
Respiratory System

- Consists of the respiratory and conducting zones
- Respiratory zone:
 - Site of gas exchange
 - Consists of bronchioles, alveolar ducts, and alveoli

Respiratory System

- Conducting zone:
 - Conduits for air to reach the sites of gas exchange
 - Includes all other respiratory structures (e.g., nose, nasal cavity, pharynx, trachea)
- Respiratory muscles diaphragm and other muscles that promote ventilation

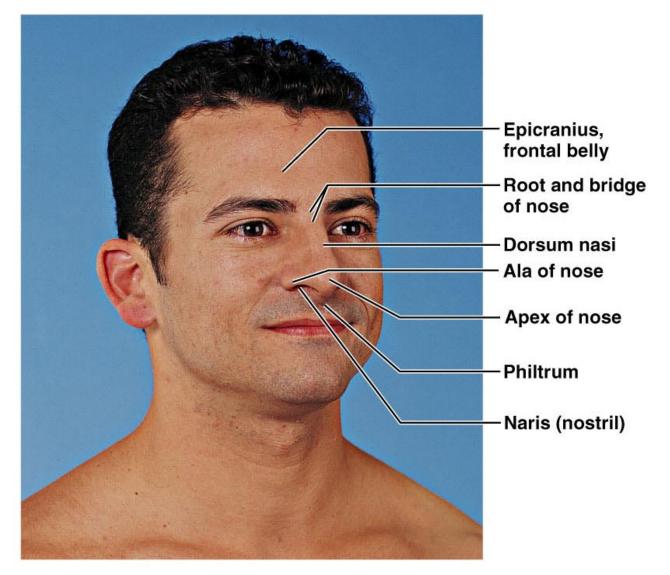
Respiratory System

Major Functions of the Respiratory System

- Major function is to supply the body with oxygen and dispose of carbon dioxide
- Respiration four distinct processes must happen
 - Pulmonary ventilation moving air into and out of the lungs
 - External respiration gas exchange between the lungs and the blood
 - Transport transport of oxygen and carbon dioxide between the lungs and tissues
 - Internal respiration gas exchange between systemic blood vessels and tissues

Functional Anatomy of the Respiratory System

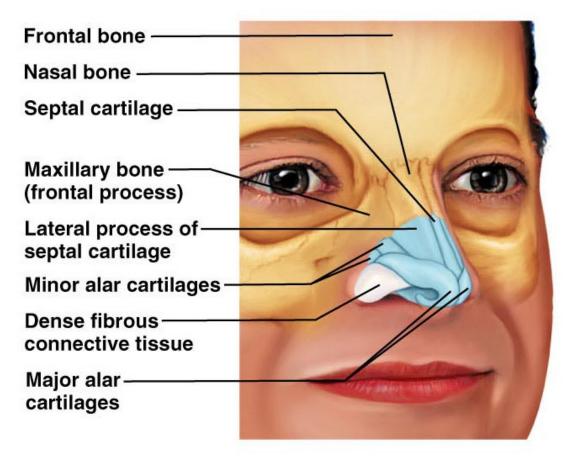
- Includes nose, nasal cavity, pharynx, larynx, trachea, bronchi, lungs
- Consists of two zones:
 - Respiratory zone: site of gas exchange (bronchioles, alveolar ducts, alveoli)
 - Conductiong zones: all other respiratory passageways


The Nose

- The only externally visible part of the respiratory system that functions by:
 - Providing an airway for respiration
 - Moistening and warming the entering air
 - Filtering inspired air and cleaning it of foreign matter
 - Serving as a resonating chamber for speech
 - Housing the olfactory receptors

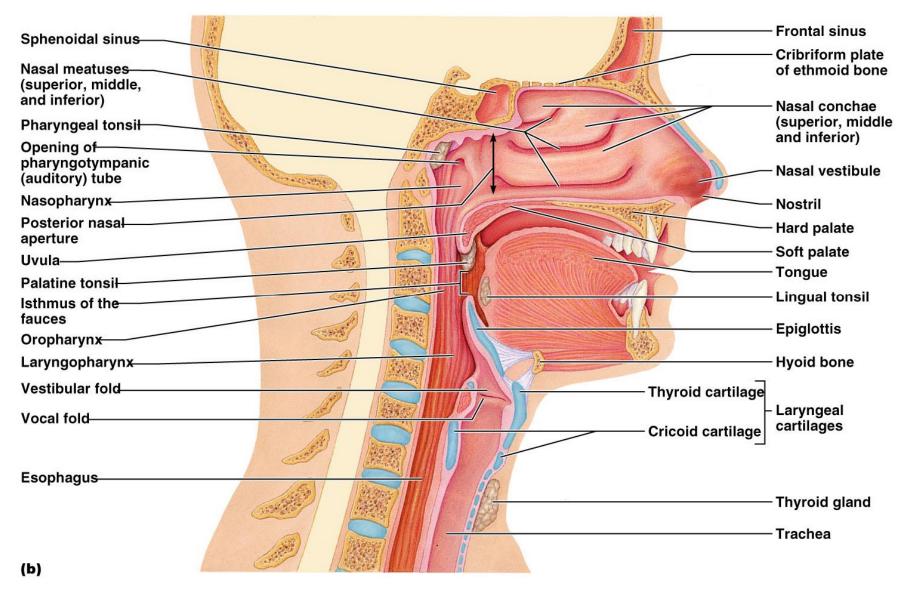
Structure of the Nose

- Nose is divided into two regions:
 - External nose, including the root, bridge, dorsum nasi, apex, philtrum, nares, alae
 - Internal nasal cavity
- Philtrum a shallow vertical groove inferior to the apex
- The external nares (nostrils) are bounded laterally by the alae


