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Abstract - A shortcoming of renewable resources, such as 
wind or water wave power, is their inherent intermittence. 
This lack of predictability is a major problem for energy 
markets. Given the nature of wind and wave power, it is 
critical that sites of this kind are chosen carefully. This paper 
attempts to develop analytical expressions, based on a single 
parameter of the univariate Weibull distribution, to describe 
the relative power deviation and capacity factor of 
prospective wind and wave energy sites. A truncated form of 
Weibull distribution is utilised to model the effect of the cut-in 
wind speed, or cut-in wave height of the power generator. 
 

I. Introduction 
Renewable resources, such as wind or water wave 
power, could play an important role in meeting the 
world’s burgeoning demand for electricity; however, a 
shortcoming of nearly all renewable resources is their 
intermittent nature. This intermittence is a major 
problem for energy markets, which require predictable 
(preferably continuous) input sources [1]. Wind and 
wave power are no exception to this same drawback. 
Wind power is a function of wind speed cubed; wave 
power is principally a function of wave height squared. 
Both are derivatives of the solar resource, inherently 
discontinuous and, therefore, open to criticism. Given 
the nature of wind and wave power, it is crucial that 
sites of this kind are chosen carefully.  

In order to compare prospective energy conversion 
sites, wind speed and wave height data can be fitted to 
probability distributions and the corresponding power 
distributions can then be analysed [1, 2]. This paper 
endeavours to develop a mathematical method of 
evaluating the predictability of wind speed and wave 
height data fitted to Weibull distributions. Here the 
level of predictability is quantified in dimensionless 
terms of relative power deviation and capacity factor 
(defined as the ratio of average power to rated power). 
This kind of approach could be used as part of 
commercial site feasibility studies or regional mapping 
exercises. 

Traditionally, studies of prospective wind or wave 
energy sites have focused on average wind or wave 
power levels; some of these studies have utilised known 
generator characteristics to also predict the site capacity 
factor (see for example [3, 4, 5, 6]). Unlike methods 
found in the existing literature, the analytical 
expressions developed in this work do not rely on 

specific generator characteristics, and are of a purely 
theoretical (idealized) quality.  

The paper is organised as follows. Before proceeding 
with the major body of work, a short overview of wind 
and water wave power is provided. In the next section, 
the standard univariate Weibull model used to analyse 
wind speed and wave height datasets is described. This 
includes a derivation of the standard Weibull properties 
of statistical mean, variance, standard deviation, and 
relative deviation. Then the truncated Weibull 
distribution is introduced as a tool by which higher 
order (power) distributions can be assessed. Truncated 
higher order properties of the statistical mean, through 
to the relative deviation are also derived. Lastly, an 
expression to describe the theoretical capacity factor of 
Weibull power distributions is developed. 
 

II. Preliminaries 
Ideally, the instantaneous power in a flow of wind is 
given by (1) where the wind speed, swept area (normal 
to the flow), and air density are represented by V, A and 
ρa respectively [1, 2, 7]. 

)/(
2
1 23 mWV

A
P

a
wind ρ=  (1) 

Since the only variable on the right hand side of (1) is 
the wind speed, V, the available power in a flow of wind 
is proportional to the wind speed cubed.  

3VPwind ∝  (2) 

Hence, it follows that dimensionless statistical 
properties of wind power, such as the relative power 
deviation and capacity factor can be evaluated by 
simply taking into account the value of the wind speed 
cubed. 

The theoretical power per metre crest length of a 
simplistic (sinusoidal) water wave is given by (3) where 
the trough to crest wave height, crest width, group 
velocity, gravitational acceleration, and water density 
are represented by H, L, cg, g, and ρw respectively [1, 8].   
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There are two variables on the right hand side of (3). 
However, the first of these, group velocity, cg, can be 
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treated as a constant since its effect on wave power is 
only minimal [1]. Ignoring variations in group velocity 
leaves the expression with one remaining variable, wave 
height, H, which suggests that the available wave power 
is proportional to the wave height squared.  

2HPwave ∝  (4) 

To evaluate the predictability of wave power 
distributions, one only needs to consider the value of 
the wave height squared. 
 

III. The standard Weibull model 
The Weibull probability density of a single and 
continuous variable, x, such as wind speed or wave 
height data, is given by (5) where the subscript, c, 
indicates a complete range of a distribution [2, 3, 7]. 
This popular two-parameter function has a very wide 
range of applicability. The first parameter, k, is usually 
referred to as the distribution ‘shape’, and the second 
parameter, λ, as the distribution ‘scale’. 
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The cumulative distribution for the two-parameter 
Weibull function is given by (6). As will be shown in 
subsequent sections, this cumulative distribution 
function is particularly easy to work with. 
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III.a. Properties of the standard model 

To find an expression for the relative deviation of wind 
speed or wave height data fitted to Weibull 
distributions, we must initially find an expression to 
describe the mean, variance and standard deviation.  

Moving on, the first expectation of a distribution, or in 
other words, the mean, is also the first moment about 
the origin and given by (7) where the moment 
superscript, m, is eventually replaced with a 1 [1, 7]. 
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By substituting t = (x/λ)k and performing a few 
algebraic manipulations, the resulting generalised (mth 
moment) expression for the standard Weibull mean is 
given by (9) where Γ represents the gamma function. 
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The variance of the distribution, the second central 
moment, is given by (10) [9]. 
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Using a straightforward process of substitution and 
simplification it can be shown that the generalised (mth 
moment) variance of wind speed or wave height data 
fitted to the standard Weibull distribution is given by 
(11).  
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Therefore, the generalised expression for the standard 
deviation of the standard Weibull distribution, which is 
defined as the square root of the variance, is given by 
(12).  
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When comparing the predictability of wind speed or 
wave height data taken from different locations, the 
imperative measure is the ratio of the standard deviation 
to the mean of the distribution, otherwise known as the 
relative variance or relative deviation (13) [1]. 
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Therefore, the generalised expression for the relative 
deviation of the standard Weibull distribution is given 
by (14). 
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Substituting m = 1 for first order moments (i.e. wind 
speed or wave heights), results in expression (15). 

