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§1. The following neat proof is well known to mathematicians and is often
cited by logicians as an example of a non-constructive proof of existence.

Proposition 1 There exist real numbers a and b, both irrational, such that ab is
rational.

Proof via
√

2. Consider
√

2
√
2
. If this is rational, choose a = b =

√
2. If not,

choose

a =
√

2

√
2
, b =

√
2,

and note that in this case

ab = (
√

2 )(
√
2×
√
2) = (

√
2 )2 = 2.

§2. History. As far as I know, the above proof first appeared in 1953 in a

short note by Dov Jarden [Jarden 1953]. In 1966 a proof via
√

3
√
2

was published,
[Zeigenfus 1966].1 Neither of these sources mentioned non-constructivity; indeed
the proof’s neatness gives it an intrinsic interest of its own.

For the use of this proof to explicitly illustrate non-constructivity, I believe the
responsibility dates from 1970 in Swansea University. Peter Rogosinski, a fellow
mathematician there, told me the proof, although he did not know a source for it,
and I used it as an example of non-constructivity in undergraduate logic courses
from 1970 onwards.

In August 1971 Dirk van Dalen gave a course on Intuitionism at a summer
school on logic at Cambridge University. I attended and mentioned this ‘non-
constructive’ example to him. He included it, with an acknowledgment, in the type-
written course-notes he distributed there [Dalen 1971, p.1]. The summer school
was attended by several prominent logicians, and from van Dalen’s notes and their
(shorter) published version [Dalen 1973], the example seems to have caught the
imagination of various writers on constructivity.

Michael Dummett, who was at the summer school, included it in his 1971–72
Oxford University lecture-course on intuitionism2 and in his book [Dummett 1977,
§1.1]3.

It also appeared in [Jon & Top 1973] (which pointed out that
√

2
√
2

is actually
transcendental), in [Lam & Sco 1986, Part II §20 pp.226–227] (which also described

1I thank Jeffrey Shallit of the University of Waterloo, Canada, for these references, and for men-
tioning [Jon & Top 1973]. I am also very grateful to Mark Biggar, Jon Borwein, Dirk van Dalen,
Michael Dummett, James P. Jones, Prakash Panangaden and Tim Smith for helpful information.

2Attended by Jon Borwein, whom I thank for this information
3It was there attributed as “due to Benenson”, but Dummett, in correspondence 1991, stated

that this was an error. In the 2000 edition of [Dummett 1977], the attribution is “due to Peter
Rogosinski and Roger Hindley”.
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an alternative constructive proof, see below), in [Tro & Dal 1988, Chap.1 §2.3 pp.7–
8], and in many later writings and internet items.

§3. Comment. The
√

2-proof is non-constructive because it gives no way
of deciding the value of a. Gelfond proved in the 1930s that if x is any algebraic
number distinct from 0 and 1, and y is algebraic and irrational, then xy is irrational,
indeed transcendental.4 So the number a to be chosen in the

√
2-proof must in fact

be
√

2
√
2
.

But, without a proof of Gelfond’s theorem being added (moreover a constructive
proof, if there is an accepted one), the

√
2-proof as it stands above is not construc-

tive.

§4. A more constructive proof of Prop. 1.5 Choose a =
√

2 and b =
2 log2 3. Then

ab =
(√

2
)2 log2 3

= 2log2 3 = 3.

To see that b is irrational, suppose b = p/q where p and q are integers with no
common factor; then

p = bq = 2q log2 3 = log2(32q),

so 2p = 32q, which would contradict the unique factorisation theorem for integers.

§5. Warning. Actually, the
√

2-proof does not illuminate the constructivity
concept quite as neatly as it seems to at first, because the concept of irrationality is
not completely simple from a constructive viewpoint. A claim that

√
2 is irrational

might be interpreted in several different ways, for example:

• (∀ integers p, q) (
√

2 = p/q implies absurdity),

• (∀ integers p, q)(∃n) (n-th term in the decimal expansion of
√

2 differs from
n-th term in that of p/q).

References

[Dalen 1971] van Dalen, D., Lectures on Intuitionism, detailed notes distributed
to participants in the Summer School in Mathematical Logic, Cam-
bridge, England, August 1971.

[Dalen 1973] van Dalen, D., Lectures on Intuitionism, in Cambridge Summer
School in Mathematical Logic, edited by A. R. D. Mathias and H.
Rogers, Springer Lecture Notes in Mathematics 337 (1973), pp.1–94.

[Dummett 1977] Dummett, M., Elements of Intuitionism, Clarendon Press,
Oxford, 1977. (2nd edn. 2000.)

[Gelfond 1960] Gelfond, A. O., Transcendental and Algebraic Numbers,
Dover Publications, New York 1960. (Translated by L. F. Boron from
1st Russian edn.)

[Jarden 1953] Jarden, D., Curiosa No. 339, in Scripta Mathematica 19 (1953),
p.229.

4See [Gelfond 1960, p.106 Thm.2] or [Jon & Top 1973].
5This proof is from [Pol & Sze 1976, p.362, answers to Problems 260.1 and 260.2 on p.255];

incidentally, the
√

2-proof is not mentioned there, and these two problems do not occur in earlier
editions of [Pol & Sze 1976]. Essentially the same proof also occurs in [Lam & Sco 1986, Part II
§20, p.227].

2



[Jon & Top 1973] Jones, J. P. and Toporowski, S., Irrational numbers, Amer-
ican Mathematical Monthly 80 (1973), pp.423–424.

[Lam & Sco 1986] Lambek, J. and Scott, P., Introduction to Higher-order
Categorical Logic, Cambridge University Press 1986. (See esp. pp.226–
227.)
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