Structure of the Nose

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Structure of the Nose


Fashioned by the nasal and frontal bones (superiorly), maxillary bones, and hyaline cartilage.

- Lies in and posterior to the external nose
- Is divided by a midline nasal septum
- Opens posteriorly into the nasal pharynx via internal nares
- The ethmoid and sphenoid bones form the roof
- The floor is formed by the hard and soft palates

- Vestibule nasal cavity superior to the nares
 - Lined with skin containing subaceous and sweat glands and vibrissae
 - Vibrissae hairs that filter coarse particles from inspired air
- Olfactory mucosa
 - Lines the superior nasal cavity
 - Contains smell receptors

- Respiratory mucosa:
 - pseudostratified ciliated columnar epithelium
 - Lines the balance of the nasal cavity
 - Glands secrete mucus containing lysozyme and defensins to help destroy bacteria
 - Superior, middle, inferior conchae: increase mucosal surface area
- Paranasal sinuses: in frontal, sphenoid, ethmoid, maxillary bones
 - Lighten the skull and warm & moisten air

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Functions of the Nasal Mucosa and Conchae

- During inhalation the conchae and nasal mucosa:
 - Filter, heat, and moisten air
- During exhalation these structures:
 - Reclaim heat and moisture
 - Minimize heat and moisture loss

Paranasal Sinuses

- Sinuses in bones that surround the nasal cavity
- Sinuses lighten the skull and help to warm and moisten the air

Pharynx

- Funnel-shaped tube of skeletal muscle that connects to the:
 - Nasal cavity and mouth superiorly
 - Larynx and esophagus inferiorly
- Extends from the base of the skull to the level of the sixth cervical vertebra
- It is divided into three regions
 - Nasopharynx
 - Oropharynx
 - Laryngopharynx

Nasopharynx

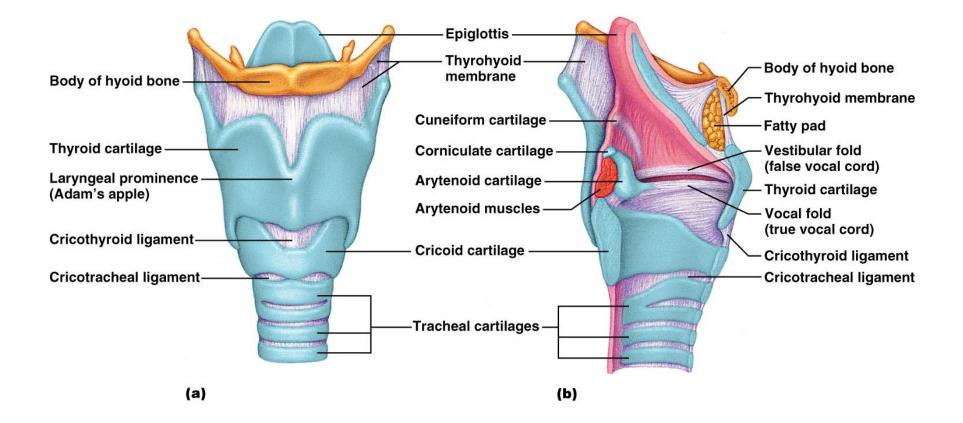
- Lies posterior to the nasal cavity, inferior to the sphenoid, and superior to the level of the soft palate
- Strictly an air passageway
- Lined with pseudostratified columnar epithelium
- Uvula closes during swallowing to prevent food from entering the nasal cavity
- The pharyngeal tonsil (adenoid) destroys pathogens entering the nasopharynx
- Pharyngotympanic (auditory) tubes open into the lateral walls

Oropharynx

- Posterior to the oral cavity
- Serves as a common passageway for food and air
- The epithelial lining <u>changes</u> to (protective) stratified squamous epithelium
- Palatine tonsils lie in the lateral walls of the fauces
- Lingual tonsil covers the base of the tongue

Hypopharynx (Laryngopharynx)

- Serves as a common passageway for food and air
- Lies posterior to the upright epiglottis where respiratory and digestive pathways diverge
- Continuous with the esophogus posteriorly
- Food always has the "right of way" and the air passage is closed when swallowing


Larynx (Voice Box)

