

Org. Geochem. Vol. 23, No. 11/12, pp. 997–1008, 1995 Published by Elsevier Science Ltd Printed in Great Britain 0146-6380/95 \$9.50 + 0.00

REVIEW PAPER

A review of the geochemistry of methane in natural gas hydrate

KEITH A. KVENVOLDEN

Western Marine and Coastal Geologic Surveys Team, U.S. Geological Survey, 345 Middlefield Road, M/S 999, Menlo Park, CA 94025, U.S.A.

(Received 23 October 1995; returned for revision 4 December 1995; accepted 4 January 1996)

Abstract—The largest accumulations on Earth of natural gas are in the form of gas hydrate, found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Measurements of hydrocarbon gas compositions and of carbon-isotopic compositions of methane from natural gas hydrate samples, collected in subaquatic settings from around the world, suggest that methane guest molecules in the water clathrate structures are mainly derived by the microbial reduction of CO₂ from sedimentary organic matter. Typically, these hydrocarbon gases are composed of >99% methane, with carbon-isotopic compositions $\langle \delta^{13}C_{P0B} \rangle$ ranging from -57 to -73%. In only two regions, the Gulf of Mexico and the Caspian Sea, has mainly thermogenic methane been found in gas hydrate. There, hydrocarbon gases have methane contents ranging from 21 to 97%, with $\delta^{13}C$ values ranging from -29 to -57%. At a few locations, where the gas hydrate contains a mixture of microbial and thermal methane, microbial methane is always dominant. Continental gas hydrate, identified in Alaska and Russia, also has hydrocarbon gases composed of >99% methane, with carbon-isotopic composed of >99%. These gas hydrate deposits also contain a mixture of microbial and thermal methane, with thermal methane likely to be dominant. Published by Elsevier Science Ltd

Key words-gas hydrate, methane, hydrocarbon gases, carbon-isotopic composition, microbial, thermal

INTRODUCTION

Large amounts of methane, the principal component of natural gas, occur in the form of solid gas hydrate in sediment and sedimentary rock within ~2000 m of the Earth's surface in polar and deep-water regions. In gas hydrate, water crystallizes in the cubic crystallographic system where the lattice contains cages (a clathrate structure) that are each large enough to accommodate a molecule of gas. The lattices are stabilized mainly by hydrogen bonding with energies similar to normal hexagonal ice. Two clathrate structures, I and II, have been recognized in the laboratory since about 1952 (summarized in Davidson, 1973), and a third structure, H, has been discovered later in the laboratory (Ripmeester et al., 1987) and observed to occur naturally in the Gulf of Mexico (Sassen and MacDonald, 1994). In structure I, the cages are arranged in body-centered packing and are just large enough to include small hydrocarbons, methane (C_1) and ethane (C_2) , and non-hydrocarbons such as N2, CO2, and H2S. In structure II, diamond packing is present; not only can C_1 and C_2 be included in the cages, but larger cages in this structure can also be occupied by hydrocarbons such as propane (C_3) and isobutane (iC_4) . Structure H has even larger cages and can accommodate molecules with molecular diameters exceeding that of iC₄. Structure II and structure H hydrate are more stable than structure I hydrate.

structure II hydrate is more dependent on gas composition. Because of these reasons, as outlined by Davidson et al. (1978), discussion of the stability conditions for natural gas hydrate have generally referred to structure I, which is essentially a methane hydrate. The maximum amount of methane that can occur in a structure I methane hydrate is fixed by the clathrate geometry at CH₄• 5.75H₂O. It follows then that one volume of methane hydrate can contain as much as 164 volumes of methane under standard conditions (Davidson et al., 1978). Because all cages are usually not occupied, the volume of methane in naturally occurring gas hydrate is expected to be less. The stability of gas hydrate in nature is controlled by an interrelation among the factors of temperature, pressure, and gas-water composition that restricts the occurrence of gas hydrate to the shallow lithosphere (depths below the surface not exceeding ~2000 m). The interrelation among these factors, in turn, further

restricts the occurrence of gas hydrate to continental

and continental shelf sediment of polar regions,

where surface temperatures are slightly higher to less

Naturally occurring gas hydrate is commonly

expected to be structure I unless the methane in the

natural gas is relatively enriched in higher molecular weight hydrocarbon gases. The stability conditions of

structure I hydrate do not depend greatly on the

composition of the natural gas, which is mainly

methane, unless the gas is rich in H₂S, whereas

than ~0°C, and to oceanic (aquatic) sediment worldwide, where bottom water temperatures are ~2°C (~0°C in bottom water of polar oceans) and water depths exceed ~300 m. The worldwide occurrence of known and inferred gas hydrate is shown in Fig. 1 (Kvenvolden, 1993).

Samples of gas hydrate were recovered on land in 1972 from the west end of the Prudhoe Bay oil field in Alaska (reviewed by Kvenvolden and McMenamin, 1980; discussed in detail by Collett, 1993a) and at 14 subaquatic locations (Kvenvolden et al., 1993), providing irrefutable evidence that gas hydrate occurs as a natural substance in a variety of geologic settings. Most of these subaquatic samples come from sediment in active (convergent) margins, although passive (divergent) margins are also appropriate settings for gas hydrate occurrence (Kvenvolden, 1985). Of particular interest to the present paper are those recoveries of gas hydrate where the geochemistry of the methane and related hydrate has been studied. The main focus is on (1) the amount of C_1 in the hydrocarbon gas mixtures, composed of C1, C2, and C3 and often described by the volumetric ratio $C_1/(C_2 + C_3)$, which for simplicity is defined here as "R", and (2) the carbon-isotopic composition of C_1 (given in δ notation relative to the PeeDee Belemnite standard in ‰). These data are the most commonly reported and serve as a basis for comparison of gas hydrate samples. This paper compiles and reviews this geochemical information in order to assess the possible sources of

methane and the processes involved in gas hydrate formation.

AMOUNT OF METHANE AND ITS RESOURCE POTENTIAL

One reason for the increasing interest in natural gas hydrate is that large amounts of economically producible methane may exist in hydrate form within the shallow geosphere (Kvenvolden, 1993; Collett, 1993a). Estimates of the amount of methane in gas hydrate are highly speculative and vary widely (Kvenvolden, 1988). Although it is generally known that gas hydrate occurs worldwide (Fig. 1), such knowledge is very incomplete, resulting in a wide range of estimates from a minimum of $1.4 \times 10^{13} \text{ m}^3$ of methane at standard conditions in gas hydrate of permafrost regions to a maximum of 7.6 \times 10¹⁸ m³ of methane in gas hydrate of oceanic regions (Potential Gas Committee, 1981). Factors making estimates of methane in gas hydrate difficult include the non-applicability of conventional reservoir evaluation methods, lack of accurate mapping methods, paucity of samples, and a general ignorance of gas hydrate occurrence on both regional and worldwide scales. Current estimates of the total amount of methane in natural gas hydrate are in rough accord at ~2.0 \times 10¹⁶ m³ (Kvenvolden, 1988; MacDonald, 1990). If these estimates are correct, then the amount of methane carbon in gas hydrate may be twice as large as the carbon present in all

Fig. 1. Worldwide locations of known and inferred gas hydrate in oceanic (aquatic) sediment (circles) and in continental (permafrost) regions (squares), and locations where gas hydrates have been observed (diamonds). Modified from Kvenvolden (1993).

known fossil fuel (coal, crude oil, and natural gas) deposits (Kvenvolden, 1988).

These estimates of the amount of methane in gas hydrate need to be improved in order to evaluate better its energy resource potential. Two factors make gas hydrate particularly attractive from the energy point of view (Kvenvolden, 1993). First, the apparently large amount of methane in gas hydrate is present at shallow depths within 2000 m of the surface. Second, the gas hydrate has a worldwide distribution. However, most gas hydrate occurs in oceanic sediment in water deeper than 300 m which complicates any methane recovery schemes, and reservoir properties of oceanic occurrences of gas hydrate are generally unknown. Continental gas hydrate provides a better opportunity for resource evaluation. In fact, gas hydrate on the North Slope of Alaska offers a particularly good target for resource evaluation (Collett, 1993a). For gas hydrate to meet the expectations suggested by the estimated methane content, however, oceanic gas hydrate will eventually have to be proven to be a producible source of methane. Sloan (1990) suggested that wide-scale recovery of methane from gas hydrate will probably not occur until sometime in the next century.

