
THE PROGRAMMING LANGUAGE B

by

S. C. Johnson and B. W. Kernighan
Bell Laboratories

Murray Hill, New Jersey

ABSTRACT.—..

B is a computer language designed by D. M. Ritchie and K. L.

Thompson, for primarily non-numeric applications such as system

programming. These typically involve complex logical decision-

making, and processing of integers, characters, and bit strings.

On the H6070 TSS system, B programs are usually much easier to

write and understand than assembly language programsj and object

code efficiency is almost as good. Implementation of simple TSS

subsystems is an especially appropriate use for B.

This technical report contains a description of the MH–TSS

(Honeywell 6070) version of B (by S. C. Johnson), and a tutorial

introduction to most of the features of the language (by B. W.

Kernighan).

A TUTORIAL INTRODUCTION

by

TO THE LANGUAGE B

B. W. Kernighan
Bell Laboratories

Murray Hill, New Jersey

~. Introduction

B is a new computer language designed and implemented at Murray
Hill. It runs and is actively supported and documented on the
H6070 TSS system at Murray Hill.

B is particularly suited for non–numeric computations, typified
by system programming. These usually involve many complex logi-
cal decisions, computations on integers and fields of words,
especially characters and bit strings, and no floating point. B
programs for such operations are substantially easier to write
and understand than GMAP programs. The generated code is quite
good ● Implementation of simple TSS subsystems is an especially
good use for B.

B is reminiscent of BCPL [2], for those who can remember. The
original design and implementation are the work of K. L. Thompson
and D. M. Ritchie; their original 6070 version has been substan-
tially improved by S. C. Johnsons who also wrote the runtime
library.

This memo is a tutorial to make learning B as painless as possi-
ble. Most of the features of the language are mentioned in pass-
ing, but only the most important are stressed. Users who would
like the full story should consult A User’s Reference to B on
MH-TSS, by S. C. Johnson [1], which should be read for details
anyway.

We will assume that the user is familiar with the mysteries of
TSS, such as creating files, text editing, and the like, and has
programmed in some language before.

Throughout, the symbolism (->n) implies that a topic will be
expanded upon in section n of this manual. Appendix E is an
index to the contents.

-2-

2. General Layout Q ~ Proqrams

main(){
-- statements --
}

newfunc(argl ,arq2) {
-- statements --
}

fun3(arg) {
-- more statements --
}

All B programs consist of one or more “functions”, which are
similar to the functions and subroutines of a Fortran program, or
the procedures of PL/I. main is such a function, and in fact all
B programs must have a ma~~ Execution of the program begins at——-
the first statement of main, and usually ends at the last. main——
will usually invoke other functions to perform its job, some com-

——

ing from the same program, and others from libraries. As in For-
tran, one method of communicating data between functions is by
“arguments. The parentheses following the function name surround
the argument list; here main is a function of no arguments, indi–
cated by (). The {] enc= the statements of the function.

Functions are totally independent as far as the compiler is con-
cerned, and main need not be the first,—— although execution starts
with it. This program has two other functions: newfunc has two
arguments, and fun3 has one. Each function consists of one or.——
more statements which express operations on variables and
transfer of control. Functions may be used recursively at little
cost in time or space (->30).

Most statements contain expressions, which in turn are made up of
operators, names~ and constants, with parentheses to alter the
order of evaluation. B has a particularly rich set of operators
and expressions, and relatively few statement types.

The format of B programs is quite free; we will strive for a uni-
form style as a good programming practice. Statements can be
broken into more than one line at any reasonable point, i.e.,
between names, operators, and constants. Conversely, more than
one statement can occur on one line. Statements are separated by
semicolons. A group of statements may be grouped together and
treated as a single statement by enclosing them in {}; in this
case, no semicolon is used after the ‘} . This convention is
used to lump together the statements of a function.

-3-

~. Compilinq and Runni~ ~ Proqrams.—

(a) SYSTEM? filsys cf bsource,b/1,100/
(b) SYSTEM? filsys cf bhs,b/6,6/,m/r/
(c) SYSTEM? [create source program with any text editor]
(d) SYSTEM? ./bj (w) bsource bhs
(e) SYSTEM? /bhs

(a) and (b) need only be done once; they create file space for
the source program and the loaded program. (d) compiles the
source program from bsour~q,
a program in b-.

and after many machinations, creates
(e) runs that progr~. ./bj is more fully

described in [1].

You may from time to time get error messages from the B compilere
These look like either of

ee n
ee name n

where ee is a two-character error message, and E is the approxi-
mate

This

s~rce line number of the errorc (->Appendlx A)

Workinq ~ Proqram; Variables.— .—

main(){
auto a, b, c, sum;

a= l; b=2; c=3;
sum = a+b+c;
putnumb(sum) ;

}

simple program adds three numbers, and prints the sum. It
illustrates the use of variables and constants, declarations, a
bit of arithmetic, and a function call. Let us discuss them in
reverse order.

putnumb is a library function of one argument, which will print a
number on the terminal (unless some other destination is speci-
fied (->28)). The code for a version of ytnumb can be found in— —.
(->30). Notice that a function is invoked by naming it, followed
bj the argument(s) in parentheses. There is DQ CALL statement as
in Fortran.

