to learn the unknown parameters. We

use a Bayesian approach and give all unknown parameters prior

distributions (described in the results section), and then find the posterior

distribution of the parameters given the data, denoted π(θ|D).

Inference using this model is difficult and requires non-standard

methods because the likelihood function l(θ;Dobs) = P(Dobs|θ) is unknown

(Kendall, 1948). Without an explicit mechanism for calculating the

likelihood, standard inference approaches such as Markov Chain Monte

Carlo or importance sampling are not possible. Instead we use a

likelihood-free approach, known as approximate Bayesian computation

(ABC) (Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007).

The main idea behind ABC is sufficient for understanding our inference
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approach. The simplest approximate Bayesian computation algorithm is

based upon the rejection algorithm. We draw parameter θ from its prior

distribution, simulate sample data D using this parameter setting, and

accept the parameter into our sample if the simulated data are a close

approximation to the observed data. To define ‘close’ we require a metric

ρ(·, ·) on the state space and a tolerance ǫ, and we accept θ if

ρ(D,Dobs) ≤ ǫ.

This algorithm is not exact. Accepted θ values do not form a sample

from the posterior distribution π(θ|D), but from some distribution that is

an approximation to it, where the accuracy of the algorithm depends on ρ

and the tolerance ǫ. The tolerance ǫ represents a trade-off between

computability and accuracy; large ǫ values will mean more acceptances and

will enable us to generate samples more quickly, but the distribution

obtained may be a poor approximation to π(θ|D). Small ǫ values will mean

that the approximation is more accurate, but the acceptance rate will be

lower and so we will require more computer time to generate a sample of a

given size. To choose a value of ǫ, we must make a compromise between the

time and computer power available, and the desired accuracy. Our choice of

metric and tolerance are given in the results section.

The standard ABC approach cannot be applied directly to the problem

here, as the number of unknown parameters is too large, and so any naive

search of the parameter space will spend most of its time in regions of low

posterior probability. Instead, we use a more efficient approach and develop

an ABC-within-Gibbs sampler that exploits some of the known model

structure. Details are given in the appendix.
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Dating multiple divergence times. — The primate fossil record is poor,

and is limited in its ability to constrain estimates of divergence times.

However, by using as much of the record as possible we can hope to

constrain the estimates more than would be possible solely using the age of

the oldest fossil ascribed to a lineage. Morphological detail in the fossils is

used to classify each fossil into a subgroup of species and this information

can be used to date multiple divergence times simultaneously. We estimate

the joint distribution of the crown primate and anthropoid divergences

using an optimal subtree selection algorithm. The fossil data set in Table 1

contains two sets of numbers. The first grouping gives the number of

crown-primate species discovered, Dobs = (D1, . . . , D14), whereas the second

grouping gives the number of crown-anthropoid species,

Aobs = (A1, . . . , A14). Notice that Dk ≥ Ak for all k, as anthropoids are a

subset of the primates. We let τ denote the temporal gap between the

oldest primate fossil and the last common ancestor (LCA) of the extant

primates and let τ ∗ denote the temporal gap between the oldest anthropoid

(platyrrhine-catarrhine) fossil and the LCA of the anthropoids. Our

approach to inferring τ ∗ is based on finding the subtree with fossil counts

that most closely match the anthropoid fossil counts Aobs. If the distance

between simulated and real anthropoid fossil counts ρ(Aobs,A) is less than

tolerance ǫ2, we measure the temporal gap from the base of this subtree to

the start of the Late Eocene interval. This is then our estimate for τ ∗. We

require that the root of the subtree (the death time of the anthropoid LCA)

occurs earlier than the beginning of the Late-Eocene, 37 Ma. We must also

condition the subtree on non-extinction and check that both branches
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leading from the subtree root have extant descendants, as one side of the

subtree represents the platyrrhini and the other the catarrhini, and both of

these groups have extant representatives. We refer to this approach as

Optimal Subtree Selection (OSS). A rejection-based ABC algorithm for

inference would be

Optimal Subtree Selection (OSS)

1. Draw parameters θ = (τ,α, ψ, p, λ) from π(·).

2. Simulate a tree and fossil finds using parameter θ. Count the number

of simulated fossils in each interval, D′ = (D′

1, . . . , D
′

14).

3. Calculate the value of the metric ρ(Dobs,D′). If

ρ(Dobs,D
′)

≤ ǫ1, go to step 4.

> ǫ1, reject θ and go to step 1.
(1)

4. Perform an exhaustive search of all possible subtrees. For each

subtree check that the root of the subtree occurs at least 37 Ma, and

that both offspring of this root produce trees that survive to the

present. If both conditions are met, count the number of fossils on the

subtree, A′ = (A1, . . . , A14).

5. Determine which subtree has the smallest value of ρ(Aobs,A
′), i.e.,

has fossil counts closest to the anthropoid fossil set. This is the

14



optimal subtree. If

ρ(Aobs,A
′)

≤ ǫ2, accept θ and measure τ ∗.

> ǫ2, reject θ and return to step 1.
(2)

In practice this algorithm is too inefficient to give sensible results in a

reasonable time, as repeatedly drawing from the prior distribution means

that a long time is spent simulating data with parameter values that lie in

the tails of the posterior distribution. A more efficient algorithm is given in

the appendix. Note that this algorithm requires the genealogy to be

simulated, rather than just keeping track of Z(t) as is sufficient in a

birth-death process.

The division of the data into two nested parts (primates and

anthropoids) is not a necessary part of the analysis, but is done to

maximise the information that can be extracted from the data. It is

possible to consider just the primate fossil counts D and estimate only the

primate divergence time by stopping the algorithm after step 3. An

alternative approach to estimating multiple divergence times not based on

the OSS algorithm is given in Wilkinson and Tavaré (2009).

Data and Results

The primate fossil data set is given in Table 1. It contains counts of the

number of primate and anthropoid species discovered in each epoch during

the Cenozoic. The anthropoids are a monophyletic subgroup of the

primates containing the hominoids (apes and humans) and the New and
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Old World monkeys. Since fossils cannot be precisely dated, we bin the

data into geological epochs, and count the number of species discovered

coming from each epoch. Note that so far no undoubted primate fossil older

than 54.8 Myr has been discovered, and no crown-group anthropoid fossil

older than 37 Myr. Also included in the table are the numbers of known

extant species, taken from Groves (2005). Information on extant diversity is

valuable as it gives information about the sampling rates that is otherwise

difficult to estimate.

