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ABSTRACT

Context. The abilities of radial velocity exoplanet surveys to dethe lowest-mass extra-solar planets are currently It a
combination of instrument precision, lack of data, andéjit. Jitter is a general term for any unknown features innbise, and
reflects a lack of detailed knowledge of stellar physicsefasteismology, starspots, magnetic cycles, granulasiod,other stellar
surface phenomena), as well as the possible underestimadtiostrument noise.

Aims. We study an extensive set of radial velocities for the starll@P00 ¢ Ceti) to determine the properties of the jitter arising from
stellar surface inhomogeneities, activity, and telesdéapgument systems, and perform a comprehensive searphaftetary signals
in the radial velocities.

Methods. We perform Bayesian comparisons of statistical modelsridesg the radial velocity data to quantify the number of
significant signals and the magnitude and properties of xbess noise in the data. We reach our goal by adding artitgakls

to the “flat” radial velocity data of HD 10700 and by seeing @hone of our statistical noise models receives the grepteserior
probabilities while still being able to extract the artificsignals correctly from the data. We utilise various naiseponents to assess
properties of the noise in the data and analyse the HARPS SAARd HIRES data for HD 10700 to quantify these propertigs an
search for previously unknown low-amplitude Kepleriamsilg.

Results. According to our analyses, moving average components witkkponential decay with a timescale from a few hours to few
days, and Gaussian white noise explains the jitter the bestlifthree data sets. Fitting the corresponding noisenpaiers results
in significant improvements of the statistical models anabbes the detection of very weak signals with amplitudesveel ms*
level in our numerical experiments. We detect significamtquiicities that have no activity-induced counterpartshia combined
radial velocities. Three of these signals can be seen in #&RRE data alone, and a further two can be inferred by utgitiie AAPS
and Keck data. These periodicities could be interpretedasgponding to planets on dynamically stable close-troorbits with
periods of 13.9, 35.4, 94, 168, and 640 days and minimum readsz0, 3.1, 3.6, 4.3, and 6.6JVIrespectively.

Key words. Methods: Statistical, Numerical — Techniques: Radial ¥ftles — Stars: Individual: HD 10700

1. Introduction When analysing RV data, the common strategy is to bin the
. . - L measurements made within, say, intervals of an hour, and use

The improving instrumental precision and the rapidly iRSIeg  he resulting binned data as a basis of further statistiwalyses.

number of measurements of radial velocity (RV) target SWrs e motivation for this operation is the possibility of reihg

differenlt surveysbiare_en.abling the disc%verie(s of s[na!ler Pldfe amount of short-term noise in the data (e.g. O'Toole et al
ets on longer orbits In increasing numbers (e.g. Lovis &t aynng). \while this approach certainly mitigates againstrast
2011; Mayor et al., 2009, 2011). Currently, however, théate ggismological signals, it results in a loss of informatidroat
noise, sometimes referred to as stellar jitter (€.g. WriB805), ' he properties of stellar noise and may also prevent thetiete
presents the greatest obstacle in reaching the ultimateo§oas ihe faintest signals in the data because it corresponaito
being able to detect Earth-mass planets in stellar habi#iiles fieiq|ly decreasing the number of measurements. In gerfval,
(Barnes et al., 2012). While the magnitude of this jitterti s gjgnais are published in the literature as received fromédzin

very uncertain for all the target stars, its other propert®Ich a5 pyt with no information about the binning techniquestiys
as shape of the noise distribution, its variability as a fiomcof i.e. binning time-scale and uncertainty estimation. Taain-

time, and de_pendence on the stellar properties have naveelce ot this approach and its possible shortcomings, we stuly t
much attention. properties of the jitter by comparingftérent noise models: dif-
ferent autoregressive (AR) and moving average (MA) models,
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their combinations (ARMA), and éferent additive white noise Table 1. Estimated stellar properties of HD 10700.
models.

