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Abstract

We give a simple proof of Sethuraman’s construction of the Dirichlet distribution
and discuss its extension to infinite-dimensional spaces.

1 Introduction

The K-dimensional Dirichlet distribution is a distribution on vectors, π = (π1, . . . , πK), where
0 ≤ πk ≤ 1 for all k, and

∑K
k=1 πk = 1. Vectors of this form are said to reside in the simplex

of RK , denoted ∆K . Parameters for the Dirichlet distribution are α > 0 and g0 ∈ ∆K . The
density function of a Dirichlet distribution is

p(π|αg0) =
Γ(α)∏K

k=1 Γ(αg0k)

K∏
k=1

παg0k−1
k (1)

and a vector having this distribution is denoted π ∼ Dir(αg0). There are several methods for
sampling the vector π, for example, using gamma-distributed random variables [6]. A finite
stick-breaking approach also exists [2], where for k = 1, . . . , K − 1,

Vk ∼ Beta
(
αg0k, α

∑K

`=k+1
g0`

)
πk = Vk

k−1∏
`=1

(1− V`)

πK = 1−
K−1∑
k=1

πk (2)

The resulting vector π ∼ Dir(αg0).

Sethuraman’s constructive definition [7] is a third method that requires the sampling of an
infinite collection of random variables, from which π is constructed piece-by-piece. Though
also called a stick-breaking construction, this method is distinct from (2).

Technical Report, August 2010 1



V1 V2(1-V1) V3(1-V2)(1-V1) V4(1-V3)(1-V2)(1-V1)

π1 π2 πK-2π3 πK-1 πK

...

...

Y1 = 2 Y2 = 2 Y3 = K-2 Y4 = K-1

Figure 1: An illustration of the infinite stick-breaking construction of a K-dimensional
Dirichlet distribution. Weights are drawn according to a Beta(1,α) stick-breaking process,
with corresponding locations taking value k with probability g0k.

2 Constructing the Finite-Dimensional Dirichlet Distribution

The constructive definition of a Dirichlet prior [7] states that, if π is constructed according
to the following function of random variables, then π ∼ Dir(αg0).

π =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)eYi

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult({1, . . . , K}, g0) (3)

Using this multinomial parametrization, Y ∈ {1, . . . , K} with P(Y = k|g0) = g0k. The
vector eY is a K-dimensional vector of zeros, except for a one in position Y . The values
Vi
∏i−1

j=1(1− Vj) are often called “stick-breaking” weights because, at step i, the proportion

Vi is “broken” from the remainder,
∏i−1

j=1(1− Vj), of a unit-length stick. Since V ∈ [0, 1], the

product Vi
∏i−1

j=1(1− Vj) ∈ [0, 1] for all i, and it can be shown that
∑∞

i=1 Vi
∏i−1

j=1(1− Vj) = 1.

In Figure 1, we illustrate this process for i = 1, . . . , 4. The weights are broken as mentioned,
and the random variables {Yi}4

i=1 indicate the elements of the vector π to which each weight
is added. In the limit, the value of the kth element is

πk =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)I(Yi = k)

where I(·) is the indicator function.
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2.1 Proof of the Construction

We begin with the random vector
π ∼ Dir(αg0) (4)

The proof that this random vector has the same distribution as the random vector in (3)
requires two lemmas concerning general properties of the Dirichlet distribution. These lemmas
are used to decompose (4) into hierarchical processes that are equal in distribution to (4).

Lemma 1: Let Z ∼
∑K

k=1 g0kDir(αg0 + ek). Values of Z can be sampled from this distribu-
tion by first sampling Y ∼ Mult({1, . . . , K}, g0), and then sampling Z ∼ Dir(αg0 + eY ). It
then follows that Z ∼ Dir(αg0).

The proof of this lemma is in the appendix. Therefore, the hierarchical process

π ∼ Dir(αg0 + eY )

Y ∼ Mult({1, . . . , K}, g0) (5)

produces a random vector π ∼ Dir(αg0). A second lemma is next applied to this result.

Lemma 2: Let the random vectors W1 ∼ Dir(w1, . . . , wK), W2 ∼ Dir(v1, . . . , vK) and
V ∼ Beta(

∑K
k=1wk,

∑K
k=1 vk). Define the linear combination,

Z := VW1 + (1− V )W2 (6)

then Z ∼ Dir(w1 + v1, . . . , wK + vK).

The proof of this lemma is in the appendix. In words, this lemma states that, if one
wished to construct the vector Z ∈ ∆K according to the function of random variables
(W1,W2, V ) given in (6), one could equivalently bypass this construction and directly sample
Z ∼ Dir(w1 + v1, . . . , wK + vK).

This lemma is applied to the random vector π ∼ Dir(αg0 + eY ) in (5), with the result that
this vector can be represented by the following process,

π = VW + (1− V )π′

W ∼ Dir(eY )

π′ ∼ Dir(αg0)

V ∼ Beta

(
K∑
k=1

eY,k,
K∑
k=1

αg0k

)
Y ∼ Mult({1, . . . , K}, g0) (7)
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The result is still a random vector π ∼ Dir(αg0). Also,
∑K

k=1 eY,k = 1 and
∑K

k=1 αg0k = α.
We observe that the distribution of W is degenerate, with only one of the K parameters in
the Dirichlet distribution being nonzero. Therefore, since P(πk = 0|g0k = 0) = 1, we can say
that P(W = eY |g0 = eY ) = 1. Modifying (7), the following generative process for π produces
a random vector π ∼ Dir(αg0).

π = V eY + (1− V )π′

π′ ∼ Dir(αg0)

V ∼ Beta (1, α)

Y ∼ Mult({1, . . . , K}, g0) (8)

We observe that the random vectors π and π′ have the same distribution.