TABLE 1 ABOUT HERE

Before giving the results of the analysis, we need to make various

implementation assumptions. Firstly, the birth and death probabilities

p0(t) and p2(t) need to be specified through time. This is done by fixing the

expected growth to be logistic, so that

EZ(t) =
2

γ + (1 − γ)e−ρ(t+54.8+τ)
(3)

for unknown γ and ρ. We can use the result that

EZ(t) = 2 exp

(

λ

∫ t

−54.8−τ

[2p2(u) − 1]du

)

(4)

(see Harris, 1963, for example) to equate the expected growth curve to the

birth and death probabilities to solve for p0(t) and p2(t). Other simple

functional forms for the growth were tried (results not shown), but it is

possible to show using Bayes factors (approximated by the acceptance
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probability in the ABC algorithm) that logistic growth is best supported by

the data (Wilkinson, 2007).

We give prior distributions to all unknown parameters except τ ∗, which

is chosen by an optimality criterion during the simulation. The prior

distributions used are

τ ∼ U [0, 100]

ρ ∼ U [0, 0.5]

γ ∼ U [0.005, 0.015]

1/λ ∼ U [2, 3].

The prior on τ is equivalent to assigning a uniform prior distribution on the

interval [154.8, 54.8] Ma for the primate divergence time t1, which represents

our prior state of uncertainty about the primate divergence. The prior

range for 1/λ was set by consideration of the mean species survival time

(Alroy, 1994), and the range for ρ and λ were fixed by considering the mean

diversity implied by the logistic growth curve (Wilkinson, 2007). Prior

distributions for α and β are choosen for reasons of conjugacy. For the

binomial model we let αi ∼ U [0, 1] and assume that the αi are independent

a priori. In the Poisson model we use gamma prior distributions, setting

βi ∼ G(5, 50) for i = 1, . . . , 14 with the βi independent a priori, where

G(a, b) denotes the gamma distribution with shape parameter a and rate

parameter b (i.e., if X ∼ G(a, b) the density of X is xa−1bae−bx/Γ(a)).

When we use the K-T crash model we give the unknown probability of

extinction, p, a U [0, 0.5] distribution. The posteriors for τ and τ ∗ appear to
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be robust to small changes in the prior specifications of all the parameters.

The ABC inference procedure requires a choice of metric ρ(·, ·) and a

tolerance ǫ. After investigation into the choice of metric (see Wilkinson,

2007, for details), we found that the following metric captured the required

details in the data:

ρ(Dobs,D
′) =

1

2

∣

∣

∣

∣

D′

+

D+
− 1

∣

∣

∣

∣

+

14
∑

i=1

∣

∣

∣

∣

Di

D+
−
D′

i

D′

+

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

N ′

0

N0
− 1

∣

∣

∣

∣

(5)

where N0 is the extant diversity, Di the number of fossil species found in

epoch i, and D+ =
∑14

i=1Di. Primes are used to denote simulated values of

observed quantities (e.g., N ′

0 is the simulated extant diversity). The first

term on the right measures the difference in the total number of fossils

found in the simulated and real data sets, the second term measures the

distance between the two vectors of proportions, and the third term

measures the distance between the number of known extant species

(N0 = 376) and the number predicted by the model. Using this metric and

the ABC algorithm in the appendix, we can sample approximately from

π(θ|Dobs, N0 = 376). Notice that because ρ depends on Dobs and N0 the

results are conditioned on both the fossil data and the number of extant

species N0. Conditioning solely on Dobs by removing the third term on the

right in Equation (5) shows that the extant diversity is important for

constraining the sampling rates.

The tolerances ǫ1 and ǫ2 used in Equations (1) and (2) are chosen

pragmatically to be the smallest values that allow a sufficient number of

accepted results in the time available for computation. In this case, we had
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access to a 100-core cluster of processors and could choose low values of

ǫ1 = 0.5 and ǫ2 = 0.5. The effect of using ABC rather than an exact Monte

Carlo technique can be shown to be equivalent to the addition of extra

variability into the model. The addition of extra uncertainty representing

model error is desirable in this case. Both the model and the data are

uncertain, and in particular we would not wish to use model predictions

without accounting for model discrepancy in some way. The approximation

returned by the ABC algorithm will be overdispersed when compared to the

true posterior, and so we are comforted by the knowledge that the estimates

are conservative, rather than optimistic, in their specification of uncertainty.

We present the results from three different model scenarios. They are

1. binomial sampling model

2. Poisson sampling model

3. K-T crash with Poisson sampling.

For each we find the posterior distribution of t1 and t2, the primate and

anthropoid divergence times, respectively. Figure 1 shows the marginal

posterior distributions π(t1|Dobs,Aobs, N0) and π(t2|Dobs,Aobs, N0) for each

of the three model scenarios and Table 2 gives brief numerical details of

each posterior.

FIGURE 1 ABOUT HERE

TABLE 2 ABOUT HERE

We now provide some comments on the results.
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1. The primate fossil record is unable to constrain precisely the

divergence time. For all the models we examined (we have reported

three, but tried more), the posterior distribution of t1 has a tail that

extends far into the Cretaceous. It seems unlikely that the fossil

record could constrain the divergence time estimate to be within the

Cenozoic without far stronger modelling or prior assumptions. Our

model neglects many aspects, but is simple and contains relatively

few parameters. More complex models are likely to have greater

numbers of parameters and produce comparable or longer-tailed

distributions when parametric uncertainty is taken into account.

2. These posteriors take into account the uncertainty induced by the

unknown parameters. Fixing all parameters except τ at estimates

produces slightly more constrained posteriors, but at the cost of

assuming perfect knowledge where none exists. Similarly, the ABC

approximation has the effect of dispersing the posteriors slightly, but

simulation studies where the tolerance ǫ is decreased indicate that

this is unlikely to reduce the uncertainty by much.

3. The binomial and Poisson sampling models produce similar posterior

distributions. The K-T crash model reduces the expected posterior

estimate of t1 and t2, although considerable uncertainty remains. The

discontinuity in the K-T posterior occurs at the Cretaceous-Tertiary

boundary.

4. Posterior estimates of the probability of Cretaceous origins for the

primates can be found for each model. We find values of 0.70, 0.73
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and 0.30 in the binomial, Poisson and K-T crash models, respectively.

Note that Cretaceous origins are less than half as likely in the K-T

crash model.

5. The posterior distributions shown in Figure 1 are independent of any

molecular data set. They could be used as prior distributions in

subsequent molecular analyses of the primates or of their subclades,

and are not specific to the analysis performed in the next section of

this paper. Others wishing to use these fossil calibrations should use

the parametric approximations given in Table 3 or contact R.W. for a

Monte Carlo sample from these distributions if preferred.