The arithmetic and the assignment statements are much the same as
in Fortran, except for the semicolons. Notice that we can put
several on a line if we want. Conversely, we can split a state-
ment among lines if it seems desirable - the split may be between
any of the operators or variables, but n~ in the middle of a
variable name.

-4-

One major difference between B and Fortran is that B is a.-
~eless language: there is no analog in B of the Fortran IJKLMN
convention. Thus a, b, c, and sum are all 36-bit quantities, and
arithmetic operations are integer. This is discussed at length
in the next section (->5).

Variable names have one to eight ascii characters, chosen from
A-Z, a-z, _, O-9, and start with a non-digit. Stylistically,
it’s much ~~tter to use only a single case (upper or lower) and
give functions and external variables (,->7)names that are unique
in the first six characters. (Function and external variable
names are used by batch GMAP, which is limited to six character
single-case identifiers.)

The statement “auto ...” is a declaration, that 1s, it defines
the variables to be used within the function. auto in particular
is used to declare local variables, variables which exist only

.—

within their own function (main in this case). Variables may be
distributed among auto declarations arbitrarily, but all declara-——
tions must precede executable statements. All variables must be
declared, as one of auto, extrn (->7), or i=~icitly as function——
arguments (->8).

auto variables are different from Fortran local variables in one
important respect - they appear when the function is entered, and
disappear when
time, and they

~. Arithmetic;

All arithmetic

it is left. They cannot be initialized at compile
have no memory from one call to the next.

Octal Numbers-— ———

in B is inteqer, unless special functions are
written. There is no equivalent of the E’ortran IJKLMN conven-
tion, no floating point, no data types~ no type conversions~ and
no type checking. Users of double-precision complex will have to
fend for themselves. (But see ->32 for how to call Fortran
subroutines.)

The arithmetic operators are the usual’’+’, ‘-’, ‘*’, and ‘/’
(integer division). In addition we have the remainder operator
‘%*:

x= a%b

sets x to the remainder after a is divided by b (both of which
should be positive).

Since B is often used for system programming and bit-
manipulation, octal numbers are an important part of the
language. The syntax of B says that any number that begins with
O is an octal number (and hence can’t have any 8’s or 9’s in it).
Thus 0777 is an octal constant, with decimal value 511.

-5-

Q. Characters; putchar; N_*line

main(){
auto a;
a= ‘hi!’;
putchar(a);

7
utchar(’*n’);

This program prints “hi!” on the terminal~ it illus~r:~e;n~h~ouse
of character constants and variables. A character
four ascii characters, enclosed in single quotes. The characters

are stored in a single machine word, ,,rigQt-justified and zero-
filled. We used a variable to hold hi! , but could have used a
constant directly as well.

The sequence “*n” is B Jargon for “newline character”, which,
when printed, skips the terminal to the beginning of t:e next
line. No output occurs until putchar en~ounters a “*n or the
program terminates. Omission of the “*n , a common error? causes
all output to appear on one line, which i; usually not the
desired result. There are several other escapes like “*n” for
representing hard-to-get characters (->Appendix B). Notice that
‘*n” is a single character: putchar(’hi!*n’) prints four charac-
ters (the maximum with a single call).

Since B is a typeless language, arithmetic on characters is quite
legal, and even makes sense sometimes:

c= c+’A”-’a*

converts a single character stored in c to upper case (making use
of the fact that corresponding ascii letters are a fixed distance
apart) .

~. External Variab@

main(){
extrn abc;

7
utchar(a); putchar(b); putchar(c); putchar(’!*n’); .

a ‘hell’;
b ●O, W’;

c “orld’ ;

This example illustrates external variables, variables which are——— —
rather like Fortran COMMON, in that they exist external to all
functions, and are (potentially) available to all functions. Any
function that wishes to access an external variable must contain
an extrn declaration for it. Furthermore, we must define all
external variables outside any function% For our example

-6-

variables a, b$ and c, this is done in the last three lines.

External storage is static, and always remains in existence, so
it can be initialized. (Conversely, auto storage appears
whenever the function is invoked, and=n disappears when the
function is left. auto variables of the same name in different
functions are unrel~~d.) Initialization is done as shown: the
initial value appears after the name, as a constant. We have
shown character constants; other forms are also possible. Exter-
nal variables are initialized to zero if not set explicitly.

Q. Functions

main(){
extrn a,b,c,d;
put2char(a,b) ;

7
ut2char(c,d) ;

put2char(x,y) {
putchar(x);
putchar(y);
}

a ‘hell’; b ‘o, w’; c ‘orld ‘; d ‘!*n’;

This example does the same thing as the last, but uses a separate
(and quite artificial) function of two arguments, put2char. The
dummy names ~ and y refer to the arguments throughout ~t2char;
they are not declared in an auto statement.