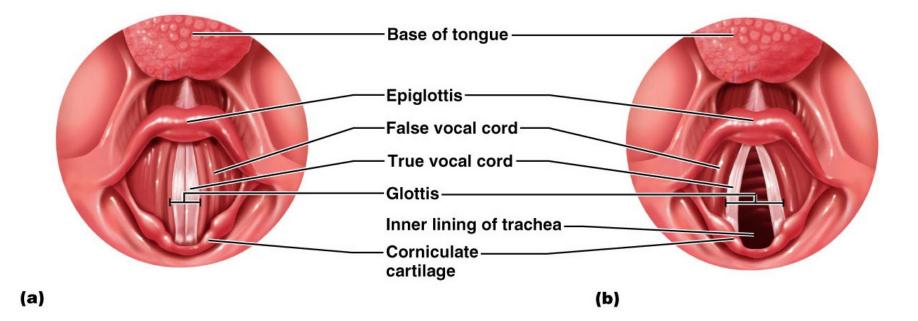
- Attaches to the hyoid bone and opens into the hypopharynx superiorly
- Continuous with the trachea posteriorly
- The three functions of the larynx are:
 - To provide an open airway
 - To act as a switching mechanism to route air and food into the proper channels
 - To function in voice production

Framework of the Larynx

- There are 9 different cartilages of the larynx
 - Thyroid cartilage with a midline laryngeal prominence (Adam's apple)
 - Signet ring-shaped anteroinferior cricoid cartilage
 - Three pairs of small arytenoid, cuneiform, and corniculate cartilages
- Epiglottis elastic cartilage that covers the laryngeal inlet during swallowing

Framework of the Larynx

Vocal Ligaments

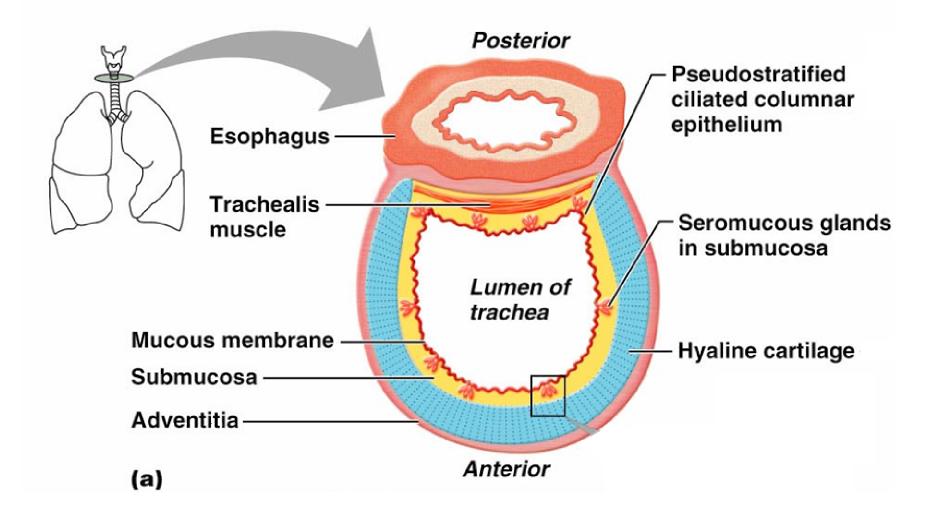

- Attach the arytenoid cartilages to the thyroid cartilage
- Composed of elastic fibers that form mucosal folds called true vocal cords
 - The medial opening between them is the glottis
 - They vibrate to produce sound as air rushes up from the lungs
- False vocal cords (vestibular folds)
 - Mucosal folds superior to the true vocal cords
 - Have no part in sound production
 - Help close the glottis when swallowing

Vocal Production

- Speech intermittent release of expired air while opening and closing the glottis
- Pitch determined by the length and tension of the vocal cords
 - Wide glottis: deep tones
 - Narrow glottis: high pitched tones
- Loudness depends upon the force at which the air rushes across the vocal cords
- Vocal cords do not move when we whisper
- The pharynx resonates, amplifies, and enhances sound quality
- Sound is "shaped" into language by action of the pharynx, tongue, soft palate, and lips

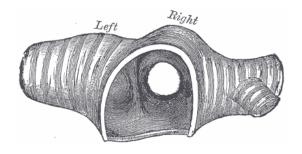
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Movements of Vocal Cords