Analytic Approximations for the Posterior

Before combining these results with the sequence data, we describe

parametric fits to the posteriors in Figure 1. The method of Yang and

Rannala (2006) for dating nodes using sequence data allows the

implementation of any arbitrary statistical distributions to represent the

information in the fossil data as long as the probability density function can

be calculated analytically. For the binomial and Poisson sampling scheme

runs we fit independent skew-t distributions to the marginals for t1 and t2.

The skew-t distribution is specified by the location parameter ξ, scale

parameter ω, shape parameter α, and the degrees of freedom ν (see

Equation (4) in Azzalini and Genton, 2007, for details). We add the

additional requirement that t1 > t2 (as the primates must have originated

before the anthropoids), and this induces a dependency between t1 and t2.
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We estimate the parameter values shown in Table 3 and find that when the

filtering (t1 > t2) is applied, we achieve a good fit to the model posteriors.

TABLE 3 ABOUT HERE

The skew-t distribution with α > 0 is particularly interesting for

representing fossil calibrations, as the distribution is concentrated around

the location parameter, but has a long tail on the right, suitable for

representing the case where one can be much more confident about the

minimum age bound than about the maximum bound of a lineage

divergence.

The K-T posterior is harder to fit because of the discontinuity at the

K-T boundary. We use a mixture of skew normal distributions. The skew

normal distribution is a special case of the skew-t with ν = ∞. When the

shape parameter α = 0, the skew-normal and skew-t distributions become

the normal and t distributions, respectively. We let

t1 =











R1 with probability q

R2 with probability 1 − q
(6)

so that the density of t1 is qf1(x) + (1 − q)f2(x) where fi is the density of

Ri. We estimate q = 0.698, and find parameter estimates for the

parameters of the distributions R1 and R2 as shown in Table 3. We fit a

skew-t distribution to the K-T posterior for t2 as above.
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Analysing other fossil datasets

The code for the computer program used to generate the posterior

distributions shown in Figure 1 is available upon request from R.W. It

provides a stand-alone analysis of the primate fossil record and could be

modified to date divergence times of non-primate clades for which fossil

data similar to those given in Table 1 are available. That is, the data must

consist of counts of the number of generally recognized morphospecies

known from the fossil record for a sequence of time intervals. The time at

the begining and end of each interval must be known, but the intervals need

not necessarily be contiguous. Knowledge of the number of extant species is

useful for estimating the sampling rates, but is not necessary and can be

left out of the analysis by removing the term involving N0 from the metric

in (5).

For our analysis, it proved useful to consider the primates as well as a

nested subclade consisting of the anthropoids. If the OSS method were to

be applied to non-primate datasets, then any other type of simple tree

structure could be accommodated in the analysis by making suitable

changes to the inference procedure (Wilkinson, 2007, contains examples of

including other types of structure in the primate phylogeny). To date just

the root (ignoring any subclades), the OSS algorithm can be stopped after

step 3. Similarly, to date more than one subtree, we could add steps similar

to steps 4 and 5 to pick out any required feature. However, computational

considerations may make this method prohibitively expensive for dating

many more than two divergence times.
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User specified inputs for the model include prior distributions for all

unknown parameters (or a fixed parameter estimate to be used in place of a

prior distribution) and a tolerance ǫ for the ABC algorithm. In practice,

the tolerance needs to be chosen according to the computational resources

available. Smaller values of ǫ give a more accurate ABC approximation,

however, they can require significant computation in order to generate a

sufficient number of accepted parameter values in steps 3 and 5 of the OSS

algorithm. The user must also specify birth and death probabilities p0(t)

and p2(t). In this paper, this was done by specifying the expected diversity

curve EZ(t) (Equation (3)) and solving for p0(t) and p2(t). In general any

parametric curve can be used as long as Equation (4) can be solved to find

the birth and death probabilities.

The analytic approximations to the posterior distributions required for

the molecular analysis that follows have not been automated as part of the

main dating program. These were obtained using the R package sn

(Azzalini, 2010). The mixture of skew-t distributions used to approximate

the K-T posterior was found by trial and error.

MOLECULAR DATA

In the previous section, we derived the posterior distributions for the crown

primate and anthropoid divergence dates using fossil data. We now use

these posterior distributions as prior distributions on the age of t1 and t2 in

an analysis of sequence data. This follows the Bayesian mantra that today’s

posterior is tomorrow’s prior. The conditional independence structure of
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the problem implies that given t1 and t2, the fossil and sequence data are

independent (they are of course a priori dependent when not conditioning

on the divergence times). This follows because the version of the fossil data

used (Table 1) contains only limited morphological information (the

classification into anthropoid and non-anthropoid species), and, thus, is

informative about t1 and t2 but not about other aspects of the phylogeny

(apart from its size). This means that we can write

π(S | t1, t2,D) = π(S | t1, t2) where S denotes the sequence data. Using

Bayes theorem, we can then show that

π(t1, t2 | D,S) ∝ π(t1, t2 | D)π(S | t1, t2,D)

= π(t1, t2 | D)π(S | t1, t2)

to justify using the posterior distribution π(t1, t2 | D) from the fossil

analysis as a prior distribution in the sequence data analysis. To avoid

ambiguity in what follows, we shall refer to the posteriors from the fossil

analysis as the calibration distributions, and use the term posterior when

referring to the inference from the molecular analysis. We present the

analysis of molecular divergence dates using the calibration distributions

from five different fossil calibration models. These models are the binomial,

Poisson, and K-T models described above, as well as two simpler prior

distributions. One of these priors is based on a gamma distribution and the

second is based on ‘soft bounds.’
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Sequence Data

We use a DNA sequence dataset based on two genomic regions. The first

region maps to the CFTR region of human chromosome 7 and is aligned for

different mammals by Cooper et al. (2005). This 1.9 Mbp region was refined

by Steiper and Young (2006) into a 59,764 bp alignment. For this study,

only 13 primate sequences are used: human (Homo sapiens), common

chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo

pygmaeus), rhesus macaque (Macaca mulatta), anubis baboon (Papio

anubis), vervet (Chlorocebus aethiops), common marmoset (Callithrix

jacchus), dusky titi monkey (Callicebus moloch), Bolivian squirrel monkey

(Saimiri boliviensis), gray mouse lemur (Microcebus murinus), small-eared

galago (Otolemur garnettii), and ringtailed lemur (Lemur catta).