Because it is not possible to generate artificial RV data with Parameter Value Reference
realistic noise properties (for the obvious reason thatepeop- Spectral Type G85V [0}
erties are not known), we study a quiet star with a large amoun log Rl -4.995 (h)
of data and no published signals. We analyse the RVs of the 7 [mas] 273.960.17 (@)
nearby Solar-type star HD 10700 Ceti). It is known to be a 'E;'ta' [[IIEzO]] g'égig'gég gg;
very inactive and quiescent star and its long high-preoisty MS‘a’ [N? ] 0.783:0.012 (b)
data set from the High Accuracy Radial Velocity Planet Searc T;a['K] ° " 5344450 )
(HARPS) spectrograph (Mayor et al., 2003) has not been re- [Fe/H] -0.55+0.05 ()
ported to contain planetary signatures despite more th@o 40 Age [Gyr] 5.8 (d)
spectral observations (Pepe et al., 2011). Also, thereveoe t vsini [kms™] 0.90 9)
other large RV data sets of HD 10700 available from the High Prot [days] 34 (e)

Resolution Echelle Spectrograph (HIRES; Vogt et al., 1994)
the Keck telescope and from the U.C.L Echelle Spectrographotes. Data from: (a) van Leeuwen (2007); (b) Teixeira etal. (2009)

the Anglo Australian Telescope (AAT). We refer to the RV datgoubiran et al. (1998); (d) Mamajek & Hillebrand (2008); Bglliunas
from the AAT as Anglo-Australian Planet Search (AAPS) dat&! al- (1996); () Santos et al. (2004); (g) Santos et al. £220(n) Pepe

To verify the trustworthiness of our noise models in exirggt ©t 2l (2011); (i) Gray etal. (2006); (j) Pavienko etal. (211

weak signals from the data, we first test their performance by

adding artificial signals to the HARPS data set for HD 10700. _ .

The models that enable the recovery of the artificial sigaess the relatively higher frequency of low-mass planets ardond
then compared using the Bayesian model selection techmigRetallicity stars (Jenkins et al., 2012).

to find the most accurate descriptions of these HARPS Rvs. Despite the fact that HD 10700 is a target star of several RV

Finally, we search for periodic signatures of planetary pam Searches for planets around nearby stars (e.g. the HARRE; Ke
ions in the HARPS velocities. HIRES, and AAPS, described in the next section), no plagetar

We also find the best noise models for the AAPS and HIREZ Other sub-stellar companions have been reported agittin
RVs and use them in combination with the HARPS velocitiI%‘v‘?v'tte”m_yer et al., 2006; Pepe et al., 2011). However, the st

in further analyses because signals that are not detectaulyin 'S @ bright debris disk, i.e. a circumstellar disk estichdte

of these data sets might be available from the combined set B§ an order of magnitude greater than the mass of Edgeworth-
cause of its greater size and better phase-coverage edatize <UIP€r belt in the Solar System, extending out+055 AU
individual data sets. (Greaves et al., 2004) and has been observed to have warm dust

We start by describing the properties of the target star b't'.r;)%.'t (I?IHFS I<1:87eot0arll., 2.007)' Thesferr_lndl_ngs pror;?ote th
10700 and the RV data in Section 2 and the statistical t0Qlg>" |h|tny f ol awg_g_somr:a of this C|rcu|r|nsct:e artma
(methods and models) in Section 3. Model selection methotﬁée g; ;reu(r)r:gtos gniinr?éstir?r tlr:gtgHtDelg%rO&}: ;V\?e; ir?g]dgems
and our criteria for detecting signals in the RV data areqaes] 9 ' 9 y

. . . . a “flat activity” star; Judge et al., 2004) with |6« = —4.955
in Sections 4 and 5, respectively. After this, we proceed dy d( . . .
termining which noise model performs the best in extracti epe etal., 2011), it seems likely that either HD 10700 Iso

artificial signals introduced into the data (Section 6). Test . (as also suggested by Gray & Baliunas, 1994, though there

. 5 _currently no evidence in favour of this hypothesis), vihic
noise models are then used to analyse the HARPS data (Sec Q/ﬁn co-planarity, prevents the detections of planetstiog