—— -
We could equally——

well have made a,b,c,d auto variables, or have called—— put2char as

put2char(’hell’,’o, w’);

Execution
‘}’, just

etc.

of put2char terminates when it runs into the closing
as in main; control returns to the next statement of——

the calling program.

~. Input; getchar

main(){
auto c;
c= getcharo;
putchar(c);
}

qetchar is another library IO function. It fetches one character
from the input line each time it is called~ and returns that
character, right adjusted and zero filled$ as the value of the

function. The actual
entire line, and then
After the ‘*n’ at the

-7-

implementation of -char is to read an—.
hand out the characters one at a time.
end of the line has been returned, the next

call to getchar will cause an entire new line to be read, and its—.
first character returned. Input is generally from the terminal
(->28).

10. Relational— — Operators

equal to (“.EQ.“ to Fortraners)
not equal to
greater than
less than
greater than or equal to
less than or equal to

Th~se are the relational operators; we will use ‘!=’ (“not equal
to) in the next example. Don’t forget that the equality test is
● ●== ; using just one =’ leads to disaster of one sort or anoth-
er. Note: all comparisons are arithmetic, not logical.

11*— if; qoto ; Labels; Comments———

main(){
auto c;

read:
c= getcharo;
putchar(c);
if(c != ‘*n’) goto read;

}
/* loop if not a newline */

This function reads and writes one line. It illustrates several
new things. First and easiest is the comment, which is anything
enclosed in /*...*/, just as in PL/I.

read is a label – a name followed by a colon ‘:’, also just as in
PL/I . A statement can have several labels if desired. (Good

programming practice dictates using few labels, so later examples
will strive to get rid of them.) The qoto references a label in
the same function.

The if statement is on: of four conditionals in B. (while (->14),
swit~h (->26), and “?: (->16) are the others.) Its general form

——

r

if (expression) statement

The condition to be tested is any expression enclosed in
parentheses. It is followed by a statement. The expression is
evaluated, and if its value is non-zero~ the statement is

..- - .-_..=..

–8-

executed. One of the nice things about B
can be made arbitrarily complex (although
ones here) by enclosing simple statements

12. Compound Statements—- —

if(a<b){

As a simple
ensure that
change of a
together by

t=a;
= b;

; = t;
}

is that the statement
we’ve used very simple
in {}. (->12)

example of compound statements, suppose we want to
a exceeds b, as part of a sort routine. The inter-
and b takes three statements in B; they are grouped
{} in the example above.

As a general rule in B, anywhere you can use a simple statement,
you can use any compound statement, which is just a number of
simple or compound ones enclosed in {}. Compound statements are
not followed by semicolons.

The ability to replace single statements by complex ones at will
is one thing that makes B much more pleasant to use than Fortran.
Logic which requires several GOTO’s and labels in Fortran can be
done in a simple clear natural way using the compound statements
of B.

13. Function Nestinq— —.

read:
c= putchar(~etchar());
if (c != ‘*n) goto read;

Functions which return values (as all dot potentially ->24) can
be used anywhere you might normally use an expression. Thus we
can use getchar as the argument of putchar, nesting the func–———
tions. qetchar returns exactly the character that putchar needs
as an argument. putchar also passes its argument back as a
value, so we assign this to c for later reference.

Even better, if c won’t be needed later, we can say

read:
if (putchar(getcharo) != ‘*n’) goto read;

–9-

14. While statement; Assicmment within an EQression— ——— -. —. — - —-—

while ((c=getcharo) != ‘*n’) putchar(c);

Avoiding goto’s is frequently good practice, and here is a simi-
lar example without ~oto’s. This has almost the same meaning as
the previous one. (The difference? This one doesn’t print the
terminating ‘*n’@) The while statement is basically a 100p State–

—— —
ment, whose general form is

while (expression) statement

As in the if statement, the expression and the statement can both
be arbitrarily complicated, although we haven’t seen that yet.
The action of while is.—

(a) evaluate the expression
(b) if its value is true (i.e., not zero), do the

statement and return to (a)

Our example gets the character and assigns it to c, and tests to
see if it’s a ‘*n’. If it isn’t, it does the statement part of
the while, a putchar, and then repeats.