Since π′ ∼ Dir(αg0) in (8), this vector can be decomposed according to the same process by
which π is decomposed in (8). Thus, for i = 1, 2 we have

π = V1eY1 + V2(1− V1)eY2 + (1− V1)(1− V2)π′′

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult({1, . . . , K}, g0)

π′′ ∼ Dir(αg0) (9)

which can proceed letting i→∞. Each decomposition produces the vector π ∼ Dir(αg0). In
the limit as i→∞, (9)→(3), since limi→∞

∏i
j=1(1−Vj) = 0, concluding the proof. Therefore,

(3) arises as an infinite number of decompositions of the Dirichlet distribution, each taking
the form of (8).

2.2 The Extension to Infinite-Dimensional Spaces

In this section we briefly make the connection between the stick-breaking representation
of the finite Dirichlet distribution and the infinite Dirichlet process. For finite-dimensional
vectors, π ∈ ∆K , the constructive definition of (3) may seem unnecessary, since the infinite
sum cannot be carried out in practice, and π can be constructed exactly using only K
gamma-distributed random variables. The primary use of the stick-breaking representation
of the Dirichlet distribution is the case where K →∞.

For example, consider a K-component mixture model [5], where observations in a data set,

{Xn}Nn=1, are generated according to Xn ∼ F (X|θ∗n) and θ∗n
iid∼ GK , where

GK =
K∑
k=1

πkδθk

π ∼ Dir(αg0)

θk
iid∼ G0, k = 1, . . . , K (10)
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The atom θ∗n associated with observation Xn contains parameters for some distribution,
F (x|θ), with P(θ∗n = θk|π) = πk. The Dir(αg0) prior is often placed on π as shown, and G0 is
a non-atomic base distribution (i.e., continuous everywhere). For a Gaussian mixture model
[3], θk = {µk,Σk} and G0 is often a conjugate Normal – inverse-Wishart prior distribution on
the mean vector µ and covariance matrix Σ.

Following the proof of Section 2.1, we can use (3) to construct π in (10), producing

GK =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθYi

Vi
iid∼ Beta(1, α)

Yi
iid∼ Mult ({1, . . . , K}, g0)

θk
iid∼ G0, k = 1, . . . , K (11)

Sampling Yi from the integers {1, . . . , K} according to g0 provides an index of the atom
with which to associate mass Vi

∏i−1
j=1(1− Vj). Ishwaran and Zarepour [5] showed that, when

g0 = ( 1
K
, . . . , 1

K
) and K →∞, GK → G, where G is a Dirichlet process with continuous base

measure G0 on the infinite space (Θ,B), as defined in [4]. Since in the limit as K → ∞,
P(Yi = Yj|i 6= j) = 0 and P(θYi = θYj |i 6= j) = 0, there is a one-to-one correspondence
between {Yi}∞i=1 and {θi}∞i=1. Let the function σ(Yi) = i reindex the subscripts on θYi . Then

G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi

Vi
iid∼ Beta(1, α)

θi
iid∼ G0 (12)

Finally, we note that this representation is not as different from (3) as first appears. For
example, let G0 be a discrete measure on the first K positive integers. In this case θ ∈
{1, . . . , K} and (12) and (3) are essentially the same (the difference being that one is
presented as a measure on the first K integers, while the other is a vector in ∆K). Also
consider finite partitions of Θ, {B1, . . . , BK}, with

⋃
k Bk = Θ. In this case, one can let

g0k := G0(Bk) =
∫
Bk
θ G0(dθ) and the measure G(Bk) = πk, where π ∼ Dir(αg0).
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3 Appendix

Proof of Lemma 1: Let Y ∼ Mult({1, . . . , K},π) and π ∼ Dir(αg0). Basic probability
theory allows us to write that

p(π|αg0) =
K∑
k=1

P(Y = k|αg0)p(π|Y = k, αg0) (13)

P(Y = k|αg0) =

∫
π∈∆K

P(Y = k|π)p(π|αg0) dπ (14)

The second equation can be written as P(Y = k|αg0) = E[πk|αg0] = g0k. The first
equation uses the posterior of a Dirichlet distribution given observation Y = k, which
is p(π|Y = k, αg0) = Dir(αg0 + ek). Replacing these two equalities in the first equation, we
obtain p(π|αg0) =

∑K
k=1 g0kDir(αg0 + ek).

Proof of Lemma 2: We use the representation of π as a function of gamma-distributed
random variables. That is, if γk ∼ Gamma(αg0k, λ) for k = 1, . . . , K, and we define

π :=
(

γ1∑
k γk

, . . . , γK∑
k γk

)
, then π ∼ Dir(αg0). Using this definition, let

W1 :=

(
γ1∑
k γk

, . . . ,
γK∑
k γk

)
, W2 :=

(
γ′1∑
k γ
′
k

, . . . ,
γ′K∑
k γ
′
k

)
, V :=

∑
k γk∑

k γk +
∑

k γ
′
k

(15)

where γk ∼ Gamma(wk, λ) and γ′k ∼ Gamma(vk, λ). Then it follows that

W1 ∼ Dir(w1, . . . , wK), W2 ∼ Dir(v1, . . . , vK), V ∼ Beta(
∑

k
wk,
∑

k
vk) (16)

where the distribution of V arises because
∑

k γk ∼ Gamma(
∑

k wk, λ). Furthermore, Basu’s
theorem [1] indicates that V is independent of W1 and W2, or p(V |W1,W2) = p(V ). Perform-
ing the multiplication Z = VW1 + (1−V )W2 produces the gamma-distributed representation
of Z ∼ Dir(w1 + v1, . . . , wK + vK).
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