The second locus is the CYP7A1 region (22,906 bp), located on human

chromosome 8, with nine primate species sequenced. Wang et al. (2007)

examined eight genomic regions in a sample of diverse primate taxa,

including CYP7A1. These loci were examined via the UCSC Genome

Browser, and the CYP7A1 region was chosen for analysis in this paper

because it is less gene-rich than the other regions. Sequences for 7 species

were obtained as described in Wang et al. (2007): human (Homo sapiens):

hg18 chr8: 59525742–59605413; hamadryas baboon (Papio hamadryas):

AC162431; eastern black-and-white colobus (Colobus guereza): AC148223;

common marmoset (Callithrix jacchus): AC162435; owl monkey (Aotus

nancymaae): AC162781; Bolivian squirrel monkey (Saimiri boliviensis):

AC147423; and ringtailed lemur (Lemur catta): AC151871.
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The common chimpanzee and rhesus macaque sequences were obtained

via the UCSC Genome Browser using a portion of the 5′ and 3′ ends of the

human sequence as a query in BLAT (Kent, 2002), with the resulting

coordinates panTro2 chr8: 56563907–56626694 for the common chimpanzee

and rheMac2 chr8: 61089318–61164419 for the rhesus macaque. Repetitive

DNA was removed using RepeatMasker (Smit et al., 1996-2004). The

sequences were aligned with MLAGAN (Brudno et al., 2003). All positions

with gaps were removed. There are 22,906 sites in the CYP7A1 alignment.

Between the two loci, there are 15 unique primate species, for which the

generally accepted phylogeny (e.g., Goodman et al., 1998; Ray et al., 2005)

is shown in Figure 2. This is the phylogeny used for the molecular dating

analysis. Note that two species (Colobus guereza and Aotus nancymaae) are

missing data for locus 1, while six species are missing data for locus 2

(Gorilla gorilla, Pongo pygmaeus, Chlorocebus aethiops, Callicebus moloch,

Microcebus murinus, and Otolemur garnettii).

Estimation of Divergence Times

The two loci are analyzed jointly using the Bayesian MCMC program

mcmctree in PAML 4.2 (Yang, 2007). The HKY+Γ5 model (Hasegawa

et al., 1985; Yang, 1994) was used, with different transition/transversion

rate ratios (κ), different base frequencies and different gamma shape

parameter α for the two loci. Gamma priors were assigned on parameters

κ ∼ G(6, 2), with mean 3, and α ∼ G(1, 1). The substitution rates are

assumed to drift over time independently at the two loci. We use 100 Myr
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as one time unit. The rate at the root is assigned the gamma prior

µ ∼ G(0.2, 2), with mean 0.1 (i.e., 10−9 substitutions per site per year).

The simpler JC model (Jukes and Cantor, 1969) was used in some analyses

and found to produce similar results to HKY+Γ5; those results are not

reported below.

The geometric Brownian motion model was used to accommodate the

drift of the substitution rate over time (across lineages) (Rannala and

Yang, 2007). The rate-drift parameter is assigned the gamma prior

σ2 ∼ G(1, 10). A model of rate drift was used due to the well-established

rate variation within primates (e.g., Steiper et al., 2004). This molecular

rate variation was confirmed by strict clock analyses that resulted in date

estimates inconsistent with the fossil record, e.g. at the human/chimpanzee

node recovering estimates < 5 Ma (results not shown). The prior for times

is generated from the birth-death process with sampling, with parameters

λ = µ = 1 and ρ = 0, so that the kernel is uniform (Yang and Rannala,

2006).

We estimated dates under five calibration models (Poisson, binomial,

K-T, gamma, and bounds). The first three of these are based on the models

described in the section on using the fossil record. For the gamma model

we fit a gamma prior distribution to subjective date estimates. We assume

that the crown primate node has a minimum 2.5% boundary at 56 Ma and

an maximum 97.5% boundary at 85 Ma and assume the crown anthropoid

node has minimum 2.5% boundary at 41 Ma and maximum 97.5%

boundary at 65 Ma. We fit gamma distributions to these values and use a

G(91.2, 130.4) prior for the primate node, and a G(75.3, 143.8) prior for the
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anthropoid node. The bounds model assumes that the crown anthropoid

node falls between 37 and 70 Ma with 2.5% chance each for the dates being

older or younger and that the crown primate node falls between 55 and

90 Ma with 2.5% chance each for the dates being older or younger. Details

of the implementation of these calibrations are given in Yang and Rannala

(2006).

Step lengths of proposals were adjusted in pilot runs to achieve a

near-optimal acceptance ratio of 1/3. The same analysis was conducted

multiple times. Convergence and mixing of the chain were assessed by

consistency across runs, by using trace plots, and calculating the effective

sample sizes. Summaries of the posterior distribution such as the mean and

95% equal-tail credibility interval (CI) were generated by combining the

samples taken over the runs.

Results of Molecular Dating Analysis

FIGURE 2 ABOUT HERE

The posterior means and 95% equal-tail posterior credibility intervals

(CIs) for the divergence times are listed in Table 4. Date estimates for some

of the major primate clades are plotted in Figure 3. This figure presents the

95% posterior CIs from the integrated analysis, shown as black bars, with

the posterior mean estimate given as a white hatch (models from top to

bottom are Poisson, K-T, binomial, gamma, and bounds). Also shown are

the 95% CIs of the fossil calibrations for the crown primate and crown

anthropoid nodes found from the fossil analysis (gray bars). A few
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observations can be made from this figure. Firstly, there is broad agreement

among all of the point estimates and credibility intervals for all of the

calibration models. The most pronounced difference is the size of the

credibility intervals at the crown primate node. In this case the more exotic

distribution models yield a larger and older credibility interval than the

gamma and bounds models. These older dates are to be preferred as both

the gamma and bounds calibration distributions have artificially light tails

when compared with the model-based calibrations obtained in the first

phase of the analysis using the fossil record. Secondly, note that the effect

of the molecular analysis is to move the estimate of the age of the crown

primate and crown anthropoid nodes further into the past. Most of the

mass from the fossil calibration distributions for the primate node is

between approximately 55 and 85 Ma, whereas the molecular posterior

distributions are much older, placing most of the posterior mass in the

Cretaceous (>65 Ma). There is a strong signal in the molecular data that

the primate and anthropoid node ages are older than the dates predicted by

the fossil analysis alone.

Comparing the date estimates with those of two recent studies of

primate molecular divergence dates (Fig. 3; grey arrowhead: Steiper and

Young (2009), black arrowhead: Steiper and Young (2006)) shows that the

present dates are generally somewhat older than those from those studies.

However, the credibility intervals from our integrated analysis contain these

other date estimates. The crown strepsirrhine node is somewhat younger,

though this may be related to the relative lack of calibration information in

this part of the tree.
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The posterior means of node ages when using the prior distribution

obtained from the Poisson sampling model are used to draw the tree of

Figure 2.

FIGURE 3 ABOUT HERE

FIGURE 4 ABOUT HERE

The infinite-sites plot (Yang and Rannala, 2006, Fig. 8) is shown in

Figure 4 for the Poisson sampling model. This plots the posterior 95% CI

width against the posterior mean of the node ages. The high correlation

coefficient (r2 = 0.80) means that the sequence data are very informative.