Notice that we used an assignment statement “c=getcharo’” within
an expression. This is a handy notational shortcut, usually pro-
duces better code, and is sometimes necessarY if a statement is
to be compressed. This works because an assignment statement has
a value, just as any other expression does. This also implies
that we can successfully use multiple assignments like

x= Y= f(a)+g(b)

As an aside, the extra pair of parentheses in the assignment
statement within the conditional were really necessary: if we had
said

c = getcharo != ‘%’

c would be set to O or 1 depending on whether the character-
fetched was a newline or not. This is because the binding
strength of the assignment operator ‘=’ is lower than the rela-
tional operator ‘!=’. (->Appendix D)

15. More on Whiles; Null Statement; exit.-— . —— . -— ——

main(){
auto c;
while (l){

while ((c=getcharo) != ‘ ‘)
if (putchar(c) == ‘*n’) exito;

putchar(’*n’);

-1o-

while ((c=getcharo) == ‘ ‘); /* skip blanks */
if (putchar(c)==’*n’) exito;

~}
/* done when newline */

This terse example reads one line from the terminal, and prints
each non-blank string of characters on a separate line: one or
more blanks are converted into a single newline.

Line four fetches a character, and if it is non-blank, prints it,
and uses the library function exit to terminate execution if it’s
a newline. Note the use of the assignment within an expression
to save the value of C.

Line seven skips over multiple blanks. It fetches a character,
and if it’s blank, does the statement ‘;’. This is called a null
statement - it really does nothing. Line seven is just a very
tight loop, with all the work done in the expression part of the
while clause.

The slightly odd-looking construction

while(l){

}

is a way to get an infinite loop. “l” is always non-zero; so the
statement part (compound here!) will always be done. The only
way to get out of the loop is to execute a qoto (->11) or break
(->26), or return from the function with a return statement

.—

(->24), or terminate execution by exit.

~. Else Clause; Conditional ~ressions——

if (expression) statement else statement2

is the most general form of the ~ - the else part is sometimes
useful. The canonical example sets x to the minimum of a and b:

if (a<b) x=a; else x=b;

If’s and else’s can be used to construct logic that branches one
of several ways, and
ture, in this way:

if(---)
{-—---
-—-—- }

then rejoins, a common programming struc–

else if(---)
{1---——

else if(;--)
{ --———

–11–

----- }

etc.

The conditions are tested in order, and exactly one block is exe-
cuted - the first one whose if is satisfied. When this block is
$inishedJ the next statement~xecuted is the one after the last
else if block.

B provides an alternate form of condition~l which is often more
concise and efficient. It is called the conditional expression”
because it is a conditional which actually has a value and can be
used anywhere an expression can. The last example can best be
expressed as

x= a<b ? a : b;

The meaning is: evaluate the expression to the left of ‘?’. If it
is true, evaluate the expression between ‘?’ and ‘:‘ and assign
that value ;O x. If it’s false, evaluate the expression to the
right of ‘: and assign its value to x.

17. Unary Operatorg—

auto k;
k=O;
while (getcharo != ‘*n’) ++k;

B has several interesting unary operators in addition to the
traditional ‘–’. The program above uses the increment ope~ato~
‘++’ to count the number of characters in an input line. ++k
is equivalent to “k=k+l” but generates better
also be used after a variable, as in

k++

The only difference is this. suppose k is 50

x= ++k

sets k to 6 and then sets x to k? i.e.~ to 6.

x= k++

sets x to 5, and then k to 6.

code. “++- may

Then

But

Similarlyt the unary decrement operator ‘--’ can be used either
before or after a variable to decrement by one.

–12-

18. Bit Operators— —.

c = o;
= 36;

~hile ((i = i-9) >= O) c = c ~ getchar()<<i;

B has several operators for logica.ll~it-maniplation. The,exam–
ple above illustrates two, the OR 1 , and the left shift <<’o
This code packs the next four 9–bit characters from the input
into the single 36–bit word c, by successively left-shifting the
character by i bit positions to the correct position and OR-ing
it into the word.

The other logical o~~;ators are AND ‘A’, lo@;al right shift
‘>>*, Exclusive OR , and 1‘s complement .

x= -y&0777

sets x to the last 9 bits of the 1‘s complement of y, and

x= x&077

replaces x by its last six bits.

The order of evaluation of unparenthesized expressions is deter-
mined by the relative binding strengths of the operators involved
(->Appendix D).

19. ~ssiqnmen~ Operat~—

An unusual feature of B is that the normal binary operators ~i$e
‘+’, ‘–*, etc. can be combined with the assignment operator =
to form new assignment operators. For example,

x =- 10

W

means x=x-lo”. ‘=-’ is an assignment operator. This convention
is a useful notational shorthand, and usually makes it possible
for B to generate better code. But the spaces around the opera-
tor are critical! For instance,

x= –lo

sets x to -10, while

x =- 10

subtracts 10 from x. When no space is present,

--10x-

also decreases x by 10. This is quite contrary to the experience

–l3-

of most programmers.

Because assignment operators have lower binding strength than any
other operator, the order of evaluation should be watched
carefully:

x = X<<y!z

u

means shift x left y places} then OR in Z~ and store in x“. But

x =<< yiz

*1

means shift x left by y~z places”, which is rather different.

