# Pattern-Avoiding Permutations 

Steven Finch

April 27, 2006
Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{m}$ be a permutation on $\{1,2, \ldots, m\}$. Define a pattern $\tilde{\sigma}$ to be the string $\sigma_{1} \varepsilon_{1} \sigma_{2} \varepsilon_{2} \cdots \varepsilon_{m-1} \sigma_{m}$, where each $\varepsilon_{j}$ is either the dash symbol - or the empty string. For example,

$$
1-3-2, \quad 1-32, \quad 132
$$

are three distinct patterns. The first is known as a classical pattern (dashes in all $m-1$ slots); the third is also known as a consecutive pattern (no dashes in any slots). Some authors call $\tilde{\sigma}$ a "generalized pattern" and use the word "pattern" exclusively for what we call "classical patterns".

Let $\tau=\tau_{1} \tau_{2} \cdots \tau_{n}$ be a permutation on $\{1,2, \ldots, n\}$, where $n \geq m$. We say that $\tau$ contains $\tilde{\sigma}$ if there exist $1 \leq i_{1}<i_{2}<\ldots<i_{m} \leq n$ such that

- for each $1 \leq j \leq m-1$, if $\varepsilon_{j}$ is empty, then $i_{j+1}=i_{j}+1$;
- for all $1 \leq k \leq m, 1 \leq l \leq m$, we have $\tau_{i_{k}}<\tau_{i_{l}}$ if and only if $\sigma_{k}<\sigma_{l}$.

The string $\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{m}}$ is called an occurrence of $\tilde{\sigma}$ in $\tau$. If $\tau$ does not contain $\tilde{\sigma}$, then we say $\tau$ avoids $\tilde{\sigma}$ or that $\tau$ is $\tilde{\sigma}$-avoiding. For example,

24531 contains 1-3-2
because 253 has the same relative order as 132, but
42351 avoids 1-3-2.
As another example,

$$
6725341 \text { contains } 4132
$$

because 7253 has the same relative order as 4132 and consists of four consectutive elements, but

41352 avoids 4132.
As a final example,
3542716 contains 12-4-3

[^0]because 3576 has the same relative order as 1243 and its first two elements are consecutive, but
$$
3542716 \text { avoids 12-43. }
$$

Define $\alpha_{n}(\tilde{\sigma})$ to be the number of $n$-symbol, $\tilde{\sigma}$-avoiding permutations. We naturally wish to understand the rate of growth of $\alpha_{n}(\tilde{\sigma})$ with increasing $n$.
0.1. Classical Patterns. The Stanley-Wilf conjecture, proved by Marcus \& Tardos [1], was rephrased by Arratia [2] as follows:

$$
L(\tilde{\sigma})=\lim _{n \rightarrow \infty}\left(\alpha_{n}\left(\sigma_{1}-\sigma_{2}-\cdots-\sigma_{m}\right)\right)^{1 / n}
$$

exists and is finite. We have $[3,4,5,6,7]$

$$
\begin{gathered}
L(\tilde{\sigma})=4 \quad \text { when } m=3 \\
L(1-2-\cdots-m)=(m-1)^{2} \quad \text { for all } m \geq 2, \\
L(1-3-4-2)=8, \\
L(1-2-4-5-3)=(1+\sqrt{8})^{2}=9+4 \sqrt{2} .
\end{gathered}
$$

A conjecture that $L(\tilde{\sigma}) \leq(m-1)^{2}$ has been disproved [8]:

$$
9.47 \leq L(1-3-2-4) \leq 288
$$

and hence the maximum limiting value (as a function of $m$ ) remains open. Also, we wonder if $L(\tilde{\sigma})$ is always necessarily an algebraic number.
0.2. Consecutive Patterns. Elizalde \& Noy [9, 10] examined the cases $m=3$ and $m=4$. The quantities $\alpha_{n}(123)$ and $\alpha_{n}(132)$ satisfy

$$
\alpha_{n}(123) \sim \gamma_{1} \cdot \rho_{1}^{n} \cdot n!, \quad \alpha_{n}(132) \sim \gamma_{2} \cdot \rho_{2}^{n} \cdot n!
$$

where

$$
\begin{array}{cc}
\rho_{1}=3 \sqrt{3} /(2 \pi)=0.8269933431 \ldots, & \gamma_{1}=\exp (\pi /(3 \sqrt{3}))=1.8305194665 \ldots, \\
\rho_{2}=1 / \xi=0.7839769312 \ldots, & \gamma_{2}=\exp \left(\xi^{2} / 2\right)=2.2558142944 \ldots
\end{array}
$$

and $\xi=1.2755477364 \ldots$ is the unique positive solution of

$$
\int_{0}^{x} \exp \left(-t^{2} / 2\right) d t=1, \quad \text { that is, } \quad \sqrt{\frac{\pi}{2}} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)=1 .
$$