Sphincter Functions of the Larynx

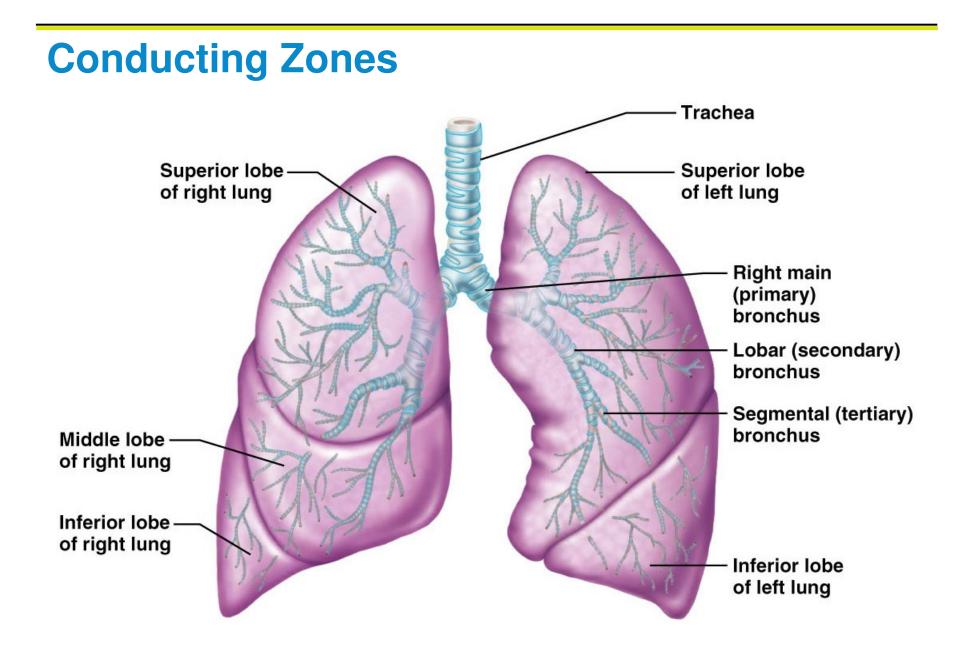
- The larynx is closed during coughing, sneezing, and Valsalva's maneuver
- Valsalva's maneuver
 - Air is temporarily held in the lower respiratory tract by closing the glottis
 - Causes intra-abdominal pressure to rise when abdominal muscles contract
 - Helps to empty the rectum
 - Stabalizes the trunk when lifting heavy loads

Trachea


- Flexible and mobile tube extending from the larynx into the mediastinum
- Composed of three layers
 - Mucosa made up of goblet cells and ciliated epithelium
 - Submucosa connective tissue deep to the mucosa
 - Adventitia outermost layer made of C-shaped rings of hyaline cartilage

Trachea

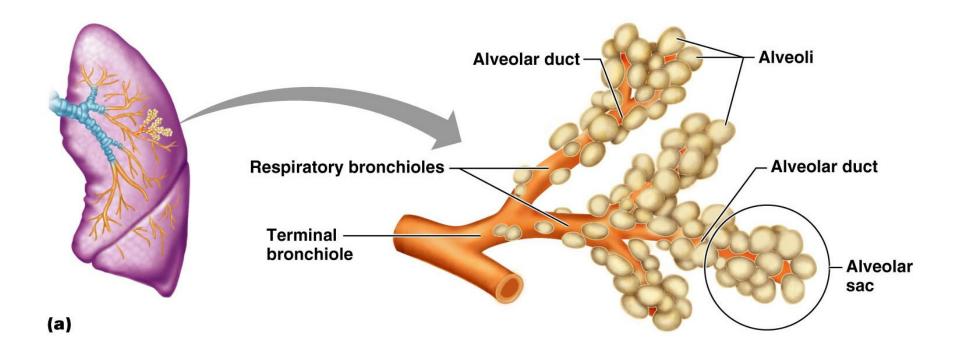
Conducting Zone: Bronchi


- Carina of the last tracheal cartilage marks the end of the trachea and the beginning of the bronchi
- Air reaching the bronchi is:
 - Warm and cleansed of impurities
 - Saturated with water vapor

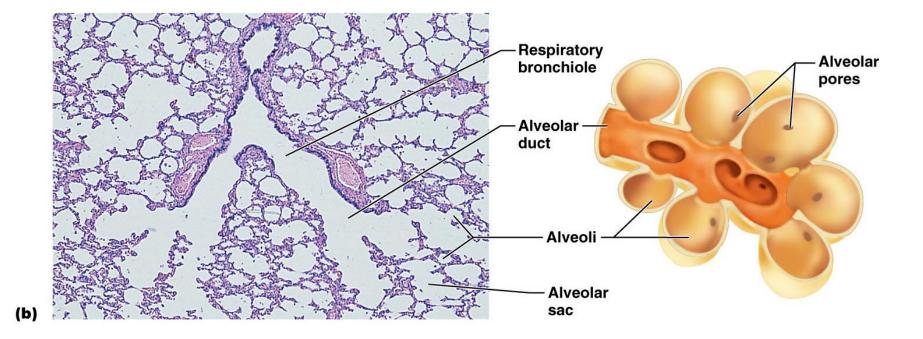
- Bronchi subdivide into secondary bronchi, each supplying a lobe of the lungs
- Air passages undergo 23 orders of branching

Conducting Zone: Bronchial Tree

- Site where conducting zone structures give rise to respiratory zone structures
- Conducting zone structures: right & left main (primary) bronchi
- Subdivides into secondary bronchi (3 on right, 2 on left)
- Secondary bronchi subdivide into tertiary bronchi
- As conducting tubes become smaller, structural changes occur
 - Cartilage support structures change
 - Epithelium types change
 - Amount of smooth muscle increases


