CHAPTER II

MANAGING NONHAZARDOUS SOLID WASTE

In this chapter	
Overview	l-1
Definition of Solid Waste	
Municipal Solid Waste I	
- Source Reduction I	
- RecyclingI	
- CombustionI	
- LandfillingI	
- Climate Change II	
Industrial Waste I	
- Source ReductionI	
- RecyclingI	-7
- TreatmentI	
- Landfilling I	
- Guide for Industrial Waste Management I	-9
Criteria for Solid Waste Disposal Facilities I	-9
- Technical Criteria for Solid Waste Disposal	
FacilitiesI	-9
- Conditionally Exempt Small Quantity	
Generator Waste Disposal Facilities II-	10
- Technical Criteria for Municipal Solid Waste	
LandfillsII-	10
- Bioreactor Landfills II-	12
Assistance to Native American Tribes II-	10
11 1 1	12
Homeland SecurityII-	
Other Solid Waste Management Initiatives II-	13
•	13 13
Other Solid Waste Management Initiatives II Recycling Market Development II Materials and Waste Exchanges II-	13 13 13 14
Other Solid Waste Management Initiatives II Recycling Market Development II Materials and Waste Exchanges II Pay-As-You-Throw (PAYT) II-	13 13 13 14
Other Solid Waste Management Initiatives II Recycling Market Development II Materials and Waste Exchanges II-	13 13 13 14
Other Solid Waste Management Initiatives II Recycling Market Development II Materials and Waste Exchanges II Pay-As-You-Throw (PAYT) II Tools for Local Government Recycling Programs II-	13 13 13 14
Other Solid Waste Management Initiatives II Recycling Market Development II Materials and Waste Exchanges II Pay-As-You-Throw (PAYT) II Tools for Local Government Recycling	13 13 13 14 14
Other Solid Waste Management Initiatives II- Recycling Market Development II- Materials and Waste Exchanges II- Pay-As-You-Throw (PAYT) II- Tools for Local Government Recycling Programs II- Full Cost Accounting for Municipal Solid Waste II-	13 13 13 14 14 14
Other Solid Waste Management Initiatives II- Recycling Market Development II- Materials and Waste Exchanges II- Pay-As-You-Throw (PAYT) II- Tools for Local Government Recycling Programs II- Full Cost Accounting for Municipal Solid	13 13 13 14 14 14
Other Solid Waste Management Initiatives II- Recycling Market Development II- Materials and Waste Exchanges II- Pay-As-You-Throw (PAYT) II- Tools for Local Government Recycling Programs II- Full Cost Accounting for Municipal Solid Waste II- Construction and Demolition Materials II- Industrial Ecology II-	13 13 14 14 14 14 15 15
Other Solid Waste Management Initiatives II- Recycling Market Development II- Materials and Waste Exchanges II- Pay-As-You-Throw (PAYT) II- Tools for Local Government Recycling Programs II- Full Cost Accounting for Municipal Solid Waste II- Construction and Demolition Materials II- Industrial Ecology II- Summary II-	13 13 13 14 14 14 15 15
Other Solid Waste Management Initiatives II- Recycling Market Development II- Materials and Waste Exchanges II- Pay-As-You-Throw (PAYT) II- Tools for Local Government Recycling Programs II- Full Cost Accounting for Municipal Solid Waste II- Construction and Demolition Materials II- Industrial Ecology II-	13 13 13 14 14 14 15 15

OVERVIEW

Congress enacted the Solid Waste Disposal Act of 1965 to address the growing quantity of solid waste generated in the United States and to ensure its proper management. Subsequent amendments to the Solid Waste Disposal Act, such as RCRA, have substantially increased the federal government's involvement in solid waste management.

During the 1980s, solid waste management issues rose to new heights of public concern in many areas of the United States because of increasing solid waste generation, shrinking disposal capacity, rising disposal costs, and public opposition to the siting of new disposal facilities. These solid waste management challenges continue today, as many communities are struggling to develop cost-effective, environmentally protective solutions. The growing amount of waste generated has made it increasingly important for solid waste management officials to develop strategies to manage wastes safely and cost-effectively.

RCRA encourages environmentally sound solid waste management practices that maximize

WHAT IS SOLID WASTE?

- Garbage
- Refuse
- Sludges from waste treatment plants, water supply treatment plants, or pollution control facilities
- Industrial wastes
- Other discarded materials, including solid, semisolid, liquid, or contained gaseous materials resulting from industrial, commercial, mining, agricultural, and community activities.

the reuse of recoverable material and foster resource recovery. Under RCRA, EPA regulates hazardous solid wastes and may authorize states to do so. Nonhazardous solid waste is predominately regulated by state and local governments. EPA has, however, promulgated some regulations pertaining to nonhazardous solid waste, largely addressing how disposal facilities should be designed and operated. Aside from regulation of hazardous wastes, EPA's primary role in solid waste management includes setting national goals, providing leadership and technical assistance, and developing guidance and educational materials. The Agency has played a major role in this program by providing tools and information through policy and guidance to empower local governments, business, industry, federal agencies, and individuals to make better decisions in dealing with solid waste issues. The Agency strives to motivate behavioral change in solid waste management through both regulatory and nonregulatory approaches.

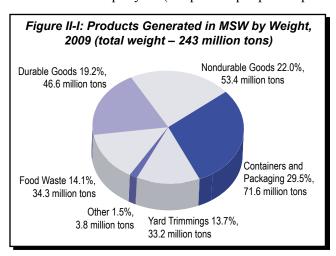
This chapter presents an outline of the RCRA nonhazardous solid waste program. In doing so, it defines the terms solid waste and municipal solid waste, and it describes the role EPA plays in assisting waste officials in dealing with solid waste management problems. The remainder of this chapter will use the term "solid waste" to mean only nonhazardous solid waste, excluding hazardous waste regulated under RCRA Subtitle C. The chapter will provide an overview of the criteria that EPA has developed for solid waste landfills and will introduce some Agency initiatives designed to promote proper and efficient solid waste management.