The character-packing example can now be written better as

c= o;
i = 36;
while ((i =– 9) >= O) c =! getcharo <<i;

20. ~ectors—

A vector is a set of consecutive words, somewhat like a one-
dimensional array in Fortran. The declaration

auto vIIO] ;

allocates 11 consecutive words? vIO] ? vII] ~...~ vIIO] for v.
Reference to the i-th element is made by v[i] ; the [] brackets
indicate subscripting. (There is no Fortran-like ambiguity
between subscripts and function call.)

sum = o;
i=O;
while (i<=n) sum =+ V[i++] ;

This code sums the elements of the vector v. Notice the increment
within the subscript - this is common usage in B. Similarly, to
find the first zero element of v,

21. External Vectors— .——

Vectors can of course be external variables rather than auto. We
declare v external within the function (don’t mention a size) by

——

extrn v;

–l4-

and then outside all functions write

V[l o];

External vectors may be initialized just as external simple
variables:

V[lo] ‘hi!’, 1, 2, 3, 0777;

sets vIO] to the character constant ‘hi!’, and VII] through v[4]
to various numbers. v[5] through vIIO] are not initialized.

22. Addressing—

TO understand all the ramifications of vectors, a digression into
addressing is necessary. The actual implementation of a vector
consists of a word v which contains in its right half the address
of the O–th word of the vector; i.e., v is really a pointer to
the actual vector.

This implementation can lead to a fine trap for the unwary. if
we say

auto uIIO], vIIO];
———

W’: ● O*
V[l] = ...
-——

the unsuspecting might believe that UIO] and UII] contain the old
values of VIO] and VII] ; in fact, since u is just a pointer,,to
VIO] , u actually refers to the new content. The statement U=V”
does not cause any copy of information into the elements of u;
they may indeed be lost because u no longer points to them.

The fact that vector elements are referenced by a pointer to the
zeroeth entry makes subscripting trivial – the address of v.[i] is
simply v+i. Furthermore, constructs like v[i] [J] are quite
legal: v[i] is simply a pointer to a vector~ and v[i] [j] is its
j-th entry. You have to set up your own storage, though.

To facilitate manipulation of addresses when it seems advisable,
B provides two unary,,ad~ress operators, ‘*’ and ‘&’. ‘&’ is the
address operator so &x is the address of,,x$assu~ing it has
one. ‘*’ is the indirection operator; “*x means use the con-
tent of x as an address.”

Subscripting operations can now be expressed differently:

X[o] >s equivalent ~o *x
XII] *(X+1)
&x[o] “ “

M
x

-15-

23. Strinqs—

A string in B is in essence a vector of characters. It is written
as

“this is a string”

and, in internal representation~ is a vector with characters
packed four to a word, left justified, and terminated by a mys-
terious character known as ‘*e’ (ascii EOT). Thus the string

“hello”

has six characters,- the last of which is ‘*e’. Characters are
numbered from zero. Notice the difference between strings and
character constants. Strings are double-quoted, and have zero or
more characters; they are left justified and terminated by an
explicit delimiter, ‘*e’. Character constants are single–quoted,
have from one to four characters, and are right justified and
zero-filled.

Some .ch~racters can only be put into strings by ‘escape se-
quences (->Appendix B). For instance, to get a double quote
into a string, use ‘*’”, as in

“He said, *“Let’s go.*
TtWV

External variables may be initialized to string values simply by
following their names by strings, exactly as for other constants.
These definitions initialize a, b, and three elements of v:

a “he~lo”; b “world’*;
V[2] now is the time”, “for all goo~ men”,

‘“tocome to the aid of the party ;

B provides several library functions for manipulating strings and
accessing characters within them in a relatively machine-
independent way. These are all discussed in more detail in.sec-
tion 8.2 of [1]. The two most commonly used are char and lchar.
char(s,n) returns the n-th character of s, right ~ified and
zero-filled. lchar(s,n,c) replaces the n-th character of s by c,
and returns c. (The code for char is given in the next section.)

Because strings are vectors, writing “s1=s2” does not copy the
characters in S2 into SI, but merely makes S1 poin~o s2. To
copy s2 into sl, we can use char and lchar in a fungtion like.— -——
strcopy:

strcopy(sl ,s2){
auto i;

o;
~h~le (lchar(sl,i,char(s2,i)) != ‘*e’) i++;
-1

–l6-

~. Return statemen~

How do we arrange that a function like char returns a value to.—-
its caller? Here is char:—-

char(s,n){
auto y,sh cpos;
Y= s[n/4j ; /* word containing n-th char */
Cpos = n%4; /* position of char in word */
sh = 27–9*cpos; /* bit positions to shift */
Y’ (y>>sh)&0777; /* shift and mask all but 9 bits */
return(y) ;
}

/* return character to caller */

A return in a function causes an immediate return to the calling
program. If the return is followed by an expression in
parentheses, this~ession is evaluated, and the value returned
to the caller. The expression can be arbitrarily complex, of
course: char is actually defined as——

char(s,n) return((s[n/4]>>(27–9*(n%4)))&0777);

Notice that char is written without {}, because it can be ex-
pressed as a simple statement.

