

SAE Aircraft and Engine Icing International Conference Seville, Spain September 26, 2007

> Glycol Mitigation Strategies: The Canadian Approach

Saleem Sattar Manager, Environmental Protection Transport Canada – Ottawa E-mail: sattars@tc.gc.ca

Outline

- Safety vs. Environment
- Consultation Process
- Issues
 - Science
 - Regulatory
 - Management
- CEPA Guideline
- Airport Responsibilities
- Air Carrier Responsibilities
- Glycol Management Plans
- Monitoring
- Partnerships / Guidance

Balance

• Safety

• Environment

Canadian Aviation Regulations

 Air Regulations
 Air Navigation Orders

Environment

- Fisheries Act
- CEPA Guideline
- CCME Guideline
- Provincial/Municipal

Dryden Accident March 10, 1989

Moshansky Commission

Consultation Process

• Government

• Industry

Working Group

Issues

- Science
- Regulatory
- Management

Environmental Impacts

- Glycol has a high biochemical oxygen demand (BOD)
- Degradation of glycol in water is an oxygen depleting process
- Water can become oxygen deficient and unsuitable for aquatic life
- Toxic to aquatic organisms

Environmental Impacts

- Large volumes of ethylene glycol in surface water can lead to oxygen depletion which can threaten the survival of aquatic life
- Low oxygen levels can cause a variety of lethal and non-lethal effects to aquatic organisms, with young fish being more sensitive than older fish

Environmental Impacts

Toxicity of ethylene glycol-based products vs pure ethylene glycol^a

Toxic endpoint	Pure Ethylene Glycol (mg/L)	Ethylene Glycol-Based Products (mg/L)
48-h LC_{50}^{b} for water flea	34,440	13,140
96-h LC_{50} for fathead minnow	72,860	8,050
Survival for water flea	24,000	8,400
Reproduction for water flea	8,590	< 3,330
Survival for fathead minnow	32,000	6,090
Growth for fathead minnow	15,380	< 3,330

^aPillard, D.A. (1995).

^bConcentration at which 50% of the exposed population die

Transport Transports Canada Canada

National Airports System

- Composed of 26 airports within Canada
- These airports include all national, provincial and territorial capitals as well as airports with annual traffic of 200,000 passengers or more
- These airports serve 94% of all scheduled passenger and cargo traffic in Canada

Canadian Environmental Protection Act Glycol Guideline

 Pursuant to Section 53 of the Act, the responsible Federal department shall ensure that discharges of total glycols from aircraft de-icing and anti-icing activities at federal airports to surface waters does not exceed 100 milligrams per litre (100 milligrams of glycol per litre of stormwater effluent)

Canadian Environmental Protection Act Glycol Guideline

- **"Federal airport"** means all airports owned and/or operated by the federal government
- **"Total glycols"** means the sum total of ethylene, diethylene and propylene glycols measured in accordance with specified sampling and analytical methods

CEPA Guideline

• Legally binds Transport Canada to comply with the proposed level

• Reduces the risk of airport operational staff being charged with violations under Section 36 of the *Fisheries Act*

>≥

Responsibilities

Transport Canada Responsibilities

- Responsible as landlord for the ownership of the land
- Airport Authorities Responsibilities
- Responsible for the infrastructure associated with stormwater run-off
- Responsible for the monitoring of stormwater run-off
- Responsible for the approval of de-icing procedures and mitigation plans

Air Carriers Responsibilities

- Responsible for the de-icing of aircraft and must determine when de-icing/anti-icing action is required
- Must ensure that the usage of the de-icing fluids are not in contravention of provincial and federal environmental legislation
- Responsible for funding remedial action plans

- Define
 - Facilities
 - Equipment

Management of glycol wastes

- Collection
- Handling
- Transportation
- Storage
- Processing
- Disposal

Canada

General Information & Site Specifications

- Name of De-icing Operator
- De-icing Season
- Fluid Volumes (type of fluid, mixture ratio)
- Surface type (asphalt, concrete)
- Location of Storm Drains, ponds, creeks and glycol tanks

• Glycol Storage & Handling

- Tanks to meet CCME Environmental Code of Practice
- How transported to site
- Location of storage and heating facilities (including spill containment)
- Spill response procedure

Application

- Location of de-icing
- Equipment description
- Measures taken to reduce volumes of fluid

• Containment of Effluent

- Description of containment measures
- Estimate effectiveness of containment system

Canada

- Collection & Storage
 - Description of collection measures and spill contingency plans
 - Collection equipment

Glycol Monitoring

- Since 1994, airports have been monitoring and reporting results of glycol usage
- Many airports have automatic sampling stations to collect samples of stormwater
- Automatic sampling stations collect both event and composite samples and continuously record flow rates
- These stations are located in the most active areas of the airport: aprons, runways, taxiways

Glycol Monitoring

- Composite samples can be collected over a specific time period and are analyzed for various properties including pH, BOD, total glycols, total suspended solids etc.
- Airports without permanent water monitoring facilities may use grab or composite samples
- Grab samples are taken at a selected location, depth, and time and then analyzed
- Airports then send the results to Transport Canada

Glycol Monitoring Results

- Environmental authorities must evaluate the toxicity of ethylene glycol
- Since airports are the largest users of ethylene glycol, it is important to determine whether any trends have been established as to:
 - usage rate
 - glycol residuals in stormwater
 - excursions from the voluntary guidelines
 - magnitude of the excursions

Data Handling

- Collection
- Verification
- Compliance Assessment
- Reporting
- Response

Data Parameters - Annual

- Biochemical Oxygen Demand BOD (Organics)
- Chemical Oxygen Demand COD
- Oil & Grease (Operations)
- Phenols (Solvents, Petrochemicals)
- Total Organic Carbons (Fuel, Glycol)
- Volatile Organics (Solvents, Fuels)
- Alkalinity
- Total Suspended Solids

Success

- Since 1994, there has been a downward trend in the number of glycol exceedances due to better glycol management and glycol mitigation plans
- Airport authorities have refined de-icing systems, and air carriers have refined their plans and procedures
- Airports have been in compliance with the Fisheries Act since the promulgation of the CEPA Glycol Guideline

Glycol Analysis

- The number and magnitude of the exceedances have been lowered
- At Toronto's Pearson International Airport, the number of exceedances in 2000-2001 was 16 compared to 319 in 1992-1993

% Glycol Exceedances

Lester B. Pearson International Airport

Partnerships / Guidance

- TP 14052 "Guidelines for Aircraft Ground Icing Operations"
- ARP 5660 "Deicing Facility Operational Procedures"
- Transportation Research Board
 - ACRP Project No. 10-01 "Optimizing the Use of Aircraft Deicing and Anti-icing Fluids"
 - ACRP Project 02-01 "Alternative Aircraft and Airfield Deicing and Anti-icing Formulations With Reduced Aquatic Toxicity and Biological Oxygen Demand"

Summary

- Safety / Environment
- Consultation
- Management
- Communicate
- Continual Improvement