DEFINITION OF SOLID WASTE

RCRA defines the term solid waste as:

- Garbage (e.g., milk cartons and coffee grounds)
- Refuse (e.g., metal scrap, wall board, and empty containers)
- Sludges from waste treatment plants, water supply treatment plants, or pollution control facilities (e.g., scrubber slags)
- Industrial wastes (e.g., manufacturing process wastewaters and nonwastewater sludges and solids)

 Other discarded materials, including solid, semisolid, liquid, or contained gaseous materials resulting from industrial, commercial, mining, agricultural, and community activities (e.g., boiler slags).


The definition of solid waste is not limited to wastes that are physically solid. Many solid wastes are liquid, while others are semisolid or gaseous.

The term solid waste, as defined by the Statute, is very broad, including not only the traditional nonhazardous solid wastes, such as municipal garbage and industrial wastes, but also hazardous wastes. Hazardous waste, a subset of solid waste, is regulated under RCRA Subtitle C. (Hazardous waste is fully discussed in Chapter III.) For purposes of regulating hazardous wastes, EPA established by regulation a separate definition of solid waste. This definition is discussed in Chapter III and pertains only to hazardous waste regulations.

MUNICIPAL SOLID WASTE

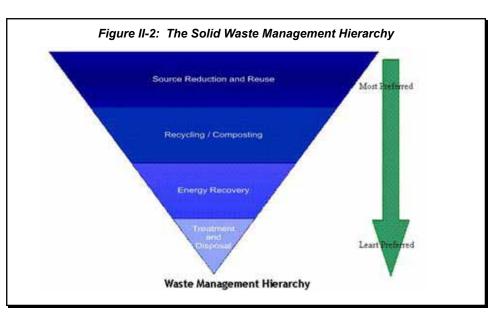
Municipal solid waste is a subset of solid waste and is defined as durable goods (e.g., appliances, tires, batteries), nondurable goods (e.g., newspapers, books, magazines), containers and packaging, food wastes, yard trimmings, and miscellaneous organic wastes from residential, commercial, and industrial nonprocess sources (see Figure II-1).

Municipal solid waste generation has grown steadily over the past 49 years from 88 million tons per year (2.7 pounds per person per day) in 1960, to 243 million tons per year (4.3 pounds per person per

day) in 2009. While generation of waste has grown steadily, recycling has also greatly increased. In 1960, only about 7 percent of municipal solid waste was recycled. By 2009, this figure had increased to 33.8 percent.

To address the increasing quantities of municipal solid waste, EPA recommends that communities adopt "integrated waste management" systems tailored to meet their needs. The term "integrated waste management" refers to the complementary use of a variety of waste management practices to safely and effectively handle the municipal solid waste stream. An integrated waste management system will contain some or all of the following elements: source reduction, recycling (including composting), waste combustion for energy recovery, and/or disposal by landfilling (see Figure II-2). In designing systems, EPA encourages communities to consider these components in a hierarchical sequence. The hierarchy favors source reduction to reduce both the volume and toxicity of waste and to increase the useful life of manufactured products. The next preferred tier in the hierarchy is recycling. which includes composting of yard and food wastes. Source reduction and recycling are preferred over combustion and/or landfilling, because they divert waste from the third tier and they have positive impacts on both the environment and economy. The goal of EPA's approach is to use a combination of all these methods to safely and effectively manage municipal solid waste. EPA recommends that

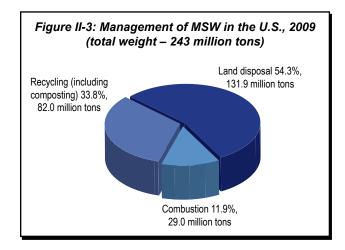
communities tailor their systems from the four components to meet their specific needs, looking first to source reduction, and second to recycling as preferences to combustion and/or landfilling.


Source Reduction

Rather than managing waste after it is generated, source reduction changes the way products are made and used in order

to decrease waste generation. Source reduction, also called waste prevention, is defined as the design, manufacture, and use of products in a way that reduces the quantity and toxicity of waste produced when the products reach the end of their useful lives. The ultimate goal of source reduction is to decrease the amount and the toxicity of waste generated. Businesses, households, and all levels of government can play an active role in source reduction. Businesses can manufacture products with packaging that is reduced in both volume and toxicity. They also can reduce waste by altering their business practices (e.g., reusing packaging for shipping, making double-sided copies, maintaining equipment to extend its useful life, using reusable envelopes). Community residents can help reduce waste by leaving grass clippings on the lawn or composting them with other yard trimmings in their backyards, instead of bagging such materials for eventual disposal. Consumers play a crucial role in an effective source reduction program by purchasing products having reduced packaging or that contain reduced amounts of toxic constituents. This purchasing subsequently increases the demand for products with these attributes.

■ Recycling


Municipal solid waste **recycling** refers to the separation and collection of wastes, their subsequent transformation or remanufacture into usable or

marketable products or materials, and the purchase of products made from recyclable materials. In 2009, 33.8 percent (82.0 million tons) of the municipal solid waste generated in the United States was recycled (see Figure II-3). Solid waste recycling:

- Preserves raw materials and natural resources
- Reduces the amount of waste that requires disposal
- Reduces energy use and associated pollution
- Provides business and job opportunities
- Reduces pollution associated with use of virgin materials.

Solid waste recycling also reduces greenhouse gas (GHG) emissions. For example, using the Waste Reduction Model (WARM), it can be calculated that the GHG savings of recycling 1 short ton of

aluminum instead of landfilling it would be 3.71 metric tons of carbon equivalent (MTCE).

Communities can offer a wide range of recycling programs to their businesses and residents, such as drop-off centers, curbside collection, and centralized composting of yard and food wastes.

Additional information about recycling of common wastes and materials can be found at www. epa.gov/epawaste/conserve/materials.