25. Other Strinq Functions— .— — ..—.

concat(s,al,a2,. ..,alO) concatenates the zero or more strings ai
into one big string s, and returns s (which means a pointer to
S[o]). s must be declared big enough to hold the result (includ-
ing the terminating ‘*e’).

getstr(s) fetches the entire next line from the input unit into
s, replacing the terminating ‘*n’ by ‘*e’. In B, it is

getstr(s){
auto c,i;

~h;l~; ((c=getcharo) != ‘*n’) lchar(s,i++,c);
lchar(s,i,’*e’);
return(s) ;
}

Similarly putstr(s) puts the string s onto the output unit, ex-
cept for the final ‘*e’. Thus

auto s[20] ;
putstr(getstr(s)); putchar(’*n’);

copies an input line to the output.

-17-

=. Switch statement; break—— — ——

loop:
switch (c=getcharo){

pr:
case :P’: /*”print */
case P’:

printo;
goto loop;

case ‘~’:]* subs */
case ‘s’:

subs();
goto pr;

case ‘d’: /* delete */
case ‘D’:
deleteo;
goto loop;

case ‘*n’: /* quit on newline */
break;

default:
erroro; /* error if fall out */
goto loop;

}

--—

This fragment of a text-editor program illustrates the switch
statement, which is a multi-way branch.

.—
Here,the bran$h is con-

trolled by a character read into c. If c is p’ or ‘P , function
print is invoked. If c is an ‘s’ or ‘S’, subs and print are both
invoked. Similar actions take place for other values. If c does
not mention
the default
voked.

The general

any of the values mentioned in the case statements,.—
statement (in this case~ an error function) is in-

form of a switch is—.

switch (expression) statement

Th”e statement is always complex, and contains statements of the
fom

case constant:

The constants in our example are characters, but they could also
be numbers. The expression is evaluated, and its value matched
against the possible cases. If a match is found, execution con-
tinues at that case. (Execution may of course fall through from
one case to the next, and may transfer around within the switch,

-—

-18-

Or transfer outside it.) Notice we put multiple cases on several
statements.

If no match is found, execution continues at the statement la-
beled “Qefault:” if it exists; if there is no match an: no
default, the entire statement part of the switch is skipped.—

The break statement forces an immediate transfer to the next——
statement after the switch statement, i.e., the Statement after-—
the {} which enclose the statement part of the switch. break may
also be used in while statements in an analogous manner.

-——-
break-—

is a useful way to avoid useless labels.
.——

27. Formatted IO— ——— —

In this section, we point to the function printf, which is used
for producing formatted IO.

——
This function is so useful that it

is actually placed in Appendix C for ready reference.

28. Lots More on IO— — -— -- --

File IO is described in much more detail in [1], section 8. This
discussion does only the easy things.

Basically, all IO in B is character-oriented, and based on
qetchar and putchar. By default, these functions refer to the
terminal, and IO goes there unless explicit steps are taken to
divert it. The diversion is easy and systematic, so IO unit
switching is quite feasible.

At any time there is one input unit and one output unit; qetchar
and putchar use these for their input and output by implication.
The unit is a number between -1 and 10 (rather like Fortran file
numbers). The current values are stored in the external vari-
ables rd.unit and wr.unit so they can be changed easily, although.—
most p~~g~ need not use them directly. ,,Whenexecution of ~ B
program begins, rd.unit is,{O,which means r~ad from terminal ,
and wr.unit is l~meaning write on terminal .— -—

To do input from a file, we set rd.unit to a value, and assign a
file name to that unit. Then, u~i~he assignment or the value
is changed, getchar reads its characters from that file. Thus ,—— .
to open for reading an ascii permanent file called “cat/file”, as
input unit 5,

openr(5,’’cat/file”)

The first argument is the unit number, and the second is a
cat/file description. (An empty string means the terminal.)
rd.unit is set to 5 by openr so successive calls to qetchar,——

-19–

qetstr, etc., will fetch characters from this file. If the file
is non-existent or if we read to end of file, all successive
calls produce ‘*e’.

Writing i~ much the same:.

openw(u,s)

opens ascii file s as unit u for writing. Successive calls to
putchar, ~utstr, ~rintf, etc., will place output on file s.

If the IO unit mentioned in openr or openw is already open, it is
closed before the next use. That is, any output for output files
is flushed and end of file written; any input from input files is
thrown away. Files are also closed this way upon normal termina-
tion.

Programs which have only one input and one output unit open
simultaneously need not reference Q.unit and wr.unit explicitly,— -—.
since the opening routines will do It automatically. Otherwise,
don’t forget to declare them in an extrn statement.

The function flush closes the current output unit without writing-—
a terminating newline character. If this file is the terminal,
this is the way to force a prompting question before reading a
response on the same line:

putstr(”old or new?”);
flusho;
getstr(s);

prints

old or new?

and reads the response from the same line.