Conducting Zone: Bronchial Tree

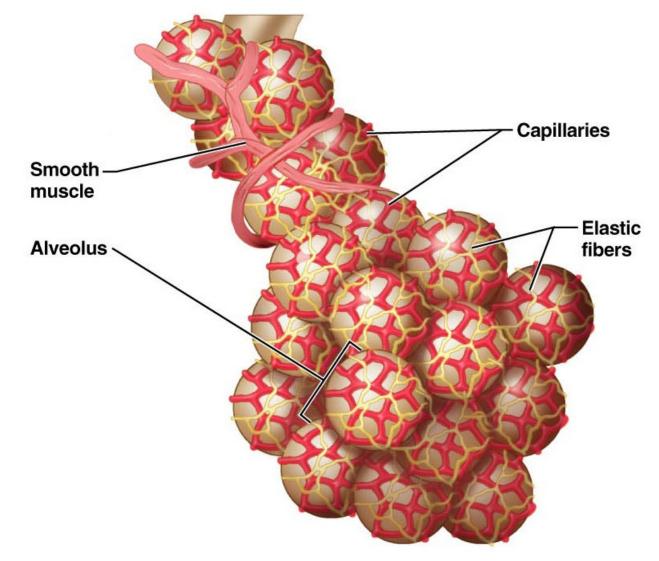
- Bronchioles
 - Consist of cuboidal epithelium
 - Have a complete layer of circular smooth muscle
 - Lack cartilage support and mucus-producing cells


Respiratory Zone

- Defined by the presence of alveoli; begins as terminal bronchioles feed into respiratory bronchioles
- Respiratory bronchioles lead to alveolar ducts, then to terminal clusters of alveolar sacs composed of alveoli
- Approximately 300 million alveoli:
 - Account for most of the lungs' volume
 - Provide tremendous surface area for gas exchange

Respiratory Zone

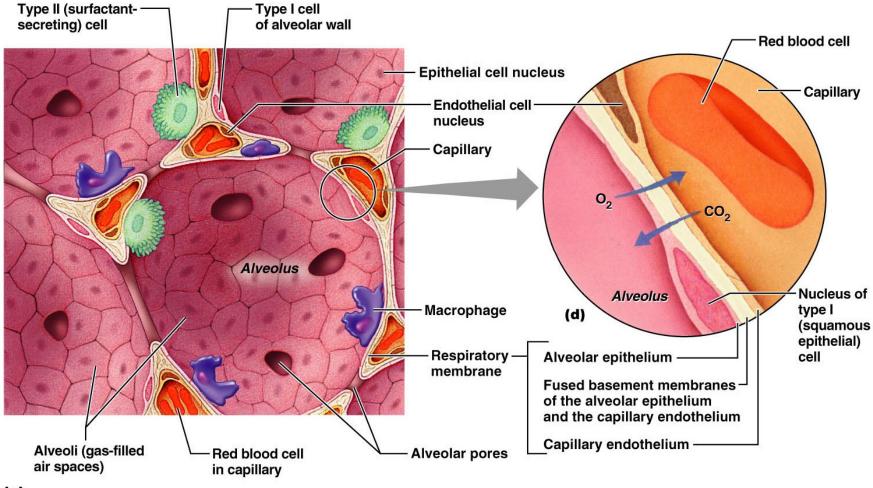
Respiratory Zone


Respiratory Membrane

- This air-blood barrier is composed of:
 - Alveolar and capillary walls
 - Their fused basal laminas
- Alveolar walls:
 - Are a single layer of type I squamous epithelial cells surrounded by a basement membrane
 - External surface covered with pulmonary capillaries
 - Respiratory membrane: alveoli + capillary walls & basement membrane
 - Permit gas exchange by simple diffusion
- Type II cells secrete surfactant that coats the gas exposed alveolar surfaces

Alveoli

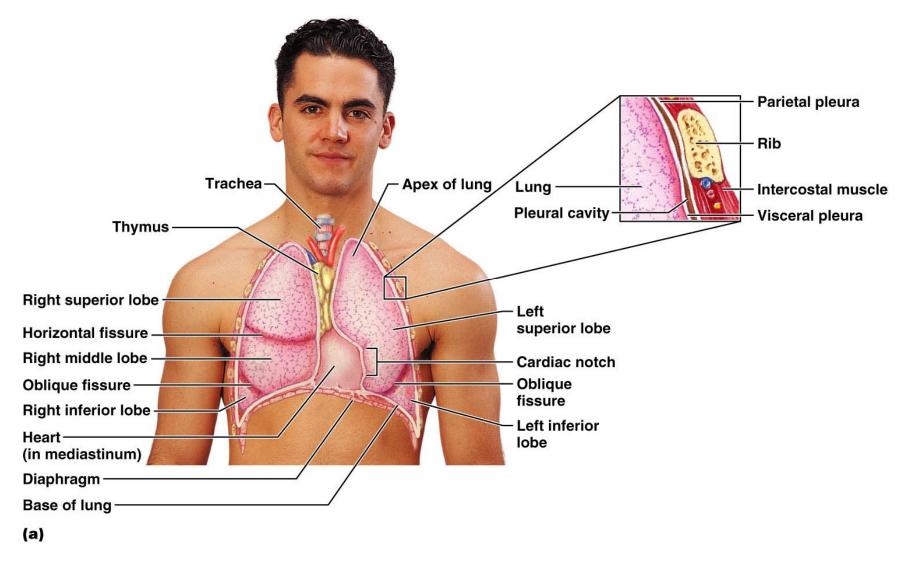
- Surrounded by fine elastic fibers
- Contain open pores that:
 - Connect adjacent alveoli
 - Allow air pressure throughout the lung to be equalized
- House macrophages that keep alveolar surfaces sterile