Composting processes are designed to optimize the natural decomposition or decay of organic matter, such as leaves and food. Compost is a humus-like material that can be added to soils to

increase soil fertility, aeration, and nutrient retention. Composting can serve as a key component of municipal solid waste recycling activities, considering that food and yard wastes accounted for nearly 28 percent of the total amount of municipal solid waste generated in 2009. Some communities are implementing large-scale composting programs in an effort to conserve landfill capacity.

For recycling to be successful, the recovered material must be reprocessed or remanufactured and the resulting products bought and used by consumers. Recycling programs will become more effective as markets increase for products made from recycled material. The federal government has developed several initiatives in order to bolster the use of recycled products. EPA's federal procurement guidelines, authorized by RCRA Subtitle F, are designed to bolster the market for products manufactured from recycled materials. The procurement program uses government purchasing to spur recycling and markets for recovered materials. (This program is fully discussed in Chapter V).

Combustion

Confined and controlled burning, known as **combustion**, can not only decrease the volume of solid waste destined for landfills, but can also recover energy from the waste-burning process. Modern waste-to-energy facilities use energy recovered from combustion of solid waste to produce steam and electricity. In 2009, combustion facilities handled 11.9 percent (29.0 million tons) of the municipal solid waste generated (see Figure II-3). Used in conjunction with source reduction and recycling, combustion can recover energy and materials and greatly reduce the volume of wastes entering landfills.

There are three types of technologies for the combustion of MSW: mass burn facilities, modular systems, and refuse derived fuel systems. Mass burn facilities are by far the most common types of combustion facilities in the United States. The waste used to fuel the mass burn facility may or may not be sorted before it enters the combustion chamber. Many advanced municipalities separate the waste on

the front end to pull off as many recyclable products as possible. Modular systems are designed to burn unprocessed, mixed MSW. They differ from mass burn facilities in that they are much smaller and are portable and can be moved from site to site. Refuse derived fuel systems use mechanical methods to shred incoming MSW, separate out non-combustible materials, and produce a combustible mixture suitable as a fuel in a dedicated furnace or as a supplemental fuel in a conventional boiler system.

Additional information about energy recovery from waste can be found at www.epa.gov/waste/nonhaz/municipal/wte.

■ Landfilling

Landfilling of solid waste still remains the most widely used waste management method. Americans landfilled approximately 54.3 percent (131.9 million tons) of municipal solid waste in 2009 (see Figure II-3). Many communities are having difficulties siting new landfills, largely as a result of increased citizen concerns about the potential risks and aesthetics associated with having a landfill in their neighborhood. To reduce risks to health and the environment, EPA developed minimum criteria that solid waste landfills must meet.

■ Climate Change

Solid waste disposal contributes to greenhouse gas emissions in a variety of ways. First, the anaerobic decomposition of waste in landfills produces methane, a greenhouse gas 21 times more potent than carbon dioxide. Second, the incineration of waste produces carbon dioxide as a by-product. In addition, the transportation of waste to disposal sites produces greenhouse gas emissions from the combustion of the fuel used in the equipment. Finally, the disposal of materials indicates that they are being replaced by new products; this production often requires the use of fossil fuels to obtain raw materials and manufacture the items.

Waste prevention and recycling—jointly referred to as waste reduction—help us better manage the solid waste we generate. But preventing waste and recycling also are potent strategies for

reducing greenhouse gas emissions. Together, waste prevention and recycling reduce methane emissions from landfills; reduce emissions from incinerators; reduce emissions from energy consumption; and increase storage of carbon in trees.

Looking at each of these benefits in more detail, waste prevention and recycling (including composting) divert organic wastes from landfills, thereby reducing the methane released when these materials decompose. Recycling and waste prevention allow some materials to be diverted from incinerators and thus reduce greenhouse gas emissions from the combustion of waste. Recycling saves energy because manufacturing goods from recycled materials typically requires less energy than producing goods from virgin materials. Waste prevention is even more effective at saving energy. When people reuse things or when products are made with less material, less energy is needed to extract, transport, and process raw materials and to manufacture products. When energy demand decreases, fewer fossil fuels are burned and less carbon dioxide is emitted to the atmosphere. Finally, trees absorb carbon dioxide from the atmosphere and store it in wood, in a process called "carbon sequestration." Waste prevention and recycling of paper products allow more trees to remain standing in the forest, where they can continue to remove carbon dioxide from the atmosphere.

Additional information about the relationship between solid waste and climate change can be found at www.epa.gov/climatechange/wycd/waste.

INDUSTRIAL WASTE

Industrial waste is also a subset of solid waste and is defined as solid waste generated by manufacturing or industrial processes that is not a hazardous waste regulated under Subtitle C of RCRA. Such waste may include, but is not limited to, waste resulting from the following manufacturing processes: electric power generation; fertilizer or agricultural chemicals; food and related products or by-products; inorganic chemicals; iron and steel manufacturing; leather and leather products; nonferrous metals manufacturing or foundries; organic chemicals; plastics and resins

manufacturing; pulp and paper industry; rubber and miscellaneous plastic products; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water treatment. Industrial waste does not include mining waste or oil and gas production waste.

Each year in the United States, approximately 60,000 industrial facilities generate and dispose of approximately 7.6 billion tons of industrial solid waste. Most of these wastes are in the form of wastewaters (97%). EPA has, in partnership with state and tribal representatives and a focus group of industry and public interest stakeholders, developed a set of recommendations and tools to assist facility managers, state and tribal regulators, and the interested public in better addressing the management of land-disposed, nonhazardous industrial wastes.

Similarly to municipal solid waste, EPA recommends considering pollution prevention options when designing an industrial waste management system. Pollution prevention will reduce waste disposal needs and can minimize impacts across all environmental media. Pollution prevention can also reduce the volume and toxicity of waste. Lastly, pollution prevention can ease some of the burdens, risks, and liabilities of waste management. As with municipal solid waste, EPA recommends a hierarchical approach to industrial waste management: first, prevent or reduce waste at the point of generation (source reduction); second, recycle or reuse waste materials; third, treat waste; and finally, dispose of remaining waste in an environmentally protective manner. There are many benefits of pollution prevention activities, including protecting human health and the environment, cost savings, simpler design and operating conditions, improved worker safety, lower liability, higher product quality, and improved community relations.