File names may only be “cat/file”, “/file”, or “file”: no permis-
sions, passwords subcatalogs or alternate names are allowed.
File names containing a ‘/’ are assumed to be permanent files; if
you try to open a permanent file which is already accessed, it is
released and reacces~ed. If it can’t be found, the access fails.
A file name without /’ may or may not be a permanent file, so if
a file of this name is already accessed, it is used without ques-
tion. If it is not already accessed, a search of the user’s
catalog is made for it. If it can’t be found there either, and
writing is desired, a temporary file is made.

The function reread is used to re-read a line. Its primary func-
tion is that if it is called before the first call to qetchar, it
retrieves the command line with which the program was called.

rereado ;
getstr(s);

-20-

fetches the command line, and puts it into string s.

29. System Call from TSS. -—— —

TSS users can easily execute other TSS subsystems from within a
running B program, by using the library function system. For
instance,

system(”./rj (w) ident;file”);

acts exactly as if we had typed

./rj (w) ident;file

in response to “SYSTEM?”. The ar~ument 0$ svstem is a string,
which is executed as if typed at SYSTEM? level. (No ‘*n’ is
needed at the end of the string.) Return is to the B program
unless disaster strikes. This feature permits B programs to use
TSS subsystems and other programs to do major functions without
bookkeeping or core overhead.

We can also use printf (->Appendix C) to write on the—- ‘*system” IO
unit, which is prede~ined as,,-1. All output written on unit -1
acts as if typed at SYSTEM? level. Thus ,

extrn wr.unit;
—--
wr.unitW= -;,;

fnam~. l;ll;”
opts

printf(’’./rj %: ident;%s*n”,opts,fname’);

will set
print on
the same
name are

the current output unit to –1 , the system, and then.
it using printf to format the string. This example does
thing as the ~ast, but the RUNJOB options and the file
variables, which can be changed as desired. Notice that

this time a ‘*n’ is necessary to terminate the line.

Because of serious design failings in TSS, there is generally no
decent way to send more than the command line as input to a pro-
gram called this way, and no way to retrieve output from it.

30. Recursion—

putnumb(n){
auto a;
if(a=n/10) /* assignment, not equality test */

putnumb(a); /* recursive */
putchar(n%10 + ‘O’);

}

-21-

This simplified version of the library function putnum~ ~llus-
trates the use of recursion. (It only works for n>O.) a is set
to the quotient of
putnumb is made to
digit of n will be
numb is popped up,

n/10; if this is non-zero, a recursive call on
print the quotient. Eventually the high-order
printed, and then as each invocation of put-
the next digit will be added on.

31. Arqument Passinq for Functions— — -— .———.

There is a subtlety in function usage which can trap,,the un–
suspecting Fortran programmer. Argument passing is call by
value”, which
values of its
makes it very
arguments!

For instance,

means that the called function is given the actual
arguments, and doesn’~ @ow their address~g. This.—
hard to change the value of one of the input

consider
change its arguments.

flip(x,y){
auto t;
t=x;
X=y;

t;
Y=

but this has no effect
have to
them as

and the

do is pass the

a function flip(x,y) which is to inter-
We might naively write

at all. (Non-believers: try it!) What we
arguments as explicit addresses, and use

addresses. Thus we invoke flip as

flip(&a,&b);

definition of flip is

flip(x,y){
auto t;
t = *Y;*X = *Y;

*Y = t;
}

(And don’t leave out the spaces on the right of the equal signs.)
This ~roblem doesn’t arise if the arguments are vectors, since a
vector is represented by its address:

32. Callinq Fortran and GMAP Subroutines— ——— -— -— .—-—- ——

As we mentioned, B doesn’t have floating

from B Proqrams——. - —

point, multi-dimensional
and similar things that Fortran does better. A B pro–

~r~a~s~allf, allows B programs to call Fortran and GMAP——

-22-

subroutines, like this:

callf(name, al,a2, ...,alO)

Here ~ame is the Fortran function or subroutine to be used, and
the a s are the zero or more arguments of the subroutine.

There,,are some restrictions on callf, related to the “call by.——
value problem mentioned above. First, variables that,,ar~ not
vectors 0$ ~trings must be referenced by address: use &x in-
stead of x as an argument. Second, no const~nts are a~lowed
among the arguments, because the construction &constan~ is
illegal in B. We can’t say

tod = callf(itimez,&O)

to get the time of day; instead we have to use

t=o;
tod = callf(itimez,&t) ;

Third, it is not possible to return floating-point function
values from Fortran programs~ since the results are in the wrong
register. They must be explcitly passed back as arguments. Thus
we can’t say

s = callf(sin,&x)

but rather

callf(sin2,&x,&s)

where sin2 is defined as.—

subroutine sin2(x,y)
y = sin(x)
return
end

Fourth, callf isn’t blindingly efficient, since there’s a lot of-—
overhead converting calling sequences. (Very short GMAP routines
to interface with B programs can often be coded quite efficiently

see [1], section 11.)