The slope of 0.49 means that for every 1 Myr of divergence time 0.49 Myr

is added to the CI width, indicating that the fossil calibrations are rather

imprecise. The points fit the straight line rather well except for the four

oldest nodes. Node ages t1 and t2 are more precise than average because

these are the calibration nodes. Ages t13 and t14 for the two strepsirrhine

nodes have large errors in the posterior, apparently because there is not a

fossil calibration in that portion of the tree, and also one sequence is

missing at one of the two loci in strepsirrhines. Both features make it

difficult for the model to assess rate variation within the strepsirrhines to

derive reliable date estimates. The plots for other fossil models (not shown)

are very similar, with r2 values close to 0.8, and the slope close to 0.5.

Estimates of parameters in the molecular model were very similar

among the fossil-calibration models. The posterior means and 95% CIs of κ

are 4.4 (4.2, 4.6) and 4.7 (4.6, 4.8) for loci 1 and 2, respectively. The overall
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rates were estimated to be 1.5 (1.0, 2.1) and 1.0 (0.7, 1.3) ×10−9

substitutions per site per year at loci 1 and 2, respectively, while the rate

drift parameters σ2 were estimated to be 0.39 (0.20, 0.68) and 0.30 (0.15,

0.53).

TABLE 4 ABOUT HERE

DISCUSSION

We have introduced a probabilistic model that links primate divergence

times to the observed chronological distribution of fossils and numbers of

living primate species. The model used is relatively simple to code and

understand, hopefully making our inference and assumptions transparent.

Our focus was not on building a highly accurate model of evolution,

accounting for migration, climatic variability, etc., but to capture the basic

pattern of growth in order to understand what range of divergence times

could feasibly lead to the observed fossil data. It is not clear whether a

more sophisticated model would be possible to justify, and such a model is

likely to introduce more uncertainty into the estimates of the divergence

times, not less. Most of the uncertainty in our final estimates comes from

the uncertainty in results for the fossil calibrations and any uncertainty

introduced by examining the model discrepancy (not shown here). To

substantially reduce the uncertainty in the fossil estimates it is likely that

data from a different source, or with a more detailed structure, would be

required. If the number of fossils of each species discovered was known,
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then the model and ABC inference algorithm could be altered to

incorporate these data, providing further valuable information about the

sampling rate and helping us to constrain divergence time estimates.

Unfortunately this information is not readily available, whereas the number

of species recorded is collectable from the literature.

The primate molecular divergence dates estimated from linking these

approaches reveal a number of important points. Most importantly,

calibration distributions generated from complex models based on the

empirical distribution of fossils and the numbers of living species can be

used to generate useful molecular divergence estimates. This represents an

advance over previous methods for two main reasons. First, this method

overcomes some of the inherent difficulties in using fossils to diagnose the

earliest members of lineages (Steiper and Young, 2008). Specifically, it is

the earliest members of a lineage that are the most important for calibrating

molecular clocks, but the earliest fossil representatives of a lineage will be

the most problematic to diagnose phylogenetically. Given this paradox,

alternative methods for molecular clock calibration are critical. Second,

although previous methods have used a probabilistic approach to molecular

clock calibration (e.g., Rannala and Yang, 2007; Barnett et al., 2005), the

present methods use the empirical distribution of fossil and extant species

to generate a distribution for use as a calibration. Given its incorporation

of more empirical data from the living and fossil data, the present method

potentially allows for a more accurate distribution for species divergence

times. The mcmctree program is currently the only molecular dating

program that implements the skew-t distributions generated in the analysis
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of this paper, but we expect it to be straightforward to include such

distributions in Bayesian dating programs such as BEAST (Drummond

et al., 2006), which can accommodate arbitrary calibration distributions.

We have chosen here to model the two data sets (fossils and sequences)

separately, using a two-step procedure to date divergence times. In the first

step, the fossil record was analysed to produce a distribution for the primate

and anthropoid divergence times, and in the second step, this distribution

was used as a prior distribution in a molecular analysis. An advantage of

this two-step procedure is that the posterior distributions shown in Figure 2

can be used as prior distributions in other molecular analyses without fear

of double counting the molecular data, as they were obtained independently

of the sequence data. An alternative to our two-step approach would be to

use a combined model for both the sequence and fossil data. While an

integrated approach may lead to better consistency between the two parts

of the analysis, it is likely to be computationally expensive and may be

dominated by the molecular data. Exploration of the advantages and

disadvantages of the two approaches merits further research.

The different calibration distributions, including the gamma and the

simple bounds, produced similar posterior date estimates in that the

posterior means are similar and the posterior CIs overlap considerably.

However, the Poisson, binomial and K-T calibrations produced wider CIs,

with much older maximum CI limits for the crown primate node. We

suggest that the molecular date estimates based on these models more

accurately reflect the uncertainties in the fossil and molecular data and that

the subjective calibrations based on the gamma and simple bounds may be
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over-confident.

TABLE 5 ABOUT HERE

The degree to which the age of the oldest known fossil representatives

of a clade reflect our estimates of divergence dates is variable. Our

estimates suggest that four nodes stand out as particularly badly

represented by the fossil record (Table 5): the origin of crown group

primates (t1), the origin of crown group catarrhines (t3), the origin of crown

group great apes (t4) and the origin of crown group platyrrhines (t10). The

difficulty of accurately identifying fossils as either early crown group

members of a clade or stem lineage taxa may be partly responsible in

several cases. For example, if the controversial Late Miocene (ca. 7-5 Ma)

taxa Sahelanthropus, Orrorin and Ardipithecus are excluded from the

human lineage (Harrison, 2010), the oldest fossil representative of that

lineage becomes Australopithecus anamensis at 4.2 Ma (Leakey et al.,

1998), and the relative discrepancy between our estimated mean divergence

date based on the Poisson sampling model and the oldest known crown

group fossil of the human-chimpanzee clade at node t6 increases from 7% to

79% (Table 5). Similarly, it has been suggested that the Early Miocene

primates known from South America were stem rather than crown group

platyrrhines (Kay et al., 2008). If, instead, those taxa were considered

members of the crown group, the proportional discrepancy between our

estimated mean divergence date and the oldest known crown group fossil at

node t10 would be reduced from 57% to 26%. The strepsirrhine divergence

(t13) may in fact be the least secure of these dates, as the fossil record for
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lemurs (which constitute the majority of Strepsirrhini) is non-existent,

while that for lorisiforms dates back only to the late Eocene.