When implementing pollution prevention, industrial facilities should consider a combination of options that best fits the facility and its products. There are a number of steps common to implementing any facility-wide pollution prevention effort. An essential starting point is to make a clear commitment to identifying and taking advantage of pollution prevention opportunities.

Facilities should seek the participation of interested partners, develop a policy statement committing the industrial operation to pollution prevention, and organize a team to take responsibility for it. As a next step, facilities should conduct a thorough pollution prevention opportunity assessment. Such an assessment will help set priorities according to which options are the most promising. Another feature common to many pollution prevention programs is measuring the program's progress. The actual pollution prevention practices implemented are the core of a program. The following sections give a brief overview of these core activities: source reduction, recycling, and treatment.

■ Source Reduction

Source reduction is the design, manufacture, and use of products in a way that reduces the quantity and toxicity of waste produced when the products reach the end of their useful lives. Source reduction activities for industrial waste include equipment or technology modifications; process or procedure modifications; reformulations or redesign of products; substitution of less-noxious product materials; and improvements in housekeeping, maintenance, training, or inventory control.

One source reduction option is to reformulate or redesign industrial products and processes to incorporate materials more likely to produce lowerrisk wastes. Some of the most common practices include eliminating metals from inks, dyes, and paints; reformulating paints, inks, and adhesives to eliminate synthetic organic solvents; and replacing chemical-based cleaning solvents with water-based or citrus-based products.

Newer process technologies often include better waste reduction features than older ones. For industrial processes that predate consideration of waste and risk reduction, adopting new procedures or upgrading equipment can reduce waste volume, toxicity, and management costs. Some examples include redesigning equipment to cut losses during batch changes or during cleaning and maintenance, changing to mechanical cleaning devices to avoid solvent use, and installing more energy and material-efficient equipment.

In-process recycling involves the reuse of materials, such as cutting scraps, as inputs to the same process from which they came, or uses them in other processes or for other uses in the facility. This furthers waste reduction goals by reducing the need for treatment or disposal and by conserving energy and resources. A common example of in-process recycling is the reuse of wastewater.

Some of the easiest, most cost-effective, and most widely used waste reduction techniques are simple improvements in housekeeping. Accidents and spills generate avoidable disposal hazards and expenses. They are less likely to occur in clean, neatly organized facilities. Good housekeeping techniques that reduce the likelihood of accidents and spills include training employees to manage waste and materials properly; keeping aisles wide and free of obstructions; clearly labeling containers with content, handling, storage, expiration, and health and safety information; spacing stored materials to allow easy access; surrounding storage areas with containment berms to control leaks or spills; and segregating stored materials to avoid cross-contamination, mixing of incompatible materials, and unwanted reactions.

■ Recycling

Industry can benefit from recycling: the separation and collection of byproduct materials, their subsequent transformation or remanufacture into usable or marketable products or materials, and the purchase of products made from recyclable materials.

Many local governments and states have established materials exchange programs to facilitate transactions between generators of byproduct materials and industries that can recycle wastes as raw materials. Materials exchanges are an effective and inexpensive way to find new users and uses for a byproduct material.

Recycling can involve substituting industrial byproducts for another material with similar properties which is a component of sustainable materials management. For example, using wastewaters and sludges as soil amendments and using foundry sand in asphalt, concrete, and roadbed construction

conserves natural resources. The industrial byproducts replace other, virgin materials, such as fill or Portland cement, not only avoiding disposal costs but also yielding a quality product. State regulatory agencies may require advance approval of planned recycling activities and may require testing of the materials to be recycled. Others may predesignate certain by-products for recycling, as long as the required analyses are completed. Generally, regulatory agencies want to ensure that industrial byproducts are beneficially used in a safe manner and do not pose a greater risk than the materials they are replacing. Industrial facilities should consult with the state agency for criteria and regulations governing the recycling of industrial byproducts prior to any use or application.

In the last couple of years, several recent events (EPA's proposed rule regarding the disposal of coal combustion residues, the Inspector General's review of the Coal Combustion Products Partnership, and an enhanced focus in the sustainable materials management arena) have shifted the Agency's focus to ensure that these materials are beneficially used in a safe manner. While the Agency still supports safe beneficial use practices, EPA is developing a process to ensure the safety of beneficial use practices.

■ Treatment

Treatment of nonhazardous industrial waste is not a federal requirement. However, it can help to reduce the volume and toxicity of waste prior to disposal. Treatment can also make a waste amenable for reuse or recycling. Consequently, a facility managing nonhazardous industrial waste might elect to apply treatment. For example, treatment might be employed to address volatile organic compound (VOC) emissions from a waste management unit. or a facility might elect to treat a waste so that a less stringent waste management system design could be used. Treatment involves changing a waste's physical, chemical, or biological character or composition through designed techniques or processes. There are three primary categories of treatment – physical, chemical, and biological. Physical treatment involves changing the waste's physical properties such as its size, shape, density, or state (i.e., gas, liquid, solid). Physical treatment

does not change a waste's chemical composition. One form of physical treatment, immobilization, involves encapsulating waste in other materials, such as plastic, resin, or cement, to prevent constituents from volatilizing or leaching. Listed below are a few examples of physical treatment:

- Immobilization, including encapsulation and thermoplastic binding
- Carbon absorption, including granular activated carbon and powdered activated carbon
- Distillation, including batch distillation, fractionation, thin film extraction, steam stripping, thermal drying, and filtration
- Evaporation/volatilization
- Grinding
- Shredding
- Compacting
- Solidification/addition of absorbent material.

Chemical treatment involves altering a waste's chemical composition, structure, and properties through chemical reactions. Chemical treatment can consist of mixing the waste with other materials (reagents), heating the waste to high temperatures, or a combination of both. Through chemical treatment, waste constituents can be recovered or destroyed. Listed below are a few examples of chemical treatment:

- Neutralization
- Oxidation
- Reduction
- Precipitation
- Acid leaching
- Ion exchange
- Incineration
- Thermal desorption
- Stabilization
- Vitrification
- Extraction, including solvent extraction and critical extraction
- High temperature metal recovery.