1273–bwk-pdp B. W. KERNIGHAN

Attached
References
Appendix A,B,C,D

–23-

References.—

[1] Johnson, S. C. A User’s Reference to B on MH-TSS. Bell— —— — —— —— — - —— -- —
Laboratories memorandum.

[2] Canaday, R. H., Ritchie, D. M. Bell Laboratories BCPL. Bell
Laboratories memorandum.

-24-

~endix ~: B Compiler Diagnostics.—

Diagnostics consist of two letters, an optional name, and a
source line number. Because of the free form input, the source
line number may be too high.

error

$)
()
*/
[1
>C

E
)s
ex
lV
rd
Sx
un

xx

name-—

name
keyword
name

mean=—.

{} imbalance
() imbalance
/**/ imbalance
[] imbalance
case table overflow (fatal)
expression stack overflow (fatal)
label table overflow (fatal)
symbol table overflow (fatal)
expression syntax error
address expected
name redeclaration - multiple definition
statement syntax error
undefined name - line number is last line
of function where definition is missing
syntax error in external definition

-25-

Appendix B: Escape Sequences—- . —— and TYPoqraphv.—

Escape sequences are used in character constants and strings to
obtain characters which for one reason or another are hard to
represent directly. They consist of ‘*-’, where ‘-’ is as below:

*O null (ascii NUL = 000)
*e end of string (ascii EOT = 004)
*({
*) }
*t tab
** *
*’ #

*“ *1

*n newline

Users of non-ascii devices like model 33/35 Teletypes or IBM
2741’s should use a reasonably clever text-editor like QED to
create special characters for B programs.

-26-

APP endix ~: printf for Formatted 10— .— .———.- -—

printf(fmt,al,a2,a3,.. .,alO)

This function writes the arguments ai (from O to 10 of which may
be present) onto the current output stream under control of the
format string ~. The format conversion is controlled by two-
letter sequences of the form ‘%x’ inside the string ~, where x
stands for one of the following:

-- character data (ascii)
: -- decimal number
o -- octal number
s -- character string

The characters in fmt which do not appear in one of these two
character sequences are copied without change to the output.

Thus the call

printf(”%d + %0 is %S or %c*n’’Sl?-l~’’zer~’’~’O’);

leads to the output line

1 + 777777777777 is zero or O

As another example, a permanent file whose name is in the string
s can be created with size n blocks and general read permission
by using prlntf together with the system output unit (->29) and
the “filsys subsystem:

wr.unit~ -1 ;
printf(filsys cf %s,b/%d/~r*n”~s~n);

-27-

Appendix D: Bindinq Strenqth—.-— of Operators-- .—

Operators are listed from highest to lowest binding strength;
there is no order within groups. Operators of equal strength
bind left to right or right to left as indicated.

++ -- * & - ! - (unary) [RL]

~ ‘ ‘[L~~inary)
[LR]

>> ~< [LR]
><<=>=
== !=
& [LR]

[LR]
I
I [LR]
?: [RL]
= .+ =- etc. (all assignment operators) [RL]

—

-28-

APPendix E:.—

Name Section——

addressing
address operator (&)
arguments
arithmetic
arithmetic operators
binding strengths

assignment expressions
assignments, multiple
assignment operators
auto declaration

22
22
2,31
4,5
5
D
14
14
19
4

binding strengths D
bit operators 18
./BJ (compiling B) 3

callf (calling Fortran) 32
case 26
char 23
characters (’...”) 6
close 28
comments (/*oe.*/) 11
compiling B programs 3
compound stat ({...}) 12
concat 25
conditionals 11,14,16,26
conditional expr (?:) 16

declarations 4
default 26-——
diagnostics (errors) 39A

else 16
escape sequence (*x) B
exit 15
external vectors 21
extrn declaration 7

file IO 28
flush 28
formatted IO (printf) C
Fortran 32
functions 3,8,13,24,30
function values 24

qetchar 9
qetstr 25
GMAP 32

Index-—

Name Section

if
~=dex
indirection op (*)
IO (file)
IO (formatted)
IO (character)
IO (string)

labels
layout of B programs
lchar.—

main

newline (*n)
null statement

octal numbers
openr, openw

printf
=m
putnumb
putstr

rd.unit (file IO).- —
recursion

11

E
22
28
c
6,9
25

11
2
23

2

6,B
15

5
28

c
6
4,30
25

28
30

relational ops (==,...) 10
reread 28
return 24——
running B programs 3

statement,,for~at 2,4
strings (...) 23
subscripts 20,22
switch 26-—

TSS system call 29
types (typeless) 4

unary operators (++,--) 17

variable names (syntax) 4
vectors 20,21,22

.I!wM
Mo- (file Io)

14,15
28

qoto 11