In other cases, large discrepancies are more likely indicative of a real

hiatus in the fossil record. For example, the middle Oligocene is notorious

for its poor fossil record, particularly in Africa (Kappelman et al., 2003).

As this coincides with the inferred time and place of initial evolution of the

crown catarrhine clade (t3), it may explain the large discrepancy between

our estimated mean divergence date and the age of the earliest fossil

representative of crown group catarrhines (Table 5). Similarly, the sudden

appearance of taxonomically diverse primates, as well as of other groups of

modern mammals, in the fossil record of Asia, Western Europe and North

America at the base of the Eocene, has been interpreted as suggestive of a

more ancient origin of those groups in a poorly sampled, as yet unidentified

region, in more southern latitudes (Krause and Maas, 1990; Martin, 1993;

Soligo, 2007; Martin et al., 2007). This would help to explain the large gap

between our mean estimate of the date of origin of crown group primates

(t1) and their oldest known fossil representatives. The date of only 64 Ma

for the divergence between Strepsirrhini and Haplorhini reported by

Chatterjee et al. (2009) is distinctly younger than the distribution of

inferred dates for that node shown in our Figure 3. This young age estimate

may be due to Chatterjee et al.’s use of two exponential distributions to

represent minimum bound calibrations in their BEAST analysis. These

distributions represent rapid decay of the probability density function

beyond the minimum bounds; i.e., they implicitly assume that the true age

is close to the minima and unlikely to be much older than those minima.
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This assumption, we feel, is unlikely to be warranted, as it does not take

account of the sizable gaps that exist in the primate fossil record (Martin,

1993; Tavaré et al., 2002; Soligo et al., 2007). It should also be noted that

differences in strategies used by Bayesian programs to incorporate

minimum- and maximum-age bounds may be responsible for very large

differences in posterior time estimates (Inoue et al., 2010). The strategies

used in the BEAST analyses are not made explicit, but the use of a number

of calibration points that are seemingly based on minimum bounds alone is

of potential concern here. Further research in this area is clearly needed.

In addition, it should be noted that our estimates for the divergence of

crown group strepsirrhines (t13) have very wide 95% credibility intervals

(Fig. 3, Table 4). Thus, the relatively low (compared to other nodes)

discrepancy between mean model estimate and fossil date for node t13

(34.6%; Table 5) may reflect the effect of the near-total absence of a crown

strepsirrhine fossil record on both dates rather than relative congruence

between the two.

Compared to two recent molecular studies of primate divergence dates

(Steiper and Young, 2006, 2008), the majority of our estimates are

somewhat older (Fig. 3). In most cases the increases suggested

discrepancies between estimated divergence dates and the oldest known

fossil representative of a clade. In the case of the divergence between the

human and chimpanzee lineages (t6), however, our slightly older dates,

when compared to recent molecular estimates, may align better with the

fossil record, if any one of Sahelanthropus, Orrorin or Ardipithecus is

accepted as an early representative of the human lineage (Senut et al.
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(2001); Brunet et al. (2002); Haile-Selassie et al. (2004); but see Harrison

(2010) for an alternative interpretation).
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APPENDIX

ABC-within-Gibbs

Rejection-based ABC cannot handle large numbers of parameters, because

repeatedly sampling from the prior distribution becomes too inefficient in

high dimensions. Markov chain Monte Carlo (MCMC) methods work by

correlating observations, so that more time is spent in regions of high

likelihood. The tails of the distribution are still visited, but less time is

spent there. This motivated Marjoram et al. (2003) to introduce the

approximate MCMC algorithm.

MCMC methods build a Markov chain on the parameter space, with

dynamics controlled by an update kernel. An MCMC algorithm does not

have to use the same update strategy each time, and in practice it is often

convenient to combine a number of different update kernels (Tierney, 1994).

A common hybrid algorithm is the Metropolis-within-Gibbs sampler

(Brooks, 1998), in which Gibbs update kernels are used whenever the full

posterior conditionals are known, and Metropolis-Hastings kernels when

not. We use a similar idea, and combine Gibbs kernels with ABC-rejection

steps, allowing us to exploit model structure where it is known. Before

explaining how this works for our model, consider the structure where the

parameter is split into just two components, θ = (θ1, θ2), and where the

Gibbs conditional proposal density π(θ1|D, θ2) is known but where

π(θ2|D, θ1) is unknown. Then the following algorithm generates samples

that are from an approximation to the posterior distribution π(θ|D):

Approximate-Gibbs Sampler
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1. If currently at θ = (θ1, θ2), draw θ′1 from π(θ1|D, θ2) and set

θ = (θ′1, θ2).

2. Draw θ′2 from its prior π(θ2) and simulate data D′ using parameter

θ = (θ′1, θ
′

2).

3. If ρ(D,D′) ≤ ǫ, set θ = (θ′1, θ
′

2) and return to step 1. Otherwise stay

at θ = (θ′1, θ2) and return to step 2.

Note that step 1 is the standard Gibbs update, and steps 2 and 3 are the

ABC steps to draw approximately from π(θ2|D, θ1). How this algorithm is

applied to our model depends on whether we use a binomial or a Poisson

sampling scheme.

Binomial sampling model. — We introduce auxiliary information about

the tree structure and enlarge the parameter space, and then simulate from

the posterior distribution

π(ψ, λ, τ,N ,α|D) ∝ P(D|α,ψ, λ, τ,N )P(N|τ,ψ, λ)π(τ)π(ψ, λ)π(α)

where N = (N1, . . . , N14), with Ni denoting the number of species that

lived at any point during the ith epoch. An advantage of including the tree

structure, N , in the equation above is that parts of the likelihood equation

become computable when we split the parameter θ = (τ,ψ, λ,α,N ) into

two parts, α and (τ,ψ, λ,N ). The conditional distributions required for
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the Gibbs sampler for α are tractable:

π(α|D,ψ, λ, τ,N ) ∝ π(α,ψ, λ, τ,N|D)

∝ P(D|τ,ψ, λ,N ,α)P(N|τ,ψ, λ)π(τ)π(ψ, λ)π(α)

∝ π(α)P(D|N ,α)

∝ π(α)

14
∏

i=1

αDi

i (1 − αi)
Ni−Di.

Note that beta prior distributions for the αi are conjugate, so that the

posterior distributions also have beta distributions (X ∼ Beta(a, b) if X has

density proportional to xa−1(1 − x)b−1 for 0 ≤ x ≤ 1 and is zero elsewhere).