. [
7). To make sure that the signals we detect do not correspcﬁrﬁelomo using the RV method (and indeed using the transit

to any activity-related phenomena, we analyse the timesef photometry), or its companions are very small and do notéadu

HARPS activity indices in Section 7.5. We also perform as L o
of the AAPS a)rlld HIRES data sets (Section 8) gnd the Cog%’in%%sgrvablg periodic Doppler variations to the stellar speche
vious third option is that there simply are no planetstorgi

. . X ik (0]
data (Section 9). Finally, we assess briefly the dynamiedlilst 10700. While a plausible hypothesis, every revision @ th

ity of the system of planet candidates we find in the combin X
data (Section 10) and present the conclusions and discuissio equency of planets around _nearby stars seems to indieate t
their frequency increases rapidly as their mass decreadesy

Section 11. estimates of their frequencies seem to be revised towagtie hi
values as the amount of data accumulates (e.g. O'Toole,et al.
2009; Howard et al., 2010; Mayor et al., 2011; Wittenmyer et
2. HD 10700 and radial velocity measurements al., 2011a).

2.1. Stellar properties

. 2.2. Radial velocity data
HD 10700 is a very nearby Solar-type (G8.5 V; Gray et al.,

2006) star with a large Hipparcos parallax of 273:06.7 mas The HARPS spectra of HD 10700 were extracted from the ESO
(van Leeuwen, 2007) implying a distance of only 3.68M02 archive in a wavelength-calibrated form. This calibrativas

pc. Because only 18 stellar systems (single, double, oletrignade using the HARPS Data Reduction Software (HARPS-
stars) are located closer to the Sun, HD 10700 is in the imni@RS). After the spectral calibration, the RVs (Fig. 1) weaéca-
diate neighbourhood of our own system. While it can read#ly Bated using the cross-correlation function (CCF) techaipte-
called a Sun-like star, HD 10700 is somewhat lighter with asnasented in Pepe et al. (2002).

of 0.783+ 0.012 M, (Teixeira et al., 2009) and less luminous Asthe HARPS data\ = 4864, 205 epochs) contained some
and also has a sub-Solar metallicity of -0£8505 (Pavlenko velocities that had significantly greater, i.e. more thad thies

et al., 2012, and references therein), which could potigntiagreater, uncertainties than the HARPS velocities had ireiggn
make it an ideal target for searches for low-mass planetdaueve simply neglected them and dropped them out of the data set



98a.41 ' R
820.34 3

656.28

Power

492.21

328.14

164.07

I I I
1 10 100 1000 10000

Period [d]

RV Residuals, Data—Model [ms™']

—20

P B
4000

—tLo-2es0000) 227 F ‘ ‘ ‘ =

1.89 | ]
1.51

1.14 F

Power

0.76 F

0.38 F

0.00 [ ! ! ! !
1 10 100 1000 10000
Period [d]

Radial Velocity [ms™']

‘ ‘ ‘ ‘ ‘ Fig. 2. Lomb-Scargle periodogram (top) with 0.1%, 1%, and 10% FAPs
1000 2000 3000 4000 5000 and the window function (bottom) of the HARPS data.

t [JD—2450000]
ML A

The 978 AAPS RVs have a similar character to the HARPS
data (Fig. 1, middle panel). This data set, too, can be deestri
as being flat and no periodic signals have been reported by the
AAPS group despite an extensive baseline of the time-sefies
4923 days (Wittenmyer et al., 2011b). This data does not have
such clear annual gaps as the HARPS data (Fig. 1) and deviates
from the mean by approximately 5.0 M®n average.