2
1

2

,1
1121

)/11(
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +Γ−⎟

⎠
⎞

⎜
⎝
⎛ +Γ

+Γ
=

kkkcψ  (15) 

Conveniently, the Weibull scale parameter has been 
eliminated, and the relative deviation of the distribution 
is solely determined by the order of the moment, and the 
Weibull shape parameter, k. 
 

IV. The left-truncated Weibull model 
Up to this point, the expressions to evaluate the 
predictability of wind speed and wave height data have 
been developed using the standard (or ‘complete’) 
Weibull probability distribution. However, an analysis 
of higher order (power) distributions, such as wind 
speed cubed and wave height squared, requires a slight 
modification to the models developed so far.  
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In reality, the total power in the wind and the water 
waves cannot be converted by the power generator. 
Most significantly, there is a point (x > 0) known as the 
cut-in speed (or cut-in height) at which the generator 
begins to operate. To model the effect of the cut-in 
point, the higher order distribution is left-truncated. 
This form of truncated Weibull distribution is given by 
(16) where the subscript, t, indicates a partial range of 
distribution, and x0 represents the cut-in wind speed or 
cut-in wave height. Given that the cut-in point 
represents some finite value greater than zero, it is 
important to note that this distribution is not a 
normalised probability density function.  
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For example, assume that the generator has a cut-in 
point below which 20% of the least energetic wind 
speeds or wave heights occur. The resulting cumulative 
probability of the truncated area is given by (17). 
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By manipulation, it can be seen that the cut-in point, x0, 
is given by (18). 
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This definition for the generator cut-in point will be 
used throughout the sections that follow. 
 

IV.a. Properties of the truncated model 

The generalised expression for the truncated Weibull 
expectation, which can be found using a similar process 
as before, is given by (19) where γ represents the 
incomplete gamma function. 
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Then substituting (18) into (19) results in a more 
simplified expression (20). 
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The generalised expression for the truncated 
distribution variance and standard deviation are given 
by (21) and (22), respectively. 
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Therefore, the generalised expression for the relative 
deviation of the truncated distribution is given by (23). 
Once again, the scale parameter has been eliminated, 
and the relative deviation depends solely on the order of 
the moment and the shape parameter, k. 
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The relative power deviation of the wind speed cubed or 
wave height squared distribution, which is desirably 
small, is deduced by substituting either m = 3 or m = 2, 
respectively. 
 

V. Probabilistic ‘capacity factor’ 
The ‘capacity factor’ of a generator is defined by the 
ratio of its mean power output to its rated power output; 
this value, usually expressed as a percentile, is desirably 
close to unity [1, 2].  
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The capacity factor of wind speed or wave height data 
fitted to Weibull distributions can be evaluated using 
the relative power deviation of the truncated higher 
order distribution and an upper cut-off limit (rated wind 
speed, or rated wave height) applied to the first order 
cumulative integral. Limiting the sum probability from 
zero through 90% is known as applying the 10% rule 
[1]. In terms of the Weibull cumulative distribution 
function, this rule is given by (25).  
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This type of theoretical generator model attempts to 
balance the priorities of maximum generator output, and 
minimal part load losses [1]. While useful when 
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comparing data from different sites, it should be noted 
that according to this approach, all available energy 
above the cut-in point (and through to the rated point) is 
converted into electricity at an equal level of efficiency. 

The distance (α) between the mean of the power 
distribution and the rated point is expressed in units of 
standard deviation. 
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Therefore, the theoretical capacity factor can be defined 
in the form given by (28).  
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By a slightly tedious process of substitution and 
simplification, it can be shown that the capacity factor 
of the truncated higher order Weibull distribution is 
given by (29) where m = 3 for wind power distributions, 
and m = 2 for wave power distributions. 

kmtm
k
m

k
m

CF
/,

)3026.2(

2231.0,11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +Γ

=
γ

 (29) 

At this stage, it is important to recall that this particular 
expression for the capacity factor incorporates a cut-in 
point where the sum probability of the wind speed or 
wave height distribution equals 20%, and a rated point 
where the sum probability of the wind speed or wave 
height distribution equals 90%. In other words, on 20% 
of occasions the wind speeds or wave heights are below 
the generator cut-in point, and on 10% of occasions the 
generator runs above its rated capacity. Many other 
variations are possible. 

The relationship between the Weibull distribution shape 
parameter, k, and the relative deviation (15), relative 
power deviation (23), and the theoretical capacity factor 
(29) is illustrated in Figures 1 and 2 for a shape 
parameter range: (1 ≤ k ≤ 3.0). 
 

VI. Conclusion 
Mathematical expressions to describe the relative power 
deviation and the capacity factor of wind speed or water 
wave height data fitted to univariate Weibull 
distributions have been developed. The author has 
utilised a truncated form of Weibull distribution to 
model the effect of the cut-in speed, or the cut-in height 
of the power generator. These expressions, which are a 
function of the Weibull distribution shape parameter, k, 
and the order of the moment, provide a quick and 
simple way in which the predictability of prospective 

wind or wave energy sites can be quantified and 
evaluated. 
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Figure 1. Relative deviation (%) as a function of the 

Weibull shape parameter. 
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