CONTINENTAL GAS HYDRATE

Naturally occurring gas hydrate was first recognized in the 1960s in polar continental settings in Russia (reviewed by Makogon, 1981); however, in the Messoyakha field of western Siberia its recognition was based on engineering and geophysical measurements, not on direct sampling of gas hydrate. Nevertheless, gas composition from drill-stem tests at the Messoyakha field within the inferred gas hydrate interval was determined to be: C1, 98.6%; C2, 0.1%; C₃, 0.1%; CO₂, 0.5%; and N₂, 0.7% (summarized in Sloan, 1990). The hydrocarbon gas ratio of $C_1/(C_2 + C_3)$, that is the *R* value, is about 490, and C_1 composes 99.8% of the hydrocarbon gas mixture. On the basis of work by Collett (1993b) the carbonisotopic composition of this methane is likely to fall within the range of -41.0 to -48%. The Messoyakha field is the only known example where gas hydrate has been a producible source of methane; however, production of gas from gas hydrate at this field is currently shut in (Collett, 1992). Because the Messoyakha field is often cited as an example of successful gas hydrate production of methane (Makogon et al., 1971; Makogon, 1981; Collett, 1992, 1993b), it is important to understand the occurrence well in order to evaluate realistically the potential of natural gas hydrate as an energy resource elsewhere.

The first confirmation that gas hydrate occurs in polar continental sediment was obtained from two pressure cores (577–580 m and 664–667 m deep) at the Arco-Exxon N.W. Eileen State No. 2 wildcat well on the North Slope of Alaska at the west end of Prudhoe Bay oil field (Collett, 1993a). When the cores were recovered, it was uncertain whether or not they contained gas hydrate or only sediment with pressurized natural gas. Results of pressure-core tests, similar to those described by Hunt (1979), confirmed, however, that gas hydrate was present. The sampled gas contained 87.0-99.2% C₁, and the rest of the gas was mostly N₂, with only trace amounts of C₂ and C₃ (Collett, 1993b); a drill-stem test within the gas hydrate interval (663–671 m) showed 92.8% C₁, 0.01–0.02% C₂, and 7.2% N₂, with a hydrocarbon gas ratio (*R* value) of ~4600.

In a second well on the North Slope of Alaska (Kuparuk River Unit 2D-15) a 30 m thick interval (1230–1328 m) was inferred to contain gas hydrate on the basis of well-log interpretations (Collett *et al.*, 1990), but no gas hydrate was recovered or collected. Nevertheless, geochemical measurements of gas collected from the inferred gas hydrate interval showed an average R value of 5900 and an average methane δ^{13} C value of -49.5%.

SUBAQUATIC GAS HYDRATE FROM DEEP OCEANIC DRILLING

Much of our knowledge of the geochemistry of methane in natural gas hydrate results from the opportunities afforded by the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP). Through these major international programs oceanic gas hydrate has been discovered and sampled in the sediment of outer continental margins around the world. Gas hydrate samples were recovered on DSDP Legs 66, 67, 76, 84, and 96, and on ODP Legs 112, 127, 131 and 146. A description of each of these discoveries follows, and the results are listed in Table 1.

DSDP Leg 66-Pacific continental margin, offshore southern Mexico, Middle America Trench

The first quantitative evidence for naturally occurring, deep sea gas hydrate was found at three sites (490, 491, 492) on Leg 66 (Shipley and Didyk, 1982). The gas hydrate occurred as ice-like inclusions or, more commonly, as hydrate-cemented volcanic ash and fine sand interlayered with mud. Gas samples were obtained directly and analyzed from decomposing gas hydrate samples from Sites 490 and 492 (Table 1). Although gas hydrate was recovered at Site 491, gas analyses were not made directly on the samples, but instead, on gas recovered from the core liner in which the samples were later found. The analysis of this core liner gas did not differ significantly from the direct analyses of gas hydrate; however, the results are omitted from Table 1, which is restricted to the results obtained from directly analyzed gas hydrate samples. Methane was the dominant hydrocarbon gas in these samples, with Rvalues ranging from 540 to 1200. One ice-like

							0					
		MD	SD^2	Ci ³ % of	C_2 % of	Cy % of	Ci ⁴ % of		δ ¹³ C	CO_2		
Leg	Site	(u)	(Jsdm)	gas	gas	gas	НС	R ⁵	(%0)	(%)	Comment	References
99	490	1761	140	76.8	па	na	i + 66	na	na	23	Icelike inclusion	Shipley and Didyk, 1982
	492	1935	141	9.66	0.18	0.0050	8.66	540	na	0.2	Hydrate-cemented volcanic ash	
	492	1935	170	99.7	0.08	0.0037	6.66	1200	na	0.2	Hydrate-cemented volcanic ash	
67	497	2347	368	90.4	0.0501	pu	6.66	1800	na	0.1	Icelike solid	Harrison and Curiale, 1982
	498	5478	310	83.0	0.1990	0.00042	9,98	420	na	0.2	Hydrate-cemented vitric sand	
76	533	3191	238	36	0.0123	0.0002	6.66	2900	- 68.0	0.5	Matlike white crystals in sediment	Kvenvolden and Barnard, 1983; Brooks
22	565	660t	319	68	0.0440	0.0005	99.9	2000	na	0.03	Icelike frothing solid in stiff mud	K venvolden and McDonald, 1985
	568	2010	404	49	0.2200	0.00003	8.66	530	na	0.1	Icelike solid in tuffaceous mudstone	
	570	1698	192	44	0.0390	0.0000	99.9	1100	na	0.3	Hydrate-laminated ash	
	570	1698	249	58	0.2600	0.0079	99.5	220	na	0.3	Icelike solid in dolomite fracture	
	570	1698	~263	75	0.0890	0.0011	6.66	840	па	0.2	Icelike solid in mudstone fracture	
	570	1698	249	93.9	0.2300	na	7.99	410	- 41.4	0.3	Massive gas hydrate	Kvenvolden et al., 1984
	570	1698	249	61.3	0.1400	0.0040	8.66	430	- 42.9	0.3	Massive gas hydrate	Brooks et al., 1985
96	618	2412	27	39.5	0.13	0.11	99.4	159	- 71.3	0.09	Scattered white crystals associated with	Pflaum et al., 1986
											sand	
112	685	5070	166	95	0.0039	0.0028	6.66	14200	-65.0	pu	Icelike solids with mud	Kvenvolden and Kastner, 1990
	688	3820	141	91.5	0.0022	pu	6.99	42000	- 59.6	pu	Hydrate-cemented mud	
127	796	2571	06	-33	0.0115	na	6'66	2900	na	pu	Icelike solid and hydrate-cemented	Shipboard Scientific Party, 1990, p. 259
											sand	
131	808	4684	90-140	na	па	na	па	na	na	pu	Hydrate-cemented sand	Shipboard Scientific Party, 1991, p. 143
146	892	670	2~20	42.5	0.02	na	6.66	2100	- 64.5	0.06	Platy crystals and thin layers, ~10% H ₂ S	Kastner et al., 1993; Kastner, pers.
											in gas	commun. (1993).
Water	Depth;	² Subbottom	Depth; 3As	reported: ⁴⁰ % 0	of hydrocarbon	1 gases; SRatio	of C ₁ / (C ₂ +	C3); na. no	ot analyzed	d; nd, n	not detected	

Table 1. Composition of gases from natural gas hydrate recovered by DSDP and ODP

inclusion had a surprisingly high CO_2 content of 23%, whereas two samples of hydrate-cemented volcanic ash contained only 0.2% CO_2 , consistent with the values reported from most other samples obtained elsewhere (Table 1). The occurrence of CO_2 in natural gas hydrate needs to be better understood. The gas hydrate recovered during Leg 66 came from the upper part of the accretionary zone in the Middle America Trench within unconsolidated sediment, generally associated with porous zones of volcanic ash or sand layers interbedded with layers of mud or mudstone (Shipley and Didyk, 1982).

DSDP Leg 67—Pacific continental margin, offshore Guatemala, Middle America Trench

With the discovery of gas hydrate during Leg 67 (Harrison and Curiale, 1982), it became evident that continental slope sediment of the Middle America Trench is rich in gas hydrate deposits. As on Leg 66, the gas hydrate of Leg 67 occurred as ice-like solids and as hydrate-cemented volcanic sand. Analyses were reported on cores that had been forcibly ejected from core liners and from gas pockets. Two samples of gas hydrate from Sites 497 and 498 were directly measured; hydrocarbon gas compositions were similar to the results obtained on Leg 66 (Table 1). The dominant hydrocarbon gas was methane, with Rvalues ranging from 410 to 1800 and CO₂ contents ranging from 0.1 to 0.2%. The gas hydrate recovered during Leg 67 was invariably associated with high porosity sediment of the middle and lower continental slope adjacent to the Middle America Trench.