If the prior for each αi is a Beta(a, b) distribution, then

π(α|D,ψ, λ, τ,N ) ∝
14
∏

i=1

αDi+a−1
i (1 − αi)

Ni−Di+b−1

so that the posterior distribution of αi is Beta(a+Di, b+Ni −Di). The

posterior mean of αi is then

E(αi|D,N ) =
Di + a

Ni + a+ b
. (7)

If a and b are small compared with Ni and Di, then Equation (7) is

approximately equal to the ratio of the number of fossils to the number of

species, which is the intuitive value for the sampling fractions:

E(αi|D,N ) ≈
Di

Ni

.
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The other conditional π(τ,ψ, λ,N|D,α) is intractable, but can be sampled

from using an ABC algorithm:

ABC-within-Gibbs: Binomial sampling model

1. Suppose we are at θ(t) = (ψ, λ(t),α(t), τ (t), τ ∗(t),N (t)) after t iterations.

2. Propose α′ from

π(α|D,ψ, λ(t), τ (t),N (t)) =
∏

Beta(a+Di, N
(t)
i −Di + b) (8)

3. Propose (ψ, λ′, τ ′) from prior π(τ)π(ψ, λ) and simulate tree N ′ from

P(N ′|τ ′,ψ, λ′).

4. Simulate fossil counts D′. If ρ(D,D′) ≤ ǫ1 go to step 5. Otherwise

return to step 3.

5. Use the optimal subtree selection algorithm to find the best subtree

fossil counts A′. If ρ(A′,A) ≤ ǫ2 accept (ψ, λ′, τ ′, τ ∗,N ′) and set

θ(t+1) = (ψ, λ′,α′, τ ′, τ ∗′,N ′). If ρ(A,A′) > ǫ2 stay at

(ψ, λ(t),α(t), τ (t), τ ∗,N (t)) and return to step 3.

The hyperparameters a and b used in the beta prior distributions

should not matter greatly as long as both are small, as they will be

dominated by the data, as shown by Equation (7). We use a = b = 1 in this

analysis, as this makes the priors for each αi uniform on [0, 1].
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Poisson sampling model. — Recall that under the Poisson sampling

model, fossil finds occur as the events of a Poisson point process on the

branches of the tree. Label from 1 to Nk, each of the Nk species in interval

k, and let

I
(k)
j =











1 if we find a fossil of species j in interval k,

0 otherwise.

Then, if species j lives for time l
(k)
j in interval k, let

P(I
(k)
j = 1) = 1 − e−βkl

(k)
j where {βk}k=1,...,14 are the sampling rates for each

interval. The {I(k)
j }j=1,...,Nk

are independent Bernoulli random variables

with parameters 1− e−βkl
(k)
j , where l

(k)
j is a random parameter. The number

of fossil species found is

Dk =

Nk
∑

j=1

Ij,

i.e., the sum of Nk independent Bernoulli random variables. It is possible to

approximate D′ by a Poisson distribution

D′

k =

Nk
∑

j=1

I
(k)
j ≈ Po

(

Nk
∑

j=1

(1 − e−βkl
(k)
j )

)

so that

π(βk|D,ψ, λ, τ,N ) ∝ π(βk)

(

Nk
∑

j=1

(1 − e−βkl
(k)
j )

)Di

exp

(

−
Nk
∑

j=1

(1 − e−βkl
(k)
j )

)

.

The Kullback-Leibler divergence between the distribution of the sum of

Bernoulli variables and the Poisson approximation can be bounded above
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(Kontoyiannis et al., 2005), so that

DKL(πSn
||Po(λ)) ≤

1

λ

n
∑

i=1

p3
i

1 − pi

,

where Sn is the sum of n independent Bernoulli(pi) random variables and

λ =
∑

pi. By approximating the sum of parameters in the Poisson

distribution to first order, we find

Nk
∑

j=1

(1 − e−βkl
(k)
j ) ≈ βk

Nk
∑

j=1

l
(k)
j = βkLk

where Lk is the total length of all the lineages in interval k.

The posterior distribution of βk can now be written as

π(βk|D,ψ, λ, τ,N ) ∝ π(βk)P(D|N , βk)

∝ π(βk)

Nk
∏

j=1

(1 − e−βkl
(k)
j )Ij(e−βkl

(k)
j )1−Ij

≈∝ π(βk)e
−βkLk(βkLk)

Dk

and so we can use conjugate gamma prior distributions, βk ∼ G(a, b). The

posterior distributions are then also gamma distributions

βk|D,N ∼ G(Dk + a, Lk + b).

When a and b are small the posterior means of the sampling rates are again
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close to their intuitive value:

E(βk|D,N ) =
Dk + a

Lk + b
≈
Dk

Lk

. (9)
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TABLES AND FIGURES

Time at base Primate Anthropoid
Epoch k of interval k fossil fossil

(Ma) counts, D counts, A
Extant 0 376 281
Late-Pleistocene 1 0.15 22 22
Middle-Pleistocene 2 0.9 28 28
Early-Pleistocene 3 1.8 30 30
Late-Pliocene 4 3.6 43 40
Early-Pliocene 5 5.3 12 11
Late-Miocene 6 11.2 38 34
Middle-Miocene 7 16.4 46 43
Early-Miocene 8 23.8 34 28
Late-Oligocene 9 28.5 3 2
Early-Oligocene 10 33.7 22 6
Late-Eocene 11 37.0 30 2
Middle-Eocene 12 49.0 119 0
Early-Eocene 13 54.8 65 0
Pre-Eocene 14 0 0

Table 1: A summary of the number of crown group primate and crown group
anthropoid species known from the fossil record (Tavaré et al., 2002; Soligo
et al., 2007). Time during the Cenozoic is divided into 14 geologic epochs,
with the dates for each epoch given in the table as millions of years ago (Ma).
Also given is the extant diversity (Groves, 2005). Note that the geological
scale used here does not take account of the latest adjustments made to
the age of the Pliocene-Pleistocene transition (International Commission on
Stratigraphy, 2009).
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Model scenario Node 2.5th % Median 97.5th %
Binomial t1 59.0 68.3 88.9

t2 43.8 54.0 68.3
Poisson t1 59.0 68.7 88.2

t2 41.5 52.0 64.9
K-T t1 57.6 63.6 88.6

t2 41.0 51.1 62.1

Table 2: Summary of the marginal posterior distributions for the primate
divergence time, t1, and the anthropoid divergence time, t2. The median
and the 2.5th and 97.5th percentiles are reported. All values are in units of
millions of years. The results from three different experiments are shown,
corresponding to the cases described in the text.
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t1 t2
Model ξ ω α ν ξ ω α ν
Binomial 60.71 10.94 4.42 16.01 49.73 6.82 1.41 9.08
Poisson 61.35 10.58 3.69 18.42 46.74 8.00 1.70 34.17
K-T - R1 65.00 3.65 -3400 ∞ 47.54 6.32 0.98 22.85