Respiratory Membrane

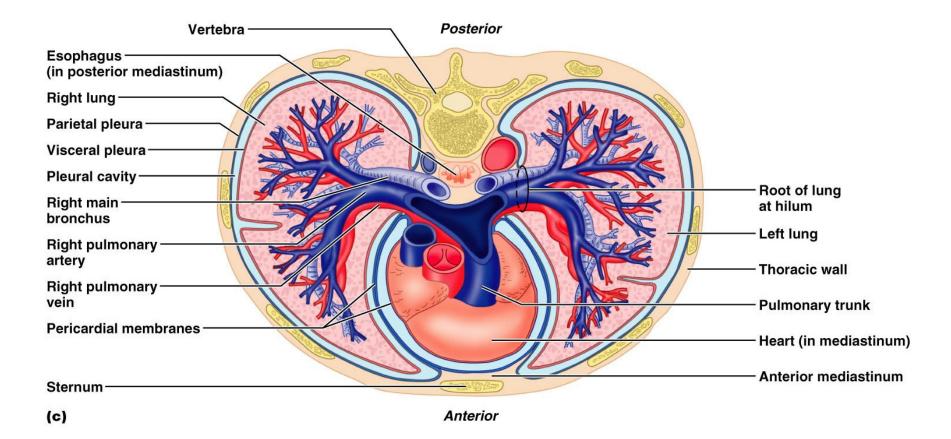
(b)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Respiratory Membrane



(c)


Gross Anatomy of the Lungs

- Lungs occupy all of the thoracic cavity except the mediastinum
 - Root site of vascular and bronchial attachments
 - Costal surface anterior, lateral, and posterior surfaces in contact with the ribs
 - Apex narrow superior tip
 - Base inferior surface that rests on the diaphragm
 - Hilus indentation that contains pulmonary and systemic blood vessels

Organs in the Thoracic Cavity

Transverse Thoracic Section

Lungs

- Cardiac notch (impression) cavity that accommodates the heart
- Left lung smaller and is separated into upper and lower lobes by the oblique fissure
- Right lung larger and is separated into three lobes by the oblique and horizontal fissures

Blood Supply to Lungs

- Lungs are perfused by two circulations: pulmonary and bronchial
- Pulmonary arteries supply systemic venous blood to be oxygenated
 - Branch profusely, along with bronchi
 - Ultimately feed into the pulmonary capillary network surrounding the alveoli
- Pulmonary veins carry oxygenated blood from respiratory zones to the heart

Blood Supply to Lungs

- Bronchial arteries provide systemic blood to the lung tissue
 - Arise from aorta and enter the lungs at the hilus
 - Supply all lung tissue except the alveoli
- Bronchial veins anastomose with pulmonary veins
- Pulmonary veins carry most venous blood back to the heart
- Innervated by sympathetic and parasympathetic motor fibers and visceral sensory fibers
 - Sympathetic fibers: dilate air tubes
 - Parasympathetic fibers: constrict air tubes

Pleurae

- Forms a thin, double-layered serosa
- Parietal pleura
 - Covers the thoracic wall and superior face of the diaphragm
 - Continues around heart and between lungs
 - Thus, the lungs cling tightly to the thoracic wall
 - Produces pleural fluid that fills the pleural cavity
- Visceral, or pulmonary, pleura
 - Covers the external lung surface
 - Divides the thoracic cavity into three chambers
 - The central mediastinum
 - Two lateral compartments, each containing a lung

Breathing

- Breathing, or pulmonary ventilation, consists of two phases
 - Inspiration air flows into the lungs
 - Expiration gases exit the lungs

Pressure Relationships in the Thoracic Cavity

- Respiratory pressure is always described relative to atmospheric pressure
- Atmospheric pressure (P_{atm})
 - Pressure exerted by the air surrounding the body
 - Negative respiratory pressure is less than P_{atm}
 - Positive respiratory pressure is greater than P_{atm}

Pressure Relationships in the Thoracic Cavity

- Intrapulmonary pressure (P_{pul}) pressure within the alveoli
- Intrapleural pressure (P_{ip}) pressure within the pleural cavity

Pressure Relationships

- Intrapulmonary pressure and intrapleural pressure fluctuate with the phases of breathing
- Intrapulmonary pressure always eventually equalizes itself with atmospheric pressure
- Intrapleural pressure is always less than intrapulmonary pressure and atmospheric pressure