— 1 The smallest set of RVs was that measured using the HIRES
000 3000 100 om0 (Fig. 1, bottom panel). The 567 HIRES RV measurements have
a baseline of 3446 days and nothing has been reported alimut th
data set in the literature. The velocities deviate rougtiys

Fig. 1. HARPS (top), AAPS (middle), and HIRES (bottom) RVs withfrom the mean and do not have significant gaps apart from rela-
their respective mean estimates subtracted. tively narrow annual gaps corresponding to the visibilityH®
10700 from the Keck telescope’s Northern location in Hawaii

Radial Velocity [ms™']

t [JD—2450000]

prior to any further analyses. We also removed some spurious
epochs from the set because they had velocities ti@red by 3 statistical analysis and modelling
afew kms? from the data mode. As a result, there were 4398 RV

points (202 epochs) with a baseline of 2142 days. By visual ifve modelled the RVs with a statistical model that contains
spection this data set indeed seemed "flat*, as also desdmioe three additive terms. These terms are (1) the superposifion
Pepe etal. (2011), and is unlikely to contain periodic R\halg  k Keplerian signals and a reference velocity, (2) Gaussiaseno
with amplitudes in excess of few ms The standard deviation with two components, namely the instrument noise and all the
of these data was found to be 1.7 thavhich implies that there excess noise in the measurements, and (3) an autoregressive
indeed could not be signals in the data in excess of rougBly %AR) andor moving average (MA) term that accounts for the
ms. possible correlations between the subsequent velocitider

Calculating the Lomb-Scargle periodogram (Lomb, 1978heir errors. The MA term accounts for the dependence of a
Scargle, 1982) of the HARPS data revealed that this data setasurement on the deviation of the last measurement frem th
contains a "jungle of peaks" (Fig. 2, top panel) in excesdhef t mean — this term correspondfetively to binning measure-
analytical 0.1% false alarm probabilities (FAPS). The omais ments made within a certain timescale in order to remove vari
that the noise in this "raw" velocity data is probably not Gaian ations within that timescale. While the first part of this rebd
nor white and thus violates the assumptions underlying ¢ie p is described in detail in Tuomi (2011) and Tuomi et al. (2011)
odogram analyses. From this periodogram, it is thdiscdit to we describe the rest of our statistical models and modedijig
interpret the significance of the corresponding peaks. proaches in the following subsections.



3.1. Posterior samplings assume that the correlation described by this function migpe

. . . on the time diference between the two consequent observations
We analysed each model in our collection of candidate modglﬁd write it as

using the adaptive Metropolis algorithm (Haario et al., 200

This algorithm works well for typical models of RVs and cam; ; = ¢ exp[a(t,— - ti)], (2)

be used to receive statistically representative samptas the . .

posterior densities of the parameters of these models aihd wynere the positive numbegs;, for all j, anda are free parame-

relatively little computational cost (Tuomi, 2011, 2012;0mi  ters of the model. It can be seen that the funcippdecreases

et al., 2011). The proposal density of the adaptive Metispof*Ponentially as the time fierence between the two consequent

algorithm is a multivariate Gaussian density, which posesp €POchsincreases. Also, whign < 1 forall j andi > j, its value

lems and possibly slows down the convergence rate of theshd? aways less than unity, which makes the model stationary.

when the parameter posterior density is hon-Gaussian igth h

non-linear correlations between the parameters. We oWe#C03 3 15t order MA model

this problem by simply increasing the chain lengthsisiently

in each sampling to ensure that we obtain statisticallygsgmta- T0 apply the MA model, we arrange the RVs again in chronolog-

tive samples. Typically, samples of rough|y'5_’]:(n_06' depending ical order. The RV measurement made at empdrhthen mod-

on the dimension of the parameter vector, afécient when the €lled as

posterior density can be approximated as a multivariatsS&an

density. However, when there are several Keplerian sign#he i

model and the posterior density necessarily has non-liogar i = k() + wii-1(6-1 + &) + & + €, fori > 1, @)

relations, we increase the chain lengths by factors of up@td  The MA part is defined using the function ; multiplied by the

ensure that the samples we obtain are statistically repi@bee. deviation of the previous observation froimp This function has
The fact that the adaptive Metropolis algorithm is not elactihe same form as; j, with parameterso; andg instead ofg;