The quantities $\alpha_{n}(1342), \alpha_{n}(1234)$ and $\alpha_{n}(1243)$ satisfy

$$
\alpha_{n}(1342) \sim \gamma_{1} \cdot \rho_{1}^{n} \cdot n!, \quad \alpha_{n}(1234) \sim \gamma_{2} \cdot \rho_{2}^{n} \cdot n!, \quad \alpha_{n}(1243) \sim \gamma_{3} \cdot \rho_{3}^{n} \cdot n!
$$

where

$$
\begin{array}{ll}
\rho_{1}=1 / \xi=0.9546118344 \ldots, & \gamma_{1}=1.8305194 \ldots \\
\rho_{2}=1 / \eta=0.9630055289 \ldots, & \gamma_{2}=2.2558142 \ldots \\
\rho_{3}=1 / \zeta=0.9528914198 \ldots, & \gamma_{3}=1.6043282 \ldots
\end{array}
$$

$\xi, \eta$ and $\zeta$ are the smallest positive solutions of

$$
\begin{gathered}
\int_{0}^{x} \exp \left(-t^{3} / 6\right) d t=1, \quad \cos (y)-\sin (y)+\exp (-y)=0 \\
3^{1 / 2} \int_{0}^{z} \operatorname{Ai}(-s) d s+\int_{0}^{z} \operatorname{Bi}(-s) d s=\frac{3^{1 / 3} \Gamma(1 / 3)}{\pi}
\end{gathered}
$$

respectively, where $\operatorname{Ai}(t)$ and $\operatorname{Bi}(t)$ are the Airy functions [11].
0.3. Other Results. Elizalde $[12,13]$ proved that

$$
\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n}(1-23-4)}{n!}\right)^{1 / n}=0
$$

and believed that the same applies to $\alpha_{n}(12-34)$, although a proof is not yet known. Ehrenborg, Kitaev \& Perry [14] gave more detailed asymptotic expansions for $\alpha_{n}(123)$ and $\alpha_{n}(132)$; a similar "translation" of combinatorics into operator eigenvalue analysis was explored in [15]. The field is wide open for research.

Let us focus on classical patterns in the following. Define $\sigma \leq \tau$ if $\tau$ contains $\tilde{\sigma}$. A permutation class $C$ is a set of permutations such that, if $\tau \in C$ and $\sigma \leq \tau$, then $\sigma \in C$. Let $C_{n}$ denote the permutations in $C$ of length $n$. If $C=\{$ all permutations $\}$, then $\left|C_{n}\right|=n$ !; such behavior is regarded as degenerate and this case is excluded from now on. The Marcus-Tardos theorem implies that, for nondegenerate $C$,

$$
L(C)=\underset{n \rightarrow \infty}{\limsup }\left|C_{n}\right|^{1 / n}<\infty
$$

Consider the set $R$ of all growth rates $L(C)$ and the derived set $R^{\prime}$ of all accumulation points of $R$. Vatter [16] proved that

$$
\inf \{r \in R: r>2\}=2.0659948920 \ldots
$$

which is the unique positive zero of $1+2 x+x^{2}+x^{3}-x^{4}$, and

$$
\inf \left\{s: s \text { is an accumulation point of } R^{\prime}\right\}=2.2055694304 \ldots
$$

which is the unique positive zero of $1+2 x^{2}-x^{3}$. Albert \& Linton [17] proved that $R$ is uncountable and thus contains transcendental numbers. Vatter [18] subsequently proved that

$$
\inf \{t: R \text { contains the interval }(t, \infty)\} \leq 2.4818728574 \ldots
$$

which is the unique positive zero of $-1-2 x-2 x^{2}-2 x^{4}+x^{5}$ and conjectured that $\leq$ can be replaced by $=$. The question of whether limsup in the definition of $L(C)$ can be replaced by lim is also unanswered.
0.4. Addendum. With regard to classical patterns, the upper bound on $L(1-3-$ $2-4)$ has been improved to $7+4 \sqrt{3}<13.93$ [19, 20]. With regard to consecutive patterns, a permutation $\tau$ is nonoverlapping if it contains no permutation $\sigma$ such that two copies of $\sigma$ overlap in more than one entry [21]. For example, $\tau=214365$ contains both 2143 and 4365, both which follow the same pattern and overlap in two entries, hence $\tau$ is overlapping. Bóna [22] examined the probability $p_{n}$ that a randomly selected $n$-permutation is nonoverlapping, showed that $\left\{p_{n}\right\}_{n=2}^{\infty}$ is strictly decreasing, and computed $\lim _{n \rightarrow \infty} p_{n}=0.36409 \ldots$