DSDP Leg 76—Atlantic continental margin, Blake Outer Ridge, offshore southeastern United States

Although no gas hydrate samples were recovered during drilling at three sites (102, 103, 104) on the Blake Outer Ridge on Leg 11 (Ewing and Hollister, 1972), the occurrence of gas hydrate in sediment at these sites had been previously suggested by Stoll et al. (1971) and discussed later by Ewing and Hollister (1972) and Lancelot and Ewing (1972), on the basis of a concurrence of geophysical and geochemical evidence. These ideas proved correct when a sample of gas hydrate was recovered on Leg 76 at Site 533 in 1980. This sample consisted of a few centimeter-thick layer of frothy sediment containing mat-like white crystals that quickly disappeared (Kvenvolden and Barnard, 1983). Analyses of the sample showed that methane was the dominant hydrocarbon gas with an R value of 2900 (Table 1). The total gas mixture contained about 0.5% CO₂. The finding of gas hydrate on Leg 76 confirmed that gas hydrate can occur in a passive margin setting, as well as in an active margin setting where most samples have thus far been found.

DSDP Leg 84—Pacific continental margin, offshore Central America, Middle America Trench.

Coring on Leg 84 at Sites 568 and 570 confirmed what was already known about gas hydrate occurrence offshore Guatemala from Leg 67, but also extended knowledge of gas hydrate to include its presence offshore Costa Rica at Site 565. Recovered gas hydrate appeared as solid pieces of white, ice-like material occupying fractures in mudstone, or as cement in coarse-grained sediment that exhibited rapid outgassing (Kvenvolden and McDonald, 1985). Possibly most surprising was the unexpected recovery of a 1.05 m long core of massive gas hydrate at Site 570, leading to a detailed shore-based study of gas geochemistry (Kvenvolden et al., 1984). Shipboard analyses of samples (Table 1) again showed, as on Legs 66 and 67, that the dominant hydrocarbon gas was methane, with R values ranging from 220 to 2000, and CO₂ contents ranging from 0.03 to 0.3%. The results obtained from Legs 66, 67, and 84 show that gas hydrate is common in landward slope sediment of the active margin of the Middle America Trench from Mexico to Costa Rica, at water depths ranging from ~1700 to 5500 m.

DSDP Leg 96—Gulf Coast continental margin, Orca Basin, Gulf of Mexico

Gas hydrate was observed and sampled in the Orca Basin at Site 618 between 20 and 40 m subbottom (Pflaum *et al.*, 1986). The samples consisted of scattered white crystals, a few millimeters to a centimeter in diameter. Some of the gas hydrate appeared to be associated with sandy sediment layers. Analysis of one sample (Table 1) showed that the gas hydrate contained primarily methane with small amounts of C₂ (0.13%) and C₃ (0.11%) and CO₂ (0.09%). The hydrocarbon gas ratio *R* value of 160 is the lowest yet reported for gas hydrate discovery provided evidence, in addition to that from Leg 76, for the presence of gas hydrate in a passive margin setting.

ODP Leg 112 Pacific continental margin, offshore Peru, Peru-Chile Trench

Gas hydrate was recovered within 200 m of the sea floor during coring at Sites 685 and 688 on the Peruvian outer continental margin (Kvenvolden and Kastner, 1990). Pieces of dark-grey gas hydrate and gas hydrated cemented mud were analyzed revealing a methane-rich composition (R = 14,200 and 42,000) (Table 1). This discovery amplified previous observations and showed that gas hydrate is present in many of the mid-latitude active margins of the eastern Pacific Ocean.

ODP Leg 127—Eastern margin of the Japan Sea, offshore western Hokkaido, eastern flank of Okushiri Ridge

Two samples of gas hydrate from a backarc basin of an active continental margin were recovered in sandy sediment from Site 796 at ~90 m subbottom. One sample was a hydrate-cemented sand, and the other a white crystalline solid (Shipboard Scientific Party, 1990, p. 289). Methane dominated the hydrocarbon gas mixture (R = 2900), with only ethane present in minor amounts (Table 1).

ODP Leg 131—Pacific continental margin, offshore Japan, Nankai Trough

Although gas hydrate was anticipated at Site 808 in sediment at the toe of the Nankai accretionary prism, only a single sample of hydrate-cemented sand was recovered in a wash core between 90 and 140 m subbottom (Shipboard Scientific Party, 1991, p. 143). No gas analyses were carried out. This gas hydrate occurrence shows that gas hydrate is also present in an active margin of the western Pacific Ocean. Thus, it appears that much of the Pacific Basin is rimmed with sediment that can contain gas hydrate.

ODP Leg 146—Pacific continental margin, offshore Western United States (Oregon), Cascadia Margin

Gas hydrate was recovered unexpectedly at Site 892 at shallow subbottom depths of 2–20 m. The gas hydrate occurred as platy crystals and crystal aggregates, irregularly disseminated in patchy zones and in thin layers or veinlets, parallel or oblique to bedding (Kastner *et al.*, 1993). The gas hydrate contained mainly methane, with *R* values of ~2100 and CO₂ (0.06%) (Table 1). Of important significance was the presence of 1–10% H₂S which should enhance the stablility of the gas hydrate at this locality.

Summary of DSDP and ODP Results

The most consistent observation is that hydrocarbon gases in gas hydrate samples recovered from deep ocean sediment always contain > 99%methane. Thus these gas hydrate examples are really methane hydrate and are likely to be structure I. The only exception may be the gas hydrate obtained from Leg 96 in the Gulf of Mexico. Its low *R* value of 160 suggests the possibility of structure II. Deep ocean drilling has shown that gas hydrate is present in both passive and active margin settings, but most samples have come thus far from active margin sites.

SUBAQUATIC GAS HYDRATE FROM SHALLOW SAMPLING

In addition to discoveries through deep ocean drilling by DSDP and ODP, piston and gravity coring at shallow subbottom depths in subaquatic sediment has revealed that gas hydrate near the sediment-water interface is also a common mode of occurrence. Gas compositions from the gas hydrate in shallow subbottom sediment (non-deep ocean drilling) are listed in Table 2.

Brooks *et al.* (1984, 1986) discovered near-surface gas hydrate in three different areas of the Gulf of Mexico at water depths ranging from 530 to 1300 m (Table 2). The hydrocarbon gas chemistry of these samples was particularly interesting. In contrast to all gas hydrate samples recovered by deep ocean drilling, where methane composed > 99% of the hydrocarbon gas mixture (Table 1), four of seven samples

had hydrocarbon gas mixtures containing significantly less than 99% methane (62.1–97.4%), with Rvalues ranging from 1.9 to 37.4. Three of these samples were oil stained and had a petroleum-like odor. The hydrocarbon gas chemistry of these samples suggests they are structure II (Brooks et al., 1984), and analyses by nuclear magnetic resonance (NMR) confirmed this structural configuration (Davidson et al., 1986). Three of the seven samples contained white layers of probable structure I gas hydrate in which methane composed > 99% of the hydrocarbon gases. At nearby Bush Hill, Sassen and MacDonald (1994) found surficial structure H gas hydrate having 21.2% methane (R value of 1.3 and a δ^{13} C value of -29.3%); the hydrocarbon gases in this unusual gas hydrate contain 41.1% isopentane (iC_5) as the most abundant component. Thus in the Green Canyon area structures I, II, and H are present. The gas hydrate occurrences are associated with faults and active venting of fluids at the seafloor.

Offshore northern California, six samples of gas hydrate were found near the sediment surface (Table 2) in which methane composed > 99% of the hydrocarbon gas mixture, and H₂S was also present (Brooks *et al.*, 1991). These results are similar to the observations made earlier in the Gulf of Mexico, particularly at Green Canyon 320 (Table 2).

Although gas hydrate was first discovered in shallow subbottom sediment of the Black Sea (Yefremova and Zhizhchenko, 1974), detailed geochemical results were unavailable until later (Ginsburg et al., 1990). Samples recovered from 2050 m water depth (Table 2) contained hydrocarbon gas mixtures rich in methane (99.9%). In striking contrast, gas hydrate samples recovered from the floor of the Caspian Sea (Table 2) contained hydrocarbon gas mixtures with significant amounts of higher molecular weight hydrocarbons (Ginsburg et al., 1992). Methane composed 59.1-96.2% of the hydrocarbon gas mixtures, with R values ranging from 1.7 to 45. This gas hydrate is likely to be structure II. The gas hydrate of the Caspian Sea is associated with fluid venting from Buzdag and Elm mud volcanos. Finally, fluid venting in the Sea of Okhotsk has resulted in gas hydrate (Ginsburg et al., 1993), and hydrocarbon gas compositions (Table 2) contain mainly methane (99.9%), suggesting the presence of structure I hydrate rather than structure II as in the Caspian Sea.