Pressure Relationships

- Two forces act to pull the lungs away from the thoracic wall, promoting lung collapse
 - Elasticity of lungs causes them to assume smallest possible size
 - Surface tension of alveolar fluid draws alveoli to their smallest possible size
- Opposing force elasticity of the chest wall pulls the thorax outward to enlarge the lungs
 - Strong adhesion force between parietal and visceral pleura

Pressure Relationships

Lung Collapse

- Caused by equalization of the intrapleural pressure with the intrapulmonary pressure
- Transpulmonary pressure keeps the airways open
 - Transpulmonary pressure difference between the intrapulmonary and intrapleural pressures $(P_{pul} P_{ip})$
 - The greater the transpulmonary pressure, the larger the lungs

Pulmonary Ventilation

- A mechanical process that depends on volume changes in the thoracic cavity
- Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure

Boyle's Law

Boyle's law – the relationship between the pressure and volume of gases

$$\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$$

- P = pressure of a gas in mm Hg
- V = volume of a gas in cubic millimeters
- Subscripts 1 and 2 represent the initial and resulting conditions, respectively

Inspiration

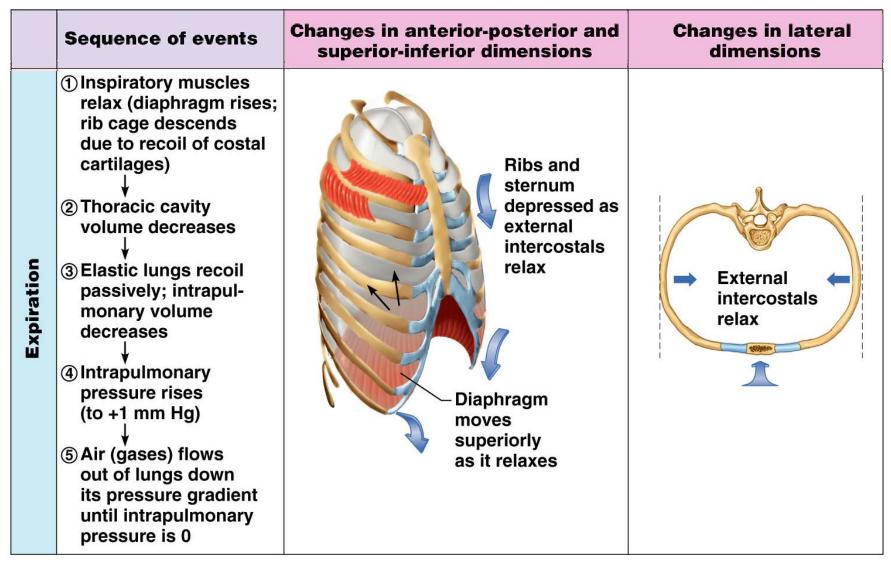
- The diaphragm and external intercostal muscles (inspiratory muscles) contract and the rib cage rises
- The lungs are stretched and intrapulmonary volume increases
- Intrapulmonary pressure drops below atmospheric pressure (-1 mm Hg)
- Air flows into the lungs, down its pressure gradient, until intrapleural pressure = atmospheric pressure

Inspiration

Box of air model: if we increase the size of the box, more air rushes in.

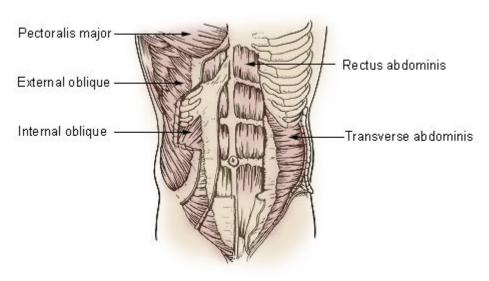
	Sequence of events	Changes in anterior-posterior and superior-inferior dimensions	Changes in lateral dimensions
Inspiration	 1 Inspiratory muscles contract (diaphragm descends; rib cage rises) 2 Thoracic cavity volume increases 3 Lungs stretched; intrapulmonary volume increases 4 Intrapulmonary pressure drops (to −1 mm Hg) 5 Air (gases) flows into lungs down its pressure gradient until intrapulmonary pressure is 0 (equal to atmospheric pressure) 	Ribs elevated and sternum lares as external intercostals contract Diaphragm moves inferiorly during contraction	External intercostals contract

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

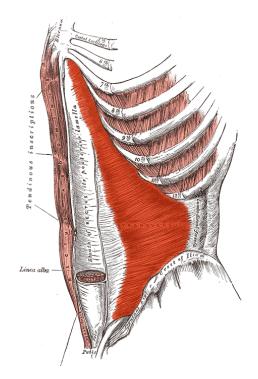

Deep (forced) Inspiration

- As in exercise
- Accessory muscles like the scalenes, sternocleidomastoid, and pectoralis minor contract and raise the ribs more