- R2 65.02 13.75 11409 ∞

Table 3: Parameter estimates for the parametric fit of skew-t distributions to
the binomial and Poisson sampling models, and for t2 in the K-T model. The
skew-t distribution is specified by the location parameter ξ, scale parameter
ω, shape parameter α, and the degrees of freedom ν. For the posterior of
t1 in the K-T model we fit a mixture distribution 0.698R1 + 0.302R2, where
R1 and R2 are skew-normal distributions, with parameter estimates shown
in the table. Note that setting ν = ∞ in the skew-t distribution gives the
skew-normal.
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Node Age Poisson K-T crash Binomial Gamma Bounds
Crown Primates t1 84.5 (69.2, 103.5) 88.2 (71.5, 106.4) 87.5 (70.9, 107.4) 81.3 (69.0, 94.9) 83.1 (68.5, 91.2)
Crown Anthropoidea t2 47.2 (38.9, 56.5) 48.0 (39.2, 57.0) 49.6 (40.4, 58.8) 45.5 (37.6, 54.2) 44.1 (36.7, 54.4)
Crown Catarrhini t3 31.0 (25.1, 37.7) 31.5 (25.3, 38.1) 32.5 (26.1, 39.3) 29.8 (24.2, 36.2) 28.9 (23.5, 36.2)
Crown great apes t4 19.2 (15.1, 24.1) 19.5 (15.3, 24.3) 20.2 (15.8, 25.2) 18.5 (14.5, 23.2) 17.9 (14.1, 23.1)
Gorilla/Homo+Pan t5 9.3 (7.3, 11.7) 9.4 (7.3, 11.8) 9.7 (7.6, 12.2) 8.9 (7.0, 11.3) 8.6 (6.8, 11.2)
Homo/Pan t6 7.5 (5.7, 9.6) 7.6 (5.8, 9.7) 7.9 (6.0, 10.0) 7.2 (5.5, 9.2) 6.9 (5.3, 9.1)
Crown Cercopithecoidea t7 14.1 (11.0, 17.7) 14.3 (11.1, 18.0) 14.8 (11.5, 18.6) 13.6 (10.6, 17.1) 13.1 (10.2, 17.1)
Cercopithecini/Papionini t8 10.3 (8.1, 13.0) 10.5 (8.2, 13.1) 10.9 (8.5, 13.6) 10.0 (7.8, 12.5) 9.6 (7.6, 12.4)
Papio/Macaca t9 7.2 (5.4, 9.4) 7.3 (5.5, 9.5) 7.6 (5.7, 9.9) 6.9 (5.2, 9.1) 6.7 (5.0, 9.0)
Crown Platyrrhini t10 25.1 (20.1, 31.0) 25.4 (20.2, 31.2) 26.3 (20.8, 32.2) 24.1 (19.3, 29.6) 23.4 (18.7, 29.7)
Intra Platyrrhini t11 20.5 (16.3, 25.3) 20.7 (16.5, 25.5) 21.4 (17.0, 26.4) 19.7 (15.7, 24.3) 19.1 (15.3, 24.3)
Intra Platyrrhini t12 20.0 (15.9, 24.8) 20.3 (16.0, 25.0) 21.0 (16.5, 25.8) 19.2 (15.3, 23.8) 18.6 (14.8, 23.8)
Crown Strepsirrhini t13 49.8 (35.9, 72.0) 53.3 (37.2, 77.3) 50.7 (36.9, 72.6) 48.3 (36.2, 66.2) 51.0 (36.6, 69.3)
Intra Lemuriformes t14 34.4 (23.5, 49.1) 36.4 (24.2, 52.6) 35.3 (24.0, 50.4) 33.5 (23.3, 46.0) 35.0 (24.1, 48.4)

Table 4: Posterior means and 95% confidence intervals of divergence times (in units of millions of years) under
different fossil-calibration models. NB: Variable rates among lineages are accommodated using the auto-correlated
rate-drift model (clock 3). The HKY+Γ5 model is used to calculate the likelihood, with different parameters assigned
for the two loci. The node labels ti are illustrated in Figure 2.
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Node Divergence date Fossil date Discrepancy (%)
Crown Primates t1 84.5 (69.2, 103.5) 55 54
Crown Anthropoidea t2 47.2 (38.9, 56.5) 35 35
Crown Catarrhini t3 31.0 (25.1, 37.7) 20 55
Crown great apes t4 19.2 (15.1, 24.1) 13 48
Homo/Pan t6 7.5 (5.7, 9.6) 7 7
Crown Cercopithecoidea t7 14.1 (11.0, 17.7) 11 28
Crown Platyrrhini t10 25.1 (20.1, 31.0) 16 57
Crown Strepsirrhini t13 49.8 (35.9, 72.0) 37 35

Table 5: Mean estimated divergence dates (in units of millions of years)
for the Poisson sampling model, approximate ages of the oldest known,
relatively broadly accepted, fossil representatives of each crown group, and
the discrepancy between the two dates expressed as a proportion of the fossil’s
age, for the major primate divergence events. Sources for the fossil dates: t1:
Ni et al. (2004), Smith et al. (2006); t2, t13: Seiffert (2007); t3: Miller et al.
(2009); t4: Chaimanee et al. (2003); t6: Brunet et al. (2002); t7: Andrews
et al. (1996); t10: Kay et al. (2008).
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FIGURE 1 CAPTION: Marginal posterior distributions for the primate

(t1) and anthropoid (t2) divergence times. Results are shown for three

modelling scenarios. Dates are in units of millions of years.

FIGURE 2 CAPTION: Rooted tree showing mean estimates of node

ages t1, . . . , t14 obtained when using the Poisson sampling model to provide

prior distributions for the t1 and t2 node ages. The numbers in parentheses

after the species name indicate that the sequence for that species is only

available at that locus. Species without labels have data for both loci.

FIGURE 3 CAPTION: Figure showing the posterior date estimates of

seven nodes in the primate phylogeny (see Table 4). For each node, five

different estimates are shown, depending on which prior distribution was

used in the molecular analysis. In order (from top to bottom) they are the

estimates from the Poisson, K-T, binomial, gamma and bounds models.

The white hatch shows the posterior mean age estimate, and the black box

shows posterior 95% credibility intervals (CI). For the primate (t1) and

anthropoid (t2) divergences, the 95% CI from the fossil calibrations are

shown as grey lines. The arrowheads show estimates taken from the

literature (gray arrowhead - Steiper and Young (2009), black arrowhead -

Steiper and Young (2006)). The node labels correspond to those given in

Table 4.

FIGURE 4 CAPTION: Infinite site plot. Posterior 95% credibility

interval width against posterior means of node ages for the Poisson
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sampling model.
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