CARBON-ISOTOPIC COMPOSITION OF METHANE IN GAS HYDRATE

An important element of the geochemistry of methane in natural gas hydrate is the carbon-isotopic composition of the methane. This information is contained in Tables 1 and 2 and in Fig. 2 for gas hydrate recovered from around the world. In those gas hydrate samples where methane composes

Area WD' (m) (mbst) of gas of gas of gas of fas of fas <tho< th=""><th>Rate Of O</th><th>HC R^s 3.9 3.5 2.1 1.9 7.9 4.4 7.4 37.4 9.9 830 9.9 1300 9.9 1300 9.9 1300 9.9 5200 9.9 5200 9.9 5300 9.9 5300</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th> comment Chips, chunks, oil stained yellow brown Chips, chunks, oil stained yellow brown Solid plug, Solid plug, Small pieces, no oil stain Thin to thick white masses Flat white masses White layers, H.S odor </th></tho<>	Rate Of O	HC R^s 3.9 3.5 2.1 1.9 7.9 4.4 7.4 37.4 9.9 830 9.9 1300 9.9 1300 9.9 1300 9.9 5200 9.9 5200 9.9 5300 9.9 5300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 comment Chips, chunks, oil stained yellow brown Chips, chunks, oil stained yellow brown Solid plug, Solid plug, Small pieces, no oil stain Thin to thick white masses Flat white masses White layers, H.S odor
Gulf of Mexico (Brooks et al., 1986): 70.9 4.7 15.6 73.9 184 Green Canyon 530 nr 70.9 4.7 15.6 73.9 184 Green Canyon 530 1.4 4.2 61.9 9.2 22.8 62.1 204 Green Canyon 590 < 2.8 74.3 4.0 13.0 77.9 204 Green Canyon 590 < 2.8 74.3 4.0 13.0 77.9 234 Missisippi 1300 3.8 93.4 1.2 1.3 97.4 234 Missisippi 1300 3.8 99.5 0.12 nd 99.9 234 Missisippi 1300 3.8 9.2 9.7 97.4 38 Missisippi 1300 3.2 9.9 0.12 nd 99.9 38 Garben Banks 850 2.5-3.8 99.7 nd 99.7 97.4 38 Missisippi 1300 3.2 97.4 10.1 10 99.9 38 Gareen Canyon	15.6 7 15.6 7 22.8 6 2 nd 9 8 nd 9 2 nd 9 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1 - 44. 0.2 - 56. 4.6 - 43. 4.0 - 48. 0.26 - 48. 0.26 - 48. 0.26 - 69. 0.26 - 69. 0.12 - 66. nd na	 Chips, chunks, oil stained yellow brown yellow brown yellow brown solid plug, whitish-yellow color Small pieces, no oil stain Thin to thick white masses Flat white layers, H₅S odor White layers, H₅S odor
184 Green Canyon 850 1.4-4.2 61.9 9.2 22.8 62.1 204 Green Canyon 590 < 2.8 74.3 4.0 13.0 77.9 234 Mississippi 1300 3.8 93.4 1.2 1.3 97.4 234 Mississippi 1300 3.8 93.4 1.2 1.3 97.4 Mississippi 1300 3.8 93.4 1.2 1.3 97.4 Canyon 850 2.5-3.8 99.5 0.12 nd 99.9 Canyon 880 4.2-4.5 99.7 nd 99.9 38.3 Garben Banks 880 3.2-3.6 99.7 nd 99.9 39.7 Softeen Canyon 800 3.2-3.6 99.7 nd 99.9 39.7 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 Green Canyon 800 3.2-3.46 99.7 0.08 nd 99.9 Green Canyon 800 3.2-3.46 99.7 0.08	22.8 22.8 22.8 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 1.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 - 56. 4.6 - 43.5 4.0 - 48.5 0.26 - 70.4 0.26 - 69.5 0.12 - 66.5 0.12 - 66.4 nd - 59.0 nd na	yellow brown Chips, chunks, oil stained yellow brown Solid plug, whitish-yellow color Small pieces, no oil stain Thin to thick white masses Flat white masses White layers, H.S odor
Green Canyon 850 $1.4 \cdot 4.2$ 61.9 9.2 22.8 62.1 204 590 < 2.8 74.3 4.0 13.0 77.9 27 Green Canyon 590 < 2.8 74.3 4.0 13.0 77.9 234 Mississippi 1300 3.8 93.4 1.2 1.3 97.4 Mississippi 1300 3.8 99.5 0.12 nd 99.9 Garbon Banks 850 2.5-3.8 99.5 0.12 nd 99.9 Garbon Banks 850 2.5-3.8 99.7 nd 99.9 Garbon Banks 850 2.5-3.6 99.7 nd 99.9 Green Canyon 800 3.2-3.16 99.7 nd 99.9 257 Green Canyon 800 3.2-3.3 0.03 nd 99.9 267 Green Canyon 800 3.2-3.4 90.0 0.01 99.9 201 Green Canyon 800 <td>22.8 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>0.2 - 56. 4.6 - 43.3 4.0 - 48.3 0.26 - 70.4 0.26 - 69.3 0.12 - 66.3 0.12 - 66.3 nd na</td> <td> Chips, chunks, oil stained yellow brown yellow brown Solid plug, solid plug,</td>	22.8 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 - 56. 4.6 - 43.3 4.0 - 48.3 0.26 - 70.4 0.26 - 69.3 0.12 - 66.3 0.12 - 66.3 nd na	 Chips, chunks, oil stained yellow brown yellow brown Solid plug, solid plug,
Green Canyon 590 < 2.8 74.3 4.0 13.0 77.9 234 Missisippi 1300 3.8 93.4 1.2 1.3 97.4 Caryon S60 2.5-3.8 99.5 0.12 nd 99.9 Garbon Banks 850 2.5-3.8 99.5 0.12 nd 99.9 38 Garbon Banks 880 4.2-4.5 99.7 nd 99.9 38 Green Canyon 880 3.2-3.6 99.7 0.08 nd 99.7 257 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 257 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 257 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 257 Green Canyon 800 3.2-3.0 97.3 0.01 0.99 320 Offshore Northern California (Brooks <i>et al</i> 1991): 0.01 0.01<	1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.1 <t< td=""><td>$\begin{array}{rcrcr} 7.9 & 4.4 \\ 7.4 & 37.4 \\ 9.9 & 830 \\ 9.7 & > 10,000 \\ 9.9 & 1300 \\ 9.9 & 1300 \\ 9.9 & 5200 \\ 9.0 &$</td><td>4.6 – 43.3 4.0 – 48.3 0.26 – 70.4 0.26 – 69.3 0.12 – 66.4 nd – 59.4 nd na</td><td> Solid plug, whitish-yellow color Small pieces, no oil stain Thin to thick white masses Flat white masses White layers, H₅S odor </td></t<>	$\begin{array}{rcrcr} 7.9 & 4.4 \\ 7.4 & 37.4 \\ 9.9 & 830 \\ 9.7 & > 10,000 \\ 9.9 & 1300 \\ 9.9 & 1300 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.0 &$	4.6 – 43.3 4.0 – 48.3 0.26 – 70.4 0.26 – 69.3 0.12 – 66.4 nd – 59.4 nd na	 Solid plug, whitish-yellow color Small pieces, no oil stain Thin to thick white masses Flat white masses White layers, H₅S odor
Mississippi 1300 3.8 9.3.4 1.2 1.3 97.4 Canyon Canyon 850 2.5-3.8 99.5 0.12 nd 99.9 Garben Banks 850 2.5-3.8 99.5 0.12 nd 99.9 Green Canyon 880 4.2-4.5 99.7 nd 99.7 257 Zoren Canyon 880 3.2-3.6 99.7 0.08 nd 99.7 257 Zoren Canyon 800 3.2-3.6 99.7 0.08 nd 99.7 257 Zoren Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 Offshore Northern California (Brooks <i>et al.</i> , 1991): 0.03 nd 99.9 99.9 Offshore Northern California (Brooks <i>et al.</i> , 1991): 0.03 0.03 nd 99.9 ER-82 512 0-0.3 90.3 0.02 0.01 99.9 ER-83 518 <1.5	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	$\begin{array}{rrrr} 7.4 & 37.4 \\ 9.9 & 830 \\ 9.7 & > 10,000 \\ 9.9 & 1300 \\ 9.9 & 1300 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.9 & 5200 \\ 9.0 & 11,000 \\ 9.9 & 5200 \\ 9.0 & 11,000 \\ 9.0 & 11,000 \\ 9.0 & 10,000 \\ 9.$	4.0 - 48.7 0.26 - 70.4 0.26 - 69.7 0.12 - 66.7 0.12 - 66.7 nd - 59.0 nd na	 Small pieces, no oil stain Thin to thick white masses Flat white masses White layers, H.S odor