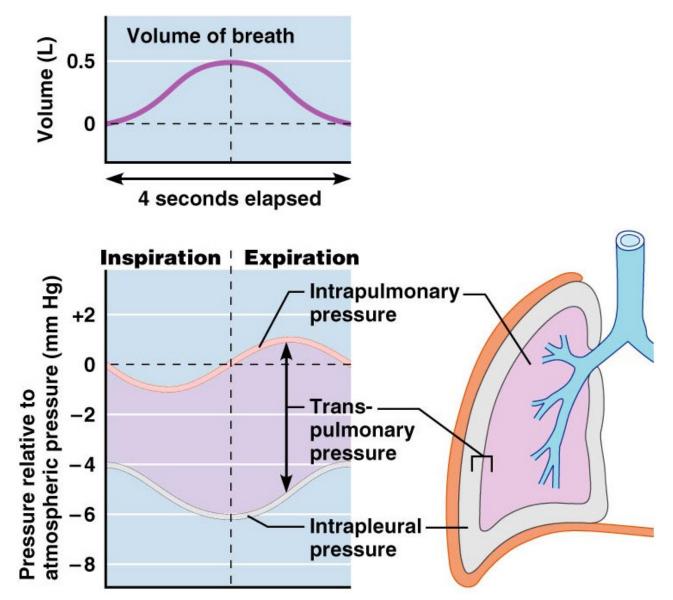
Expiration


- Inspiratory muscles relax and the rib cage descends due to gravity
- Thoracic cavity volume decreases
- Elastic <u>lungs recoil passively</u> and intrapulmonary volume decreases
- Intrapulmonary pressure is greater than atmospheric pressure (+1 mm Hg)
- Gases flow out of the lungs down the pressure gradient until intrapulmonary pressure is 0

Expiration


Deep (forced) Expiration

- Involves the contraction of the abdominal wall muscles (e.g. oblique and transverse muscles)
- These muscles increase intraabdominal pressure and the abdominal organs move superiorly against the diaphram
- Transverse abdominus lowers the ribcage



Muscles of the Trunk

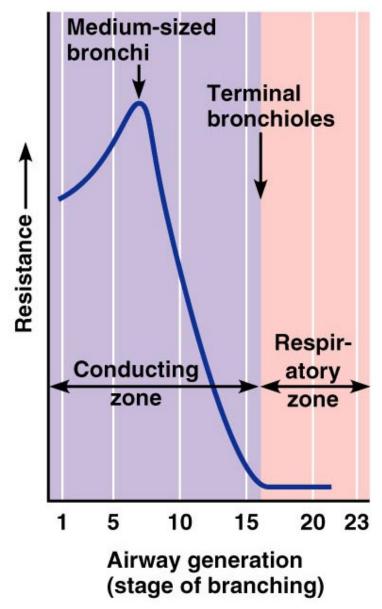
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Pulmonary Pressures

Physical Factors Influencing Ventilation: Airway Resistance

- Friction encountered in the respiratory passageways is the major nonelastic source of resistance to airflow
- The relationship between flow (F), pressure (P), and resistance (R) is:

$$F = \frac{\Delta P}{R}$$


Physical Factors Influencing Ventilation: Airway Resistance

- The amount of gas flowing into and out of the alveoli is directly proportional to ΔP , the pressure gradient between the atmosphere and the alveoli
- Gas flow is inversely proportional to resistance with the greatest resistance being in the mediumsized bronchi

Airway Resistance

- As airway resistance rises, breathing movements become more strenuous
- Severely constricted or obstructed bronchioles:
 - Can prevent life-sustaining ventilation
 - Can occur during acute asthma attacks which stops ventilation
- Epinephrine release via the sympathetic nervous system dilates bronchioles and reduces air resistance

Resistance in Repiratory Passageways

Alveolar Surface Tension

- Surface tension the attraction of liquid molecules to one another at a liquid-gas interface (liquid attracts liquid stronger than air attracts air)
- Surface tension:
 - Draws the liquid molecules closer together
 - Resists any force that tends to increase the surface area of the liquid
- The liquid coating the alveolar surface is always acting to reduce the alveoli to the smallest possible size
- Surfactant, a detergent-like complex, reduces surface tension and helps keep the alveoli from collapsing between breathes
- Premature babies face difficulty breathing due to low levels of surfactants

Lung Compliance

- The ease with which lungs can be expanded
- Specifically, the measure of the change in lung volume that occurs with a given change in transpulmonary pressure
 - The more a lung expands for a given rise in transpulmonary pressure, the greater its compliance
- Lung compliance is determined by two main factors
 - Distensibility of the lung tissue and surrounding thoracic cage
 - Surface tension of the alveoli

Factors That Diminish Lung Compliance

- Scar tissue or fibrosis that reduces the natural resilience of the lungs
- Blockage of the smaller respiratory passages with mucus or fluid
- Reduced production of surfactant
- Decreased flexibility of the thoracic cage or its decreased ability to expand

Factors That Diminish Lung Compliance

- Examples include:
 - Deformities of thorax
 - Ossification of the costal cartilage
 - Paralysis of intercostal muscles