Biological treatment can be divided into two categories—aerobic and anaerobic. Aerobic biological treatment uses oxygen-requiring microorganisms to decompose organic and non-metallic constituents into carbon dioxide, water, nitrates, sulfates, simpler organic products, and cellular biomass (i.e., cellular growth and reproduction). Anaerobic biological treatment uses microorganisms, in the absence

of oxygen, to transform organic constituents and nitrogen-containing compounds into oxygen and methane gas (CH₄). Anaerobic biological treatment typically is performed in an enclosed digestor unit.

The range of treatment methods from which to choose is as diverse as the range of wastes to be treated. More advanced treatment will generally be more expensive, but by reducing the quantity and risk level of the waste, costs might be reduced in the long run. Savings could come from not only lower disposal costs, but also lower closure and post-closure care costs. Treatment and post-treatment waste management methods can be selected to minimize both total cost and environmental impact, keeping in mind that treatment residuals, such as sludges, are wastes themselves that will need to be managed.

Landfilling

As with municipal solid waste, industrial facilities will not be able to manage all of their industrial waste by source reduction, recycling, and treatment. Landfilling is the least desirable option and should be implemented as part of a comprehensive waste management system. Implementing a waste management system that achieves protective environmental operations requires incorporating performance monitoring and measurement of progress towards environmental goals. An effective waste management system can help ensure proper operation of the many interrelated systems on which a unit depends for waste containment, leachate management, and other important functions. If the elements of an industrial waste landfill are not regularly inspected, maintained, improved, and evaluated for efficiency, even the best designed unit might not operate efficiently. Implementing an effective waste management system can also reduce long- and shortterm costs, protect workers and local communities, and maintain good community relations.

Industrial waste landfills can face opposition as a result of concerns about possible negative aesthetic impact and potential health risks. To reduce risks to health and the environment, EPA developed minimum criteria that industrial waste landfills must meet. The federal criteria for nonhazardous

industrial waste facilities or practices are provided in 40 CFR Part 257, Subparts A and B. The criteria for solid waste disposal facilities are discussed later in this chapter.

Guide for Industrial Waste Management

EPA, in close collaboration with state and tribal representatives through the Association of State and Territorial Solid Waste Management Officials (ASTSWMO), and a focus group of industry and public interest stakeholders, developed a set of recommendations and tools to assist facility managers, state and tribal regulators, and the interested public in better addressing the management of land-disposed, nonhazardous industrial wastes. The Guide for Industrial Waste Management (EPA530-R-03-001) provides considerations and Internet-based tools for siting industrial waste management units; methods for characterizing waste constituents; fact sheets and Web sites with information about individual waste constituents; tools to assess possible risks posed by the wastes; principles for building stakeholder partnerships; opportunities for waste minimization; guidelines for safe unit design; procedures for monitoring surface water, air, and ground water; and recommendations for closure and post-closure care.

The guide is available at www.epa.gov/epawaste/nonhaz/industrial/guide.

CRITERIA FOR SOLID WASTE DISPOSAL FACILITIES

One of the initial focuses of the Solid Waste Disposal Act (as amended by RCRA) was to require EPA to study the risks associated with solid waste disposal and to develop management standards and criteria for solid waste disposal units (including landfills) in order to protect human health and the environment. This study resulted in the development of criteria for classifying solid waste disposal facilities and practices.

On September 13, 1979, EPA promulgated criteria to designate solid waste disposal facilities and practices which would not pose adverse effects

to human health and the environment (Part 257, Subpart A). Facilities failing to satisfy the criteria are considered **open dumps** requiring attention by state solid waste programs. RCRA prohibits open dumping. As a result, open dumps had to either be closed or upgraded to meet the criteria for sanitary landfills. States were also required to incorporate provisions into their solid waste programs to prohibit the establishment of new open dumps. States have the option of developing standards more stringent than the Part 257, Subpart A criteria.

Solid waste disposal is overseen by the states, and compliance is assured through state-issued permits. EPA does not issue permits for solid waste management. Each state is to obtain EPA approval for their MSWLF permitting program. This approval process assesses whether a state's program is sufficient to ensure each landfill's compliance with the criteria. In states without an approved program, the federal criteria are self-implementing; the owner or operator of a solid waste disposal facility in those states must directly implement the requirements. In addition to the minimum federal criteria, some states may impose requirements that are more stringent than the federal requirements. Citizen suits (under RCRA §7002) may also be used to enforce the federal criteria in addition to state-issued permits.

■ Technical Criteria for Solid Waste Disposal Facilities

The Part 257, Subpart A regulatory criteria used to classify solid waste disposal facilities and practices consist of general environmental performance standards. The criteria contain provisions designed to ensure that wastes disposed

WHAT IS AN OPEN DUMP?

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 criteria. Using the Part 257, Subpart A criteria as a benchmark, each state evaluated the solid waste disposal facilities within its borders to determine which facilities were open dumps that needed to be closed or upgraded. For each open dump, the state completed an Open Dump Inventory Report form that was sent to the Bureau of the Census. At the end of fiscal years 1981 through 1985, the Bureau compiled all of the report forms and sent them to EPA, where they were summarized and published annually.

of in solid waste disposal units will not threaten endangered species, surface water, ground water. or flood plains. Further, owners and operators of disposal units are required to implement public health and safety precautions such as disease vector (e.g., rodents, flies, mosquitoes) controls to prevent the spread of disease and restrictions on the open burning of solid waste. In addition, facilities are required to install safety measures to control explosive gases generated by the decomposition of waste, minimize the attraction of birds to the waste disposed in the unit, and restrict public access to the facility. The criteria also restrict the land spreading of wastes with high levels of cadmium and polychlorinated biphenyls (PCBs) in order to adequately protect ground water from these dangerous contaminants.