Catabour 388 Carbon Banks 850 2.5-3.8 99.5 0.12 nd 99.9 388 Green Canyon 880 4.2-4.5 99.7 nd nd 99.7 2.5 7 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 257 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 320 Offshore Northern California (Brooks <i>et al.</i> , 1991): 6R-82 512 0-0.3 66.3 0.03 nd 99.9 ER-83 518 < 1.5 92.9 0.02 nd 99.9 ER-83 567 0-0.2 93.4 0.12 nd 99.9 ER-139 623 1.5-2.0 93.4 0.12 nd 99.9 ER-148 642 0-1.8 90.5 0.02 nd 99.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{rrrr} 9.9 & 830 \\ 9.7 &> 10,000 \\ 9.9 & 1300 \\ 9.9 & 2200 \\ 9.9 & 5200 \\ 9.9 & 800 \\ 9.9 & 800 \\ 9.9 & 800 \\ 9.9 & 5300 \\ 9.9 & 600 \\ $	0.26 - 70.4 0.26 - 69.5 0.12 - 66.5 nd - 59.0 nd na	 Thin to thick white masses Flat white masses White layers, H₃S odor
Green Canyon 880 4.2-4.5 99.7 nd nd 99.7 257 257 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.7 29.7 267 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 Green Canyon 800 3.2-3.6 99.7 0.08 nd 99.9 Offshore Northern California (Brooks <i>et al.</i> , 1991): 66.3 0.03 nd 99.9 ER-82 512 0-0.3 66.3 0.02 nd 99.9 ER-83 518 <1.5	nd 2222223	9.7 > 10,000 9.9 1300 9.9 2200 9.9 5200 9.9 800 9.9 800	0.26 – 69. 0.12 – 66. nd – 59.0 nd na	Flat white masses White layers, H ₃ S odor
Z27 C27 0.08 nd 99.9 320 3.2-3.6 99.7 0.08 nd 99.9 320 Offshore Northern California (Brooks <i>et al.</i> , 1991): 0.03 nd 99.9 ER-82 512 0-0.3 66.3 0.03 nd 99.9 ER-83 518 <1.5	22222233 8 nd 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.9 1300 9.9 2200 9.9 5200 9.9 11,000 9.9 800 9.9 5300	0.12 – 66. nd – 59.0 nd na	White layers, H ₂ S odor
320 Offshore Northern California (Brooks et al., 1991); ER-82 512 0–0.3 66.3 0.03 nd 99.9 ER-83 567 0–0.2 93.2 0.01 0.01 99.9 ER-139 66.2 1.5-2.0 93.4 0.12 nd 99.9 ER-148 642 0–1.8 90.5 0.02 nd 99.9 ER-148 642 0–1.8 90.5 nd 99.9 ER-202 559 2.2-2.8 86.6 0.05 nd 99.9 Blac Sea (Ginsburg et al., 1900); Sta. 18 0.0002 99.9	22222 52222 0.01 0.02 0.01 0.01 0.01 0.01 0.01	9.9 2200 9.9 5200 9.9 11,000 9.9 5300 9.9 5300	nd – 59.1 nd na	
Chastoric rotitization and set al., 1771, 000 and 999 ER-82 518 0-1.5 929 0.02 nd 999 ER-105 567 0-0.2 93.2 0.01 0.01 999 ER-139 623 1.5-2.0 93.4 0.12 nd 999 ER-148 642 0-1.8 90.5 0.02 nd 999 ER-202 559 2.2-2.8 86.6 0.05 nd 999 ER-202 559 2.2-2.8 86.6 0.05 nd 999 Black Scat (Ginsburg <i>et al.</i> , 1990): Black Scat (Ginsburg <i>et al.</i> , 1990):		9.9 2200 9.9 5200 9.9 5200 9.9 810,000 9.9 5300 1.500	nd – 59.(nd na	
ER-83 518 < 1.5 929 0.02 nd 999 ER-105 567 0-0.2 93.2 0.01 0.01 999 ER-139 623 1.5-2.0 93.4 0.12 nd 999 ER-148 642 0-1.8 90.5 0.02 nd 999 ER-202 559 2.2-2.8 86.6 0.05 nd 999 BR-202 559 0.2-2.8 86.6 0.05 nd 999 Black Scat (Ginsburg <i>et al.</i> , 190): Black Scat (Ginsburg <i>et al.</i> , 1900):	0.02222000	9.9 5200 9.9 5200 9.9 810,000 9.9 800 9.9 5300	nd na	Crystals in mudstone. H.S. odor
ER-105 567 0-0.2 93.2 0.01 0.01 99.9 ER-139 623 1.5-2.0 93.4 0.12 nd 99.9 ER-148 642 0-1.8 90.5 0.02 nd 99.9 ER-202 559 2.2-2.8 86.6 0.05 nd 99.9 Black Scat (Ginsburg <i>et al.</i> , 190): Black Scat (Ginsburg <i>et al.</i> , 1900): Stat. 18 0.0002 99.9	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	9.9 11,000 9.9 800 9.9 5300		Hydrate-cemented sand and silt, H ₂ S odor
ER-139 623 1.5-2.0 93.4 0.12 nd 99.9 ER-148 642 0-1.8 90.5 0.02 nd 99.9 ER-202 559 2.2-2.8 86.6 0.05 nd 99.9 Black Sca (Ginsburg <i>et al.</i> , 190): Black Sca (Ginsburg <i>et al.</i> , 1900): Sta. 18 0.0002 99.9		9.9 800 9.9 5300 0.0 1600	nd – 57.	Layered bands in mud, H ₂ S odor
E.R148 642 0–1.8 90.5 0.02 nd 99.9 E.R202 559 2.2–2.8 86.6 0.05 nd 99.9 Black Sca (Ginsburg <i>et al.</i> , 1900): Sta. 18 0.0002 99.9	s nd 9	9.9 5300 0.0 1600	nd – 61.	Nodules of gas hydrate, H ₂ S odor
ER-202 559 2.2–2.8 86.6 0.05 nd 99.9 Black Sea (Ginsburg <i>et al.</i> , 1900): Sta. 18 0.0002 999	6 pu ç		nd – 59.	Layered gas hydrate, H ₂ S odor
black Sca (Ullisbuilg et al., 1990): Sta. 18 2050 nr 97.3 0.022 0.0002 99.9		2.7 I UUU	nd – 69.	Layered gas hydrates, H ₂ S odor
		9.9 4400	0.85 na	Veinlet of oas hydrate
Sta 53 2050 0.4.2.7 07.3 0.021 nd 00.0	0 7000.0 7	0.0 4600	0.85 - 63	Veinlet of gas hydrate
Sta. 57 2050 0.7 99.2 0.045 0.0004 99.9	5 0.0004 9	9.9 2200	0.90 - 61.8	Massive gas hydrate
Caspian Sea (Ginsburg et al., 1992):				•
Buzdag mud 475 nr nr nr nr nr nr	nr	nr nr	nr – 44.8	Hydrate-cemented
	t c		0.46	Dreccia "
Buzdag mud 2.1 1.1 0.0–0.0 0.47 Duzdag mud 2.4 0.0–0.0 Volcano 7s	7 7.4	1.6 6.1	0.45 na	
" " 74.7 17.4 2.4 77.6	4 2.4 7	7.6 3.8	3.6 na	
" " 80.8 13.6 4.2 81.4	6 4.2 8	1.4 4.5	0.65 na	2
" " 87.0 10.4 1.3 87.7	4 1.3 8	7.7 7.4	0.70 na	
Buzdag mud 475 0-1.2 74.2 17.0 6.0 75.0	0.9 0.0 7	5.0 3.2	1.10 na	2
voluanto /p " " 58.7 19.4 15.8 59.1	4 15.8 5	9.1 1.7	0.85 na	
Buzdag mud 475 0-0.6 76.0 19.3 2.4 77.0	3 2.4 7	7.0 3.5	1.18 na	Hydrate aggregates
volcano 1B + IC				
Elm mud 600 0-0.5 95.3 0.60 1.5 96.2	0 1.5 9	6.2 45	0.90 – 56.3	Hydrate-cemented
Elm mud " 0-0.4 81.4 15.3 1.6 82.1	3 1.6 8	2.1 4.8	0.81 na	Hydrate aggregates
voicano 18A Okhotsk Sea (Ginsburg <i>et al.</i> , 1993): Ve. Eisial 1		000 22 000	. 17	I numero nad lances of white and hudrote
	20 U.UUI& 9	9.9 22,000	0.0 – 04.	Layers and renses of wince gas hydrate

Fig. 2. Volumetric hydrocarbon gas ratio (R) of C₁/(C₂ + C₃) versus δ^{13} C of C₁ in samples of gas hydrate (Tables 1 and 2). Compositional fields for microbial and thermal sources of methane are shown. Modified from Bernard *et al.* (1976).