From the fact that $\alpha_{n}(123)>\alpha_{n}(132)$ and $\alpha_{n}(1234)>\alpha_{n}(1342)>\alpha_{n}(1243)$ for suitably large $n$, it is natural to speculate that $\alpha_{n}(123 \ldots m)$ is asymptotically larger than $\alpha_{n}(\sigma)$ for any other $m$-permutation $\sigma$ (except $m(m-1) \ldots 21$, which is equivalent by symmetry). This conjecture is now a theorem, due to Elizalde [23].

## References

[1] A. Marcus and G. Tardos, Excluded permutation matrices and the StanleyWilf conjecture, J. Combin. Theory Ser. A 107 (2004) 153-160; MR2063960 (2005b:05009).
[2] R. Arratia, On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern, Elec. J. Combin. 6 (1999) R1; MR1710623 (2000e:05005).
[3] A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. Math. 41 (1981) 115-136; MR0625890 (82h:20015).
[4] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps, J. Combin. Theory Ser. A 80 (1997) 257-272; math.CO/9702223; MR1485138 (98j:05003).
[5] M. Bóna, The limit of a Stanley-Wilf sequence is not always rational, and layered patterns beat monotone patterns, J. Combin. Theory Ser. A 110 (2005) 223-235; math.CO/0403502; MR2142176 (2005k:05005).
[6] M. Bóna, New records in Stanley-Wilf limits, European J. Combin. 28 (2007) 7585; http://www.math.ufl.edu/~ bona/records.pdf; MR2261804 (2007f:05002).
[7] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A0022558, A005802, A061552.
[8] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott and M. Zabrocki, On the Stanley-Wilf limit of 4231-avoiding permutations and a conjecture of Arratia, Adv. Appl. Math. 36 (2006) 96-105; math.CO/0502504; MR2199982 (2006k:05003).
[9] S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003) 110-125; http://www.math.dartmouth.edu/~sergi/; MR1979785 (2004d:05004).
[10] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A049774, A111004, A113228, A113229, A117156, A117158, A117226.
[11] S. R. Finch, Airy function zeroes, unpublished note (2004).
[12] S. Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006) 138-155; math.CO/0505254; MR2199985 (2006h:05004).
[13] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A113226, A113227.
[14] R. Ehrenborg, S. Kitaev and P. Perry, A spectral approach to pattern-avoiding permutations, Formal Power Series and Algebraic Combinatorics (FPSAC), Proc. 2006 San Diego conf., http://garsia.math.yorku.ca/fpsac06/en/contrib_papers.html
[15] R. Ehrenborg and Y. Farjoun, Asymptotics of the Euler number of bipartite graphs, Adv. Appl. Math. 44 (2010) 155-167; arXiv:0704.1782; MR2576845 (2011h:05017).
[16] V. Vatter, Small permutation classes, Proc. Lond. Math. Soc. 103 (2011) 879921; arXiv:0712.4006; MR2852292 (2012j:05022).
[17] M. H. Albert and S. A. Linton, Growing at a perfect speed, Combin. Probab. Comput. 18 (2009) 301-308; http://www-circa.mcs.st-and.ac.uk/preprints.html\#2007; MR2501429 (2010h:05010).
[18] V. Vatter, Permutation classes of every growth rate above 2.48188..., Mathematika 56 (2010) 182-192; arXiv:0807.2815; MR2604993 (2011c:05012).
[19] A. Claesson, V. Jelínek and E. Steingrímsson, Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns, J. Combin. Theory Ser. A 119 (2012) 1680-1691; arXiv:1111.5736; MR2946382.
[20] M. Bóna, A new upper bound for 1324-avoiding permutations, Combin. Probab. Comput., to appear; arXiv:1207.2379.
[21] A. Duane and J. Remmel, Minimal overlapping patterns in colored permutations, Elec. J. Combin. 18 (2011) P25; MR2861417 (2012m:05028).
[22] M. Bóna, Non-overlapping permutation patterns, Pure Math. Appl. (PU.M.A.) 22 (2011) 99-105; http://www.math.ufl.edu/~bona/newno.pdf; MR2924741.
[23] S. Elizalde, The most and the least avoided consecutive patterns, Proc. London Math. Soc. 106 (2013) 957-979; MR3066745.


[^0]:    ${ }^{0}$ Copyright © 2006 by Steven R. Finch. All rights reserved.