Markovian means that the sample drawn from the posterior defhd o in Eq. (2), because we expect the dependence ofttthe

sity might not be close enough to the actual posterior deisit measurement on the deviation of the previous one to decasase

draw conclusions on the parameters, and, on the model proRagnction of the time dference of the corresponding measure-
bilities. We approximate these probabilities using th@dated ments.

posterior mixture (TPM) estimate of Tuomi & Jones (2012} tha
requires a statistically representative sample from thetepimr.
For this reason, when the chains we calculate have convergeli General ARMA model
close to the posterior density and are found to move rando
around in the vicinity of the maximura posteriori (MAP) es-
timate, we fixed the proposal density of the chain to its aurr
value. This essentially makes this algorithm equivalenthi®
Metropolis-Hastings Markov chain Monte Carlo (MCMC) algo
rithm (Metropolis et al., 1953; Hastings, 1970). This is saene
procedure that has been used in e.g. Tuomi (2012).

We estimate all the parameters simply by using the MAP r; = fi(t) + & + €, fori=1

ri=fkt)+6 +e, fori=1

rrI‘bfnay be the case in practice that taking into account the cor

relations between measurements at epachisdti_; is not suf-
€ficient but a better model can be constructed by taking into ac
count the correlations between the measuremettaaid those
atti_j, j = 1,...,0, whereq < i. We write the correspondingth
order AR model as

estimates and the 99% Bayesian credibility sets (as defmed i q
e.g. Tuomi & Kotiranta, 2009), i.e. 99% credibility intefgan a ri=fkt)+6+e+ Z @ji-jli=j, fori > 1. (4)
single dimension. For a definition of the MAP estimates, 4red t =1

corresponding caveats of relying on point estimates in tisé fi

place, we refer the interested reader to any introductotyake Similarly, thepth order MA model is defined as

Bayesian statistics (e.g. Berger, 1980). r=fit) +g +e, fori=1
P
3.2. 1st order AR model ri=ft)+ea+e+ Zwi,i—i(ﬁ—i +€), fori> 1 ()
j=1
To be able to use autoregression in the statistical modediimd . . . .
analysis, we arrange the RVs such that for epochrsdt;, t < t; The general ARMA model is then written by including both

if i < |, i.e. putthe measurements in chronological order. NoR @nd MA terms in the statistical model together with thedun
the measurement;f at epoch; depends on that &t 1 according tion f and the add|t_|ve random variables representing the white
to noise components in the data. We denote this general model as
_ AR(q)MA(p).

ri=f(t)+6+e¢y, fori=1

ri = fk(t) + dij-ari-1 + 6 + €, fori> 1, (1) 3.5. white noise models
where functiorfy is the superposition &fKeplerian signals with 14 getermine the shape of the additive white noise in our sta-
an additive constant parametgy, corresponding to the refer-yissical models, i.e. the distribution of the sum+ €5, we com-
ence velocity of théth telescope-instrument combinatianis  nare some dierent distributions by relaxing the assumption that
a Gaussian random variable with a zero mean and known Vaqffase two random variables (and consequently the sum) have

ance corresponding to the estimated instrument nefsatti, Gayssian probability distributions. The Gaussian distidn is
the Gaussian random varialkdgwith zero mean and unknownitten simply as

variance (rﬁ) represents all the excess (white) noise in the data.
The functiong; ; describes the magnitude of the correlatioR/ o « (X = p)? 5
between two subsequent measurements madeaaidt;. We (. %) = \2ro? S B € )




0.2

0.1 0.15

PDF

0.05
—

Fig. 3. Estimated probability distributioS(x|a, o-2) in Eq. (8), withn =

likely regardless of their exact magnitude. While thes¢rithis-

tions are by no means a comprehensive collection of whitgenoi
models, we expect the comparisons of these models to provide
information on the overall shape of the white noise compbnen
caused by the telescope-instrument combination and tHarste
surface.