These criteria serve as minimum technical standards for solid waste disposal facilities. As a result, facilities must meet the Part 257 standards to ensure that ongoing waste management operations adequately protect human health and the environment. If they fail to do so, the facility is classified as an open dump and must upgrade its operations or close.

■ Conditionally Exempt Small Quantity Generator Waste Disposal Facilities

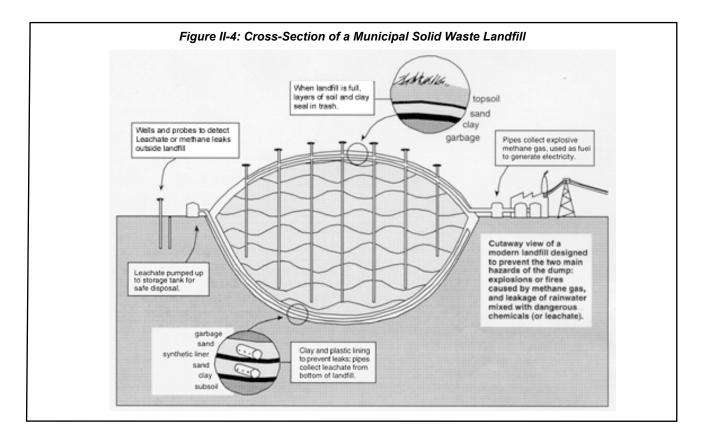
In July of 1996, EPA promulgated standards for non-municipal, nonhazardous waste facilities that may receive **conditionally exempt small quantity generator (CESQG)** waste (40 CFR Part 257, Subpart B). These revisions address location restrictions, requirements for monitoring for ground- water contamination, and corrective action provisions to clean up any contamination. (CESQGs are fully discussed in Chapter III, Regulations Governing Hazardous Waste Generators).

■ Technical Criteria for Municipal Solid Waste Landfills (MSWLFs)

Protection of human health and the environment from the risks posed by solid waste disposal facilities was an ongoing concern of Congress after RCRA was passed in 1976. As a result, the 1984 Hazardous and Solid Waste Amendments (HSWA) required EPA to report on the adequacy of existing solid waste disposal facility criteria and gather detailed data on the characteristics and quantities of nonhazardous municipal solid wastes.

Report to Congress on Solid Waste Disposal

In October 1988, EPA submitted a Report to Congress indicating that the United States was generating an increasing amount of municipal solid waste. The Report revealed that approximately 160 million tons of municipal solid waste were generated each year, 131 million tons of which were landfilled in just over 6,500 MSWLFs. EPA also reported that although these landfills used a wide variety of environmental controls, they may pose significant threats to ground water and surface water resources. For instance, rain water percolating through the landfills can dissolve harmful constituents in the waste and can eventually seep into the ground, potentially contaminating ground water. In addition, improperly maintained landfills can pose other health risks due to airborne contaminants, or the threat of fire or explosion.


To address these environmental and health concerns, and to standardize the technical requirements for these landfills, EPA promulgated revised minimum federal criteria in Part 258 for MSWLFs on October 9, 1991. The criteria were designed to ensure that MSWLFs receiving municipal solid waste would be protective of human health and the environment. All other solid waste disposal facilities and practices, besides MSWLFs, remain subject to Part 257, Subpart A or B.

Criteria for Municipal Solid Waste Landfills

A municipal solid waste landfill is defined as a discrete area of land or excavation that receives household waste. A MSWLF may also receive other types of nonhazardous wastes, such as commercial solid waste, nonhazardous sludge, conditionally exempt small quantity generator (CESQG) waste, and industrial nonhazardous solid waste. In 2009, there were approximately 1,908 MSWLFs in the continental United States.

The revised criteria in 40 CFR Part 258 address seven major aspects of MSWLFs (see Figure II-4):

• Location

- Operation
- Design
- Ground-water monitoring
- Corrective action
- Closure and post-closure activities
- Financial assurance

The location criteria restrict where a MSWLF may be located. New landfills must meet minimum standards for placement in or near flood plains, wetlands, fault areas, seismic impact zones, and other unstable areas. Because some bird species are attracted to landfills, the criteria also restrict the placement of landfills near airports to reduce the bird hazards (i.e., collisions between birds and aircraft that may cause damage to the aircraft or injury to the passengers).

The operating criteria establish daily operating standards for running and maintaining a landfill. The standards dictate sound management practices that ensure protection of human health and the environment. The provisions require covering the landfill daily, controlling disease vectors, and controlling explosive gases. They also prohibit the open burning of solid waste and require the owner

and operator of the landfill to control unauthorized access to the unit.

Leachate is formed when rain water filters through wastes placed in a landfill. When this liquid comes in contact with buried wastes, it leaches, or draws out, chemicals or constituents from those wastes. The design criteria require each new landfill to have a liner consisting of a flexible membrane and a minimum of two feet of compacted soil, as well as a leachate collection system. The liner and collection system prevent the potentially harmful leachate from contaminating the soil and ground water below the landfill. States with EPA-approved MSWLF permit programs can allow the use of an alternative liner design that controls ground-water contamination.

In order to check the performance of system design, MSWLF facility managers must also establish a ground-water monitoring program. Through a series of monitoring wells, the facility owner and operator are alerted if the landfill is leaking and causing contamination. If contamination is detected, the owner and operator of the landfill must perform **corrective action** (i.e., clean up the

contamination caused by the landfill).

When landfills reach their capacity and can no longer accept additional waste, the criteria stipulate procedures for properly closing the facility to ensure that the landfill does not endanger human health and the environment in the future. The **closure** activities at the end of a facility's use are often expensive, and the owner and operator must have the ability to pay for them. To this end, the criteria require each owner and operator to prove that they have the financial resources to perform these closure and **post-closure** activities, as well as any known corrective action.

■ Bioreactor Landfills

EPA is investigating the feasibility of improving how waste is managed in MSWLFs. Projects are being conducted to assess bioreactor landfill technology. A bioreactor landfill operates to more rapidly transform and degrade organic waste. The increase in waste degradation and stabilization is accomplished through the addition of liquid and air to enhance microbial processes. This bioreactor concept differs from the traditional "dry tomb" municipal landfill approach. Thus, decomposition and biological stabilization of the waste in a bioreactor landfill can occur in a shorter time frame than occurs in a traditional landfill. This provides a potential decrease in long-term environmental risks and landfill operating and post-closure costs.