> 99% of the hydrocarbon gas mixture, the δ^{13} C values of methane are always lighter than -60%, with a few exceptions that are discussed below. Thus, in most gas hydrate, methane has molecular and isotopic characteristics that are diagnostic of a microbial origin, according to the criteria of Bernard *et al.* (1976), who used hydrocarbon gas compositions (*R* values) and the isotopic composition of methane to establish the origin of the methane: microbial,

thermal, and mixed. Use of these criteria provides a guideline for interpretation, but exceptions do occur such as results from DSDP Leg 84, discussed below.

Microbial

Where methane is being microbially generated within a sedimentary section (the zone of methanogenesis), there is a carbon-isotopic relationship between the methane and CO_2 (Fig. 3). This

Fig. 3. Distribution with depth of carbon-isotopic compositions of methane and carbon dioxide from DSDP Leg 76, Site 533, Blake Outer Ridge, offshore from southeastern United States. Modified from Galimov and Kvenvolden (1983).

1005

relationship is evident in sediment of the Blake Outer Ridge (Galimov and Kvenvolden, 1983) where gas hydrate was identified at DSDP Site 533 (Kvenvolden and Barnard, 1983). In this sediment, δ^{13} C values of methane become heavier with depth, from $\sim -94\%$ in the uppermost sediment to approximately -66% in the deepest sediment, reflecting a systematic but non-linear depletion of ¹²C with depth. The δ^{13} C values of CO₂ also increase with depth of sediment, from ~ -25% to ~ -4%, showing a depletion of ¹²C that closely parallels the trend of isotopic composition of methane. The ~60‰ difference between the isotopic composition of methane and CO_2 at the same depth is believed to result from a kinetic effect of microbial methanogenesis (Rosenfeld and Silverman, 1959). The magnitude and parallel distributions of carbon-isotopic values for both methane and CO₂ are consistent with the formation of methane by the microbial reduction of CO₂ derived from organic matter. At Site 533 the carbon-isotopic composition of methane in the gas hydrate sample is similar to that in the sediment at the depth at which the gas hydrate sample was found (Fig. 3). Taken together these results suggest that the methane in gas hydrate at this site is microbial in origin and that the gas hydrate formed in place from the surrounding methane. Other localities with similar depth trends in carbon-isotopic compositions of methane, methane hydrate, and/or CO_2 are offshore from Guatemala (Claypool et al., 1985; Jeffrey et al., 1985) and offshore from Peru (Kvenvolden and Kastner, 1990). These results strongly support the conclusions of Whiticar et al. (1986), who clearly demonstrated that in the marine environment, after sulfate has been reduced, methane is generated by the microbial reduction of CO₂.

Microbial vs. thermal methane

Molecular and isotopic compositions of gases associated with gas hydrate found on DSDP Leg 84 offshore from Guatemala support either a microbial or thermal source for the methane (Kvenvolden et al., 1984). Hydrocarbon gases from cores of the deepest sediment samples and from dissociated gas hydrate all contain > 99% methane (Kvenvolden and McDonald, 1985; Jeffrey et al., 1985), suggesting that the methane is microbial in origin. Although many methane samples had δ^{13} C values lighter than -60%, suggesting a microbial source, at Sites 568 and 570, methane in sediment at depths below 210 m increased in δ^{13} C value to as heavy as ~ - 40‰. Methane from a massive gas hydrate recovered at Site 570 had a carbon-isotopic composition of -41.4% and an R value of 410 (Kvenvolden et al., 1984); similar results showing an average δ^{13} C value of -42.9% and an R value of 410 were obtained by Brooks et al. (1985). These results (Table 1) are shown on Fig. 2. A detailed study of the dissociation of this massive gas hydrate under controlled laboratory conditions showed $\delta^{13}C$ values of methane ranging from -36.1 to -43.6%(Kvenvolden et al., 1984). The observed heavy

carbon-isotopic compositions are normally considered to indicate thermogenic gas; however, this isotopically heavy methane was accompanied by isotopically very heavy CO₂, with compositions of + 16.3% for gaseous CO₂ (Jeffrey *et al.*, 1985) and + 37% for total dissolved CO₂ (Claypool *et al.*, 1985).

The isotopically heavy methane could have been derived from the isotopically very heavy CO_2 by microbial processes similar to those described previously for the Blake Outer Ridge. Alternatively, the isotopically heavy methane could have migrated upward from deeper sediment where it was thermally derived from deeply buried organic matter. If so, however, one would expect much lower R values, (< 100), whereas the R values actually measured ~400. The association of isotopically heavy methane with isotopically very heavy CO_2 could be coincidental or controlled by some unknown isotopic interaction between methane and CO_2 . Although a microbial explanation for these Leg 84 results is preferred, a thermal origin cannot be completely ruled out.

Results from ODP Leg 112 suggest that some thermal methane is present in the sediment. At Sites 685 and 688 gas hydrate samples were recovered at 166 and 141 m subbottom, respectively (Table 1). Although the carbon-isotopic results from Site 685 are consistent with the trends observed at Site 533 (Fig. 3), the results from Site 688 are not. At Site 688 the δ^{13} C value of methane is heavier than -60% at subbottom depths exceeding about 150 m, where there is no longer a consistent relation between methane and CO₂ (Kvenvolden and Kastner, 1990). These results may reflect a situation in which thermogenic methane begins to dilute microbial methane at deeper depths. However, in the gas hydrate sample from Site 688, methane composed > 99.9% of the hydrocarbon gases (Table 1) and had a δ^{13} C value of -59.6%(Table 1; Fig. 2). These results suggest that the methane in this gas hydrate is mainly microbial with only a minimal contribution of thermal methane.

Methane composes > 99.9% of hydrocarbon gases in five samples of gas hydrate recovered offshore from northern California (Table 2), suggesting a microbial origin. Although the carbon-isotopic compositions, ranging from -57.6 to -69.1% (Table 2), includes three values heavier than -60% (Fig. 2), the methane in all five of these samples was considered to be of microbial origin (Brooks *et al.*, 1991). Ethane contents ranging from 0.01-0.12% were considered insufficient to indicate thermogenic hydrocarbon gas and structure II hydrate.

Methane in continental gas hydrate at the west end of the Prudhoe Bay oil field constitutes > 99.9% of the hydrocarbon gas mixture (R = 5900), with a δ^{13} C value of -49.5% (Fig. 2), as discussed previously. Collett (1993a) has suggested that from 50 to 70% of the methane in this gas hydrate is thermogenic and has migrated upward from the Prudhoe Bay gas cap to mix with microbial gas. This idea requires that ethane and propane are stripped from the thermal gas during the migration process to produce such a pure methane gas in the gas hydrate (>99.9%). Stripping of heavy hydrocarbons during migration has been discussed by Schoell (1983) and Jenden and Kaplan (1986). The same explanation may apply to the methane in gas hydrate of the Messoyakha field in Russia.

Thermal methane

Only in the Gulf of Mexico and the Caspian Sca has gas hydrate been found in which the methane is mainly thermogenic (Brooks et al., 1986; Ginsburg et al., 1992; Sassen and MacDonald, 1994). Methane in gas hydrate of the Gulf of Mexico is both thermal and microbial (Fig. 2). In three samples from Green Canyon and another from Mississippi Canyon, the hydrate hydrocarbon gas contains 62-78% methane, with δ^{13} C values ranging from -43.2 to -56.5%(Table 2); at Bush Hill the hydrate hydrocarbon gas contains 21.2% methane, having a δ^{13} C value of -29.3%. These samples fall within the molecular and isotopic compositional field (Fig. 2) diagnostic of thermal methane. In contrast, samples of hydrate hydrocarbon gas from Garden Banks and Green Canyon contain 99.5–99.7% methane with δ^{13} C values ranging from -66.5 to -70.4% (Table 2), indicating microbial methane. Gas hydrate associated with mud volcanos in the Caspian Sea consists of hydrocarbon gases containing 59-96% methane, with δ^{13} C values of -44.8 to -57.3% (Table 2). These results suggest a thermal methane source for the methane (Fig. 2).