3.6. Prior choice

Because we take advantage of Bayesian inference, the atfoice
priors needs to be addressed briefly. Essentially, we usathe
prior probability densities and prior probabilities thagne used

in Tuomi (2012), there with the much more restricted data set
of HD 10180. In particular, we chosge) « AN/(0,0.3%), with

the corresponding scaling, which penalises eccentricitiere

1,...,6 (the corresponding functions have ihaxima). The parameters as they get closer to unity, yet, allows them if the highereeec

are selected as= 5 ando? = 1.

and is well known for its property that independent randoniva

ablesX; ~ N(ui,02) andXp ~ N(uz, 03) satisfy X + Xp ~
N(/ll +112,0'i+0'§).

tricities are needed to better describe the data. Becauseait
scale invariant parameter, we adopt the logarithm of theder
as a parameter and use a uniform prior with €0, andT max
corresponding to one day andTlfJs, respectively, wher&qys is
the baseline of the data analysed. We chobgg > Tons be-
cause signals with periods in excess of the data baselinbecan

The first alternative distribution we use is the Cauchy distrdetected in RV data sets (Tuomi et al., 2009).

butionC(x|i, y) = C(u,y) defined as

Cluy) = =

T

(7)

Y
(x=p?+y?|

which has longer tails than the Gaussian distribution atisif&es
the convenient property that for independ&nt~ C(u1,7y1) and
Xo ~ C([lz,’}/2) it holds thatXl + Xo ~ C([J]_ + U2, v1 + 72). This
distribution is selected to see if the noise is dominatedutlyers
that cannot be explained by the relatively short and "lightls
of the Gaussian distribution.

Our second alternative model assumes that U(-a, a) =
N(O, o-ﬁ), whereU(—a, a) is a uniform distribution of interval

The noise models have additional parameters as well, and
their priors were chosen as follows. The parameggf@ndw;)
were set to have uniform priors in the interval [-1, 1], fdr glto
allow both positive and negative correlations to occuméitgh,
we expected these parameters to receive mostly positivesal
that were at least consistent with zero given their unaies.
The parametar (8), which determines the time-scale of the AR
(MA) effect in the noise, was chosen to have a uniform prior
in the logarithmic scale, i.e. the fieys prior, with cutéfs at
amin = 1 mint andame = 1 year®. Though we expected this
effect to take place on the time-scale of hours, we chose a wider
interval limited by the minimum time-éierence between two
subsequent measurementsl(min) and a maximum of one year

[-a.al, ande ~ N(0,0?) are independent. In this case, theif0 account for possible noise correlations on longer ticees

sum is distributed according to the convolution of the diesi
which we approximate as

1 2n-1
S(xa, o) = lim > Z N(x
k=0

(8)

a
—[1-2n+ 2K], o2
2n[ n+ ],0'),

whereg? = o2 + 3. In practice, when the values afando- are

as well.

We choose the prior probabilitieB(M;), of our noise mod-
els (M;) to be equal. However, when comparing models with
different numbers of Keplerian signals we do not assume equal
prior probabilities but set them such that they favour theleto
with one less signal by a factor of two. These priors have been
applied in e.g. Tuomi (2012).

Given the unprecedented amount of data, we expect the pri-

of the same magnitude, approximating the above infinite SWps 1 he overwhelmed in the case of HD 10700 velocities and
with a choice ofn = 6 provides an accurate estimate for thga; they do not have a detectabféeet on the results. For this

distribution. This distribution has a “flat* maximum butlsac-
cording to the Gaussian function, as seen in Fig. 3afef 5

ando = 1. Even when parameteris five times greater than

reason, we do not test the dependence of our results on tlecho
of prior densities.

o, the approximation converges very rapidly and is an aceurat
description of the convolution fan = 3 — for obvious reasons 4 \odel selection

decreasing or increasings or n improves this accuracy. As

seen in Fig. 3, the curves far= 3, ..., 6 are practically indistin- We take advantage of the Bayesian model selection framework

guishable from one another. We choose this model to inwegstigin which each model is equipped with a number that describes

if the peak of the white noise component is not as sharp asit® relative posterior probability given the measuremeffitse

the Gaussian (or indeed in the Cauchy) model because a rafage that this probability is relative means that it onlyiddiow

of values at the vicinity of zero have roughly equal prokieib8. probabile it is that the measurements, as random variatdes, h
To summarise the above, our white noise models consistlEen drawn from the random process described by the model in-