Additional information about bioreactor landfills can be found at www.epa.gov/epawaste/nonhaz/municipal/landfill/bioreactors.htm.

ASSISTANCE TO NATIVE AMERICAN TRIBES

EPA developed a municipal solid waste strategy to assist Native American tribes in the establishment of healthy, environmentally protective, integrated solid waste management practices on tribal lands. The initial strategy was based on input from tribal focus groups convened by the National Tribal Environmental Council and discussions with tribal organizations, EPA Regional Indian Program Coordinators, other EPA offices, and other federal agencies with trust responsibilities on Native

American lands. The strategy emphasizes building tribal municipal solid waste management capacity, developing tribal organizational infrastructure, and building partnerships among tribes, states, and local governments. Direct EPA support of these goals includes technical assistance, grant funding, education, and outreach.

Solid waste managers on Native American lands face unique challenges. To address issues such as jurisdiction, funding, and staffing, EPA offers several resource guides featuring in-depth information specific to Native American lands. The Agency recognizes that every solid waste management program needs funding to survive and that, in an era of tightening budgets, it may be difficult to find necessary resources. One of EPA's ongoing priorities is to make current information available to help tribes locate the funding they need to develop and implement safe and effective solid waste programs.

One such initiative is the *Tribal Waste Journal*. The journal contains in-depth information on a variety of solid and hazardous waste topics including interviews with representatives from Native American Tribes and Alaskan Native Villages. Each issue focuses on a single topic and presents ideas, approaches, and activities that other Native American Tribes and Alaskan Native Villages have successfully employed.

Additionally, EPA has initiated the Tribal Open Dump Cleanup Project to assist tribes with closure or upgrade of open dump sites. The project is part of a Tribal Solid Waste Interagency Workgroup, which is working to coordinate federal assistance for tribal solid waste management programs. The cleanup project's specific goals include assisting tribes with 1) proposals to characterize/assess open dumps; 2) proposals to develop Integrated Solid Waste Management (ISWM) Plans and Tribal Codes and regulations; 3) proposals to develop and implement alternative solid waste management activities/ facilities; and 4) proposals to develop and implement closure and post-closure programs.

Outreach and educational materials are two other tools EPA provides to tribes to support environmentally sound integrated solid waste management practices. The Agency's outreach support helps tribes connect and learn from each other's experiences. Educational resources help tribal leadership as well as the general tribal community understand the importance of good municipal solid waste management. Better understanding ensures that tribal municipal solid waste programs are assigned a high priority and facilitates the communities' adoption of new and improved waste disposal practices.

Additional information about waste management in Indian Country is available at www.epa.gov/epawaste/wycd/tribal.

HOMELAND SECURITY

The Office of Resource Conservation and Recovery's role in the homeland security arena is to provide technical support to Federal, state, local, and tribal authorities, industry, and other stakeholders on waste management decisions before. during, and after a homeland security incident occurs. Most homeland security incidents (e.g., acts of terrorism, large-scale natural disasters, major accidents, and animal disease outbreaks) involve waste management issues and decisions. For example, terrorist events can result in large amounts of contaminated materials and debris, large-scale natural disasters can generate large quantities of mixed debris, and animal disease outbreaks may result in the need to treat and/or dispose of large volumes of contaminated carcasses. In order to properly manage waste generated from a homeland security incident, the waste needs to be characterized to determine if RCRA applies. For more information on managing homeland security waste, please visit EPA's Waste Management for Homeland Security Incidents at www.epa.gov/waste/homeland.

OTHER SOLID WASTE MANAGEMENT INITIATIVES

Along with the Resource Conservation Challenge (which is discussed in Chapter IV), EPA has developed a number of solid waste management initiatives to help facilitate and promote proper waste management, and encourage source reduction by both industry and the public. Several such initiatives are described below.

■ Recycling Market Development

There are three stages to recycling: collecting recyclable materials; manufacturing recycledcontent products; and selling those products. Often symbolized by the chasing arrows logo, all three stages of the recycling process must work effectively in order to close the recycling loop. Creating markets for recycled materials—the third arrow—is critical to the success of the recycling process. Without a strong market for recycled materials, there is no incentive to collect recyclables and manufacture recycled-content products. Market development means fostering businesses that manufacture and market recycled-content products and strengthening consumer demand for those products. Market development can include, for example, expanding the processing and remanufacturing capacity of recycling businesses to handle the increasing volume of collected recyclables.

Across America, more individuals, organizations, businesses, and government agencies are collecting materials for recycling than ever before, which keeps valuable resources out of landfills. However, resource recovery is only part of the recycling story. Recycling also creates new businesses that haul, process, and broker recovered materials, as well as companies that manufacture and distribute products made with recycled content. These recycling businesses put people to work. The jobs created by recycling businesses draw from the full spectrum of the labor market (ranging from low- and semi-skilled jobs to highly skilled jobs). Materials sorters, dispatchers, truck drivers, brokers, sales representatives, process engineers, and chemists are just some of the jobs needed in the recycling industry. Recycling is actively contributing to America's economic vitality.

Additional information about recycling market development, including information for state and local officials, sources of technical and financial assistance for recycling businesses, and information on the economic benefits of recycling can be found at www.epa.gov/epawaste/conserve/rrr/rmd.

Note: Portions of this program were formerly under the Jobs Through Recycling (JTR) program, which is no longer active.

Materials and Waste Exchanges

Materials and waste exchanges are markets for buying and selling reusable and recyclable commodities. Some are physical warehouses that advertise available commodities through printed catalogs, while others are simply websites that connect buyers and sellers. Some are coordinated by state and local governments. Others are wholly private, for-profit businesses. The exchanges also vary in terms of area of service and the types of commodities exchanged. In general, waste exchanges tend to handle hazardous materials and industrial process waste while materials exchanges handle nonhazardous items.