GAS HYDRATE FORMATION AND OCCURRENCE

Subaquatic gas hydrate samples have been found in sediment ranging from the seafloor to depths of about 400 m (Tables 1 and 2). Where buried below about 20 m, gas hydrate appears to have been formed with microbial methane generated in place. This conclusion is based in part on considerations of the similarity of methane carbon-isotopic compositions between gas hydrate and the surrounding sediment gas (Galimov and Kvenvolden, 1983; Claypool et al., 1985; Jeffrey et al., 1985; Pflaum et al., 1986; Kvenvolden and Kastner, 1990). Shallow gas hydrate, found at and just below the seafloor, is composed of microbial methane that has migrated along faults, joints, and from diapirs. Examples include the gas hydrate found in the Gulf of Mexico (Brooks et al., 1986) offshore from northern California (Brooks et al., 1991), and on the Cascadia margin offshore from Oregon (Kastner et al., 1993). Microbial methane may be actively venting into the water at gas hydrate sites such as in the Sea of Okhotsk (Ginsburg et al., 1993).

The migration distance may have been short, perhaps limited by the base of the zone of gas hydrate

stability and the processes taking place there (Paull *et al.*, 1994). The carbon-isotopic composition of this methane is usually within the heavier range of values assigned to microbial methane, that is, -60 to -70% (Fig. 2). Isotopically lighter methane is not common in natural gas hydrate. In sediment where methane is being microbially generated, the isotopically lightest methane is near to the surface and becomes heavier with depth as illustrated in Fig. 3. The fact that isotopically light methane, lighter than 70%, has not often been found in gas hydrate samples supports the idea that the microbial methane in shallow gas hydrate samples has migrated short distances.

On the other hand, the migration distance of methane may have been long, bringing thermogenic gas from deeply buried sediment into shallow sediment to form gas hydrate. Examples of thermogenic methane in surface or near-surface sediment are found in the Gulf of Mexico (Brooks *et al.*, 1986; MacDonald *et al.*, 1994; Sassen and MacDonald, 1994) and the Caspian Sea (Ginsburg *et al.*, 1992).

In contrast to gas hydrate from subaquatic settings, the continental gas hydrate deposits of the Prudhoe Bay–Kuparuk River areas on the North Slope of Alaska and of the Messoyakha field in the West Siberian basin of Russia occur within stratigraphically discrete siltstone and sandstone reservoirs at depths less than 800 m (Collett, 1993a, b). The gas hydrate is assumed to contain a mixture of microbial and migrated thermal methane which has been stripped of heavy hydrocarbon gases.

SUMMARY

Sufficient information has been obtained in the study of the geochemistry of methane in natural gas hydrate to permit a few generalizations to be made. One striking observation is the very common occurrence worldwide of almost pure methane hydrate. That is, methane usually composes > 99%of the hydrocarbon gas mixtures. This compositional information leads to the conclusion that these gas hydrate samples are likely to have structure I crystallography. Only in the Gulf of Mexico and the Caspian Sea has gas hydrate been found in which methane is accompanied by significant amounts of ethane and propane such that structure II hydrate is present. In the Gulf of Mexico, structure H gas hydrate with iC₅ as the main hydrocarbon gas has also been observed.

Information on the molecular composition of hydrocarbon gases in gas hydrate samples coupled with measurements of carbon-isotopic compositions of methane provide a basis for interpreting the origin of the methane in gas hydrate. In most of the methane hydrate samples, methane has a carbon-isotopic composition lighter than -60%, suggesting that the

methane is mainly microbial in origin. This microbial methane is believed to result from methanogenic processes, taking place in shallow sediment, in which CO_2 from organic matter is reduced to methane. In contrast, the gas hydrate samples with possible structure II and H crystallography from the Gulf of Mexico and structure II crystallography from the Caspian Sea contain methane with carbon-isotopic compositions heavier than -60%. This methane is considered to be thermal in origin, resulting from the thermal decomposition of organic matter at great depth. Methane from mixed sources possibly explains the continental gas hydrate of Alaska and Russia.

Subaquatic gas hydrate samples have been found in sediment ranging, thus far, from the seafloor to a depth of about 400 m. These gas hydrate occurrences are generally formed in place from methane that is either generated microbially nearby or has migrated. Microbial methane was likely to have migrated only short distances to form gas hydrate that occurs at or near the surface. Thermal methane, on the other hand, was likely to have migrated long distances from deeply buried sediment in order to form gas hydrate at or near the seafloor as in the Gulf of Mexico and the Caspian Sea.

The very large accumulations of natural gas, mainly methane, in the form of gas hydrate make this substance attractive as a potential energy resource for the future. Uncertainties about the mode of occurrence and the lack of applicable production techniques, however, augur that wide-scale exploitation, if proven feasible, could take place sometime in the 21st century when conventional natural gas deposits have been depleted.

Associate Editor M. Radke

Acknowledgements—I acknowledge with thanks the technical assistance of T. D. Lorenson, the clerical help of K. Linale, and support from the U.S. Geological Survey Global Change and Climate History Program.

REFERENCES

- Bernard B. B., Brooks J. M. and Sackett W. M. (1976) Natural gas seepage in the Gulf of Mexico. *Earth Planet*. *Sci. Lett.* **31**, 48-54.
- Brooks J. M., Barnard L. A., Wiesenburg D. A., Kennicutt M. C. III and Kvenvolden K. A. (1983) Molecular and isotopic compositions of hydrocarbons at Site 533, Deep Sea Drilling Project Leg 76. In *Initial Reports, Deep Sea Drilling Project* (Edited by Sheridan R. E., Gradstein F. M. et al.) pp. 377–389. U.S. Government Printing Office, Washington, D.C.
- Brooks J. M., Cox B. H., Bryant W. R., Kennicutt M. C. III, Mann R. G. and McDonald T. J. (1986) Association of gas hydrates and oil seepage in the Gulf of Mexico. Org. Geochem. 10, 221–234.
- Brooks J. M., Field M. E. and Kennicutt M. C. III (1991) Observations of gas hydrates in marine sediments, offshore northern California. *Marine Geol.* 96, 103–109.
- Brooks J. M., Jeffrey A. W. A., McDonald T. J., Pflaum R. C. and Kvenvolden K. A. (1985) Geochemistry of hydrate gas and water from Site 570, Deep Sea Drilling

Project Leg 84. In *Initial Reports, Deep Sea Drilling Project* (Edited by von Huene R., Aubouin J. *et al.*) pp. 699–703. U.S. Government Printing Office, Washington, D.C.

- Brooks J. M., Kennicutt M. C. III, Fay R. R., McDonald T. J. and Sassen R. (1984) Thermogenic gas hydrates in the Gulf of Mexico. *Science* 225, 409–411.
- Claypool G. W., Threlkeld C. N., Mankewicz P. N., Arthur M. A. and Anderson T. A. (1985) Isotopic composition of interstitial fluids and origin of gases in sediments of the Middle America Trench, DSDP Leg 84, In *Initial Reports*, *Deep Sea Drilling Project* (Edited by von Huene R., Aubouin J. et al.) pp. 683–691. U.S. Government Printing Office, Washington, D.C.
- Collett T. S. (1992) Potential of gas hydrates outlined. Oil Gas J. 9025, 84-87.
- Collett T. S. (1993a) Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska. Am. Assoc. Petrol. Geol. Bull. 77, 793-812.
- Collett T. S. (1993b) Natural gas production from Arctic gas hydrates. In *The Future of Energy Gases* (Edited by Howell D. W.). U.S. Geological Survey Professional Paper 1570, 299–311.
- Collett T. S., Kvenvolden K. A. and Magoon L. B. (1990) Characterization of hydrocarbon gas within the stratigraphic interval of gas-hydrate stability on the North Slope of Alaska, U.S.A. *Appl. Geochem.* **5**, 279–287.
- Davidson D. W. (1973) Clathrate hydrates. In Water—A Comprehensive Treatise 2 (Edited by Franks F.), pp. 115–234. Plenum, New York.
- Davidson D. W., El-Defrawy M. K., Fuglem M. O. and Judge A. S. (1978) Natural gas hydrates in northern Canada. In Proceedings of the 3rd International Conference on Permafrost 1, pp. 938–943. National Research Council of Canada.
- Davidson D. W., Garg S. K., Gough S. R., Handa Y. P., Ratcliffe C. I., Ripmeester J. A. and Tse J. S. (1986) Laboratory analysis of a naturally occurring gas hydrate from sediment of the Gulf of Mexico. *Geochim. Cosmochim. Acta* 50, 619–623.
- Ewing J. I. and Hollister C. D. (1972) Regional aspects of deep sea drilling in the western North Atlantic. In *Initial Reports, Deep Sea Drilling Project* 11 (Edited by Hollister C. D., Ewing J. I. et al.), pp. 951–973. U.S. Government Printing Office, Washington, D.C.
- Galimov E. M. and Kvenvolden K. A. (1983) Concentrations and carbon isotopic compositions of CH₄ and CO₂ in gas from sediments of the Blake Outer Ridge, Deep Sea Drilling Project Leg 76, In *Initial Reports, Deep Sea Drilling Project* 76 (Edited by Sheridan R.E., Gradstein F. M. et al.), pp. 403-407. U.S. Government Printing Office, Washington, D.C.
- Ginsburg G., Kremlev A. N., Grigor'ev M. N., Larkin G. V., Pavlenkin A. D. and Saltykova N. A. (1990) Filtrogenic gas hydrates in the Black Sea (Twenty-first voyage of the research vessel *Evpatoriya*). *Geologiya i Geofizika* 313, 10–19.
- Ginsburg G., Guseynov R. A., Dadashev A. A., Ivanova G. A., Kazantsev S. A., Soloviev V. A., Telepnev E. V., Askeri-Nasirov P. Ye., Yesikov A. A., Mal'tseva V. I., Mashirov Yu. G. and Shabayeva I. Yu. (1992) Gas hydrates of the southern Caspian. *Int. Geol. Rev.* 43, 765–782.
- Ginsburg G., Soloviev V. A., Cranston R. E., Lorenson T. D. and Kvenvolden K. A. (1993) Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea. *Geo-Marine Lett.* 13, 41–48.
- Harrison W. E. and Curiale J. A. (1982) Gas hydrates in sediments of holes 497 and 498A, Deep Sea Drilling Project Leg 67. In *Initial Reports, Deep Sea Drilling Project* 67 (Edited by Aubouin J., von Huene R. *et al.*), pp. 591–594. U.S. Government Printing Office, Washington, D.C.