Typically, the exchanges allow subscribers to post materials available or wanted on a Web page listing. Organizations interested in trading posted commodities then contact each other directly. As more and more individuals recognize the power of this unique tool, the number of Internet-accessible materials exchanges continues to grow, particularly in the area of national commodity-specific exchanges.

A list of international and national exchanges, as well as state-specific exchanges can be found at www.epa.gov/epawaste/conserve/tools/exchange. htm.

■ Pay-As-You-Throw (PAYT)

Some communities are using economic incentives to encourage the public to reduce solid waste sent to landfills. One of the most successful economic incentive programs used to achieve source reduction and recycling is variable rate refuse pricing, or unit pricing. Unit pricing programs, sometimes referred to as pay-as-you-throw (PAYT) systems, have one primary goal: customers who place more solid waste at the curb for disposal pay more for the collection and disposal service. Thus, customers who recycle more have less solid waste for disposal and pay less. There are a few

different types of unit pricing systems. Most require customers to pay a per-can or per-bag fee for refuse collection and require the purchase of a special bag or tag to place on bags or cans. Other systems allow customers to choose between different size containers and charge more for collection of larger containers. EPA's role in the further development of unit pricing systems has been to study effective systems in use and to disseminate documentation to inform other communities about the environmental and economic benefits that unit pricing may have for their community. The number of PAYT communities grew to more than 7,133 in 2007, and the program serves a population of 75 million today. Based on greenhouse gas calculations, PAYT is attributed with reducing an equivalent of over 10 million metric tons of carbon dioxide annually.

Additional information about unit pricing or pay-as-you-throw programs is available at www.epa. gov/payt.

Tools for Local Government Recycling Programs

Residential recycling programs can be difficult to sustain. However, communities across the country have developed successful strategies for maintaining and expanding residential recycling programs, and some communities have even turned these programs into cost-saving operations. EPA has developed tools and other resources to help local governments and community leaders learn how to make recycling work in their area. These tools cover topics such as how to improve recycling's economic profile, how to evaluate recycling program costs, community recycling success stories, outreach materials, and resources for recycling in specific sectors. These tools can be found at www.epa.gov/epawaste/conserve/tools/localgov.

Full Cost Accounting for Municipal Solid Waste

Full cost accounting is an additional financial management tool that communities can use to improve solid waste management. Full cost accounting is an accounting approach that helps local governments identify all direct and indirect

costs, as well as the past and future costs, of a MSW management program. Full cost accounting helps solid waste managers account for all monetary costs of resources used or committed, thereby providing the complete picture of solid waste management costs on an ongoing basis. Full cost accounting can help managers identify high-cost activities and operations and seek ways to make them more cost-effective.

Additional information about full cost accounting can be found at www.epa.gov/fullcost.

Construction and Demolition Materials

Under its Resource Conservation Challenge, EPA's Industrial Materials Recycling Program is supporting projects to reduce, reuse, and recycle materials generated from construction, renovation, deconstruction, and demolition of buildings and transportation structures, such as roads and bridges. Construction and demolition materials commonly include concrete, asphalt, wood, glass, brick, metal, insulation, and furniture. From incorporating used or environmentally friendly materials into a building's construction or renovation to disassembling structures for the reuse and recycling of their components, each phase of a building's life cycle offers opportunities to reduce waste.

Additional information about construction and demolition materials is available at www.epa. gov/epawaste/conserve/rrr/imr/cdm. The Resource Conservation Challenge is discussed further in Chapter IV and at www.epa.gov/rcc.

Industrial Ecology

The study of material and energy flows and their transformations into products, by-products, and waste throughout industrial and ecological systems is the primary concept of industrial ecology. This initiative urges industry to seek opportunities for the continual reuse and recycling of materials through a system in which processes are designed to consume only available waste streams and to produce only usable waste. Wastes from producers and consumers become inputs for other producers and consumers, and resources are cycled through the system to

sustain future generations. Individual processes and products become part of an interconnected industrial system in which new products or processes evolve out of or consume available waste streams, water, and energy; in turn, processes are developed to produce usable resources.

EPA is continually studying these and other programs in order to assist communities in deciding whether one of these programs is right for them. In addition to these initiatives, EPA has published numerous guidance documents designed to educate both industry and the public on the benefits of source reduction, to guide communities in developing recycling programs, and to educate students on the benefits and elements of source reduction and recycling.

SUMMARY

The term "solid waste" includes garbage, refuse, sludges, nonhazardous industrial wastes, hazardous wastes, and other discarded materials. RCRA Subtitle C regulations distinguish those solid wastes which are deemed hazardous and subject to the hazardous waste regulatory program described in Chapter III. Subtitle D addresses primarily nonhazardous solid waste. Subtitle D also addresses hazardous wastes that are excluded from Subtitle C regulation (e.g., household hazardous waste). Management of nonhazardous solid waste is regulated by the states.

Municipal solid waste, a subset of solid waste, is waste generated by businesses and households. EPA recommends an integrated, hierarchical approach to managing solid waste that includes, in descending order of preference:

- Source reduction
- Recycling
- Disposal by combustion and/or landfilling.

As part of Subtitle D, EPA has developed detailed technical criteria for solid waste disposal facilities (40 CFR Part 257) and specific criteria for MSWLFs (40 CFR Part 258):

- Location
- Operation
- Design
- Ground water monitoring

- Corrective action
- Closure and post-closure
- Financial assurance (i.e., responsibility).

In addition, other solid waste management initiatives have been developed by EPA to help facilitate proper waste management. These initiatives focus on the environmental and economic benefits of source reduction and recycling. These initiatives include:

- Jobs through Recycling
- Pay-As-You-Throw

- Full cost accounting
- Construction and demolition materials
- Industrial ecology.

ADDITIONAL RESOURCES

Additional information about municipal solid waste management can be found at www.epa.gov/msw. Additional information on EPA's Resource Conservation Challenge is available at www.epa.gov/rcc.