- Hunt J. M. (1979) *Petroleum Geochemistry and Geology*. W. H. Freeman, San Francisco, 617 pp.
- Jeffrey A. W. A., Pflaum R. C., McDonald T. J., Brooks J. M. and Kvenvolden K. A. (1985) Isotopic analysis of core gases at sites 565–570, Deep Sea Drilling Project Leg 84. In *Initial Reports*, *Deep Sea Drilling Project* 84 (Edited by von Huene R., Aubouin J. et al.), pp. 719–726. U.S. Government Printing Office, Washington, D.C.
- Jenden P. D. and Kaplan I. R. (1986) Comparison of microbial gases from the Middle American Trench and Scripps Submarine Canyon---implications for the origin of natural gas. *Appl. Geochem.* 1, 631-646.
- Kastner M., Brown K. A., Foucher J-P. and ODP Leg 146 Shipboard Scientific Party (1993) Gas hydrates and bottom simulating reflectors in the Cascadia margin. *Transactions, American Geophysical Union* 74, (43, Supplement) 369 pp.
- Kvenvolden K. A. (1985) Comparison of marine gas hydrates in sediments of an active and passive margin. *Marine Petrol. Geol.* 2, 65–71.
- Kvenvolden K. A. (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? *Chem. Geol.* 71, 41–51.
- Kvenvolden K. A. (1993) Gas hydrates—geological perspective and global change. *Rev. Geophys.* 31, 173–187.
- Kvenvolden K. A. and Barnard L. A. (1983) Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76. In *Initial Reports. Deep Sea Drilling Project* 76 (Edited by Sheridan R. E., Gradstein F. W. et al.), pp. 353–365. U.S. Government Printing Office, Washington, D.C.
- Kvenvolden, K.A., and Kastner, M. (1990) Gas hydrates of the Peruvian outer continental margin. In *Proceedings*, *Ocean Drilling Program, Scientific Results* **112** (Edited by Suess E., von Huene R. *et al.*), pp. 512–526. Ocean Drilling Program, College Station, Texas.
- Kvenvolden K. A. and McDonald T. J. (1985) Gas hydrates of the Middle American Trench. Deep Sea Drilling Project Leg 84, In *Initial Reports of the Deep Sea Drilling Project* 84 (Edited by von Huene R., Aubouin J. *et al.*), pp. 667–682. U.S. Government Printing Office. Washington, D.C.
- Kvenvolden K. A. and McMenamin M. A. (1980) Hydrates of natural gas: a review of their geologic occurrence. U.S. Geological Survey Circular 825, 11 pp.
- Kvenvolden K. A., Claypool G. E., Threlkeld C. N. and Sloan E. D. (1984) Geochemistry of a naturally occurring massive marine gas hydrate. Org. Geochem. 6, 703–713.
- Kvenvolden K. A., Ginsburg G. D. and Soloviev V. A. (1993) Worldwide distribution of subaquatic gas hydrates. *Geo-Marine Lett.* 13, 32–40.
- Lancelot Y. and Ewing J. I. (1972) Correlation of natural gas zonation and carbonate diagenesis in Tertiary sediments from the northwest Atlantic. In *Initial Reports*, *Deep Sea Drilling Project* 11 (Edited by Hollister C. D., Ewing J. I. et al.), pp. 791–799. U.S. Government Printing Office, Washington, D.C.
- MacDonald G. T. (1990) Role of methane clathrates in past and future climates. *Climatic Change* 16, 247–281.
- MacDonald I. R., Guinasso N. L., Jr, Sassen R., Brooks J. M., Lee L. and Scott K. T. (1994) Gas hydrate that

breaches the sea floor on the continental slope of the Gulf of Mexico. *Geology* **22**, 699–702.

- Makogon Yu. F. (1981) *Hydrates of Natural Gas*. Pennwell, Tulsa, Oklahoma, 237 pp.
- Makogon Yu. F., Trebin F. A., Trofimuk A. A., Tsarev V. P. and Cherskiy N. V. (1971) Detection of a pool of natural gas in a solid (hydrated gas) state. *Doklady Akademii Nauk SSSR* 196, 203–206.
- Paull C. K., Ussler W. III and Borowski W. S. (1994) Sources of biogenic methane to form marine gas hydrates. In International Conference on Natural Gas Hydrates (Edited by Sloan E. D. Jr. Happel J. and Hnaow M. A.), Annals of the New York Academy of Sciences 715, 392–409.
- Pflaum R. C., Brooks J. M., Cox H. B., Kennicutt M. C. III and Sheu D-D. (1986) Molecular and isotopic analysis of core gases and gas hydrates, Deep Sea Drilling Project Leg 96. In *Initial Reports, Deep Sea Drilling Project* (Edited by Bouma A. H., Coleman J. M., Meyer A. W. *et al.*), pp. 781–784. U.S. Government Printing Office, Washington, D.C.
- Potential Gas Committee (1981) Potential Supply of Natural Gas in the United States (as of December 31, 1980). Potential Gas Agency, Colorado School of Mines, Golden, Colorado, 119 pp.
- Ripmeester J. A., Tse J. S., Ratcliffe C. I. and Powell B. M. (1987) A new clathrate hydrate structure. *Nature* **325**, 135–136.
- Rosenfeld W. D. and Silverman S. R. (1959) Carbon isotope fractionation in bacterial production of methane. *Science* 130, 1658–1659.
- Sassen R. and MacDonald I. R. (1994) Evidence of structure H hydrate, Gulf of Mexico continental slope. Org. Geochem. 22, 1029–1032.
- Schoell M. (1983) Genetic characterization of natural gases. Am. Assoc. Petrol. Geol. Bull. 67, 2225–2238.
- Shipboard Scientific Party (1990) Site 796. In Proceedings, Ocean Drilling Program, Initial Reports 127 (Edited by Tamake K., Pisciotto K., Allan J. et al.), pp. 247–322. Ocean Drilling Program, College Station, Texas.
- Shipboard Scientific Party (1991) Site 808. In Proceedings, Ocean Drilling Program, Initial Reports 131 (Edited by Taira A., Hill I., Firth J. U. et al.), pp. 71–269. Ocean Drilling Program, College Station, Texas.
- Shipley T.H. and Didyk B.M. (1982) Occurrence of methane hydrates offshore southern Mexico. In *Initial Reports*, *Deep Sea Drilling Project* 66 (Edited by Watkins J. S., Moore J. C. et al.), pp. 547–555. U.S. Government Printing Office, Washington, D.C.
- Sloan E. D. (1990) Clathrate Hydrates of Natural Gas. Marcel Dekker, New York, 641 pp.
- Stoll R. D., Ewing J. I. and Bryan G. M. (1971) Anomalous wave velocities in sediments containing gas hydrates. J. Geophys. Res. 76, 2090–2094.
- Whiticar M. J., Faber E. and Schoell M. (1986) Biogenic methane formation in marine and freshwater environments: CO₂ reduction vs. acctate fermentation-isotope evidence. *Geochim. Cosmochim. Acta* 50, 693-709.
- Yefremova A. G. and Zhizhchenko B. P. (1974) Occurrence of crystal hydrates of gas in sediments of modern marine basins. *Doklady Akademii Nauk SSSR* 214, 1179-1181.