(1) a Gaussian distribution because — according to our knowtead of being drawn from those described by the other models

edge — it is the only distribution that has been used to modelthe model set. Bayesian model selection has been used in de

the measurement noise when analysing RV data, (2) a Cautéymining the most probable number of planetary signalsén t

distribution with longer tails, and (3) a flatter distributi that RV data (e.g. Gregory, 2005, 2007a,b, 2011; Ford & Gregory,

accounts for jitter with small deviations from the mean dlyua 2007; Tuomi & Kotiranta, 2009; Tuomi, 2011, 2012; Tuomi et



al., 2011) but it can be readily applied to any other model-com The regular approach to detections of Keplerian signals in

parison problem because of its generality. RVs is based on the Lomb-Scargle periodogram of residuals
We compare the models by calculating the posterior probtiat are assumed to have a Gaussian distribution (Lomb,;1976
bilities as Scargle, 1982). While we studied the periodogram powersin o
P(MIM;)P(M;) analyses, we do not use them as an indication of whether there
P(Milm) = is a periodic signal in the data or not. The reason for thisagho

. ,
=1 PIMM;)PM)) is that calculating the periodogram of model residuals mesu
whereP(m|M;) are the marginal integrals whose values need tBe remaining noise is Gaussian and that there are no aaalitio
be calculated for each model given the measurenmentée esti- signals — if there are, the assumptions are violated ancette t
mate these integrals using the TPM estimate but verify thalt® cannot be considered trustworthy (see e.g. Tuomi, 2012).
using the simple Akaike information criterion (Akaike, 17or The analytical detection threshold of Tuomi et al. (2009) ca
small sample size (AICc, see e.g. Burnham & Anderson, 20028 used to receive a rough estimate for the detectabilitynf v
because the data sets we analyse are large enough so thatotie signals in a given data set. According to this criterian
number of data points well exceeds the number of model para@riodic signal with period® can be detected if the square of its

eters. amplitude exceeds the threshold given by

To ensure that the TPM estimates we obtain are trustworthy, 252
we perform several samplings for each data set and statistic K2 = — [fcz(w) + fsz(w)], where (10)
model with diferent initial states. We perform three such sam- N

plings to check that the obtained TPM estimates are consiste ¢ _ 5
If we find that the sample sizes are iffistient, we typically in- ¢
crease them by a factor of 10 and again obtain three indepénde f_ - [Sinﬂw]‘l if ¥ < 0.5 and unity otherwise

samples. We found that even when there were several Kepleria

signals in the model, sample sizes of the order dfiére siii- WhereN is the number of measurementsis the average noise
cient and independent samplings yielded TPM estimatesrwithevel of the data, angy = TP, whereT is the baseline of
roughly 0.05 from one another in the log-scale. We note thet tthe data. This criterion is only a very rough estimate begaius
parametera andh in the algorithm of the TPM estimate (Tuomidoes not take into account the variotifeets that data sampling
& Jones, 2012) were chosen to be"i@nd 10, respectively, might have on the detectability of signals. However, it diaée
because the chain membéfsandé,., became independent forinto account the ratio of the data baseline and the periodeof t
roughlyh ~ 10° — 10* and parametei of 10°° was found to signal, which means that the criterion is applicable everases
converge rather rapidly but still provide TPM estimateshirit Where the period of the signal exceeds the data baseline.
roughly 0.05 from one another in the log-scale. Using the criterion in Eqg. (10), we find that signals with pe-

In practice, we first compareffierent AR and MA models to riods less than roughly 1000 days can be detected in the HARPS
find out the most reliable description of the nature and arhourVs of HD 10700 if their amplitudes exceed 0.1 7hsn prac-
of autoregression and noise correlation in the data. Aftat,t tice, the amplitude of a signal has to be significantly abbie t
we compare the dierent models for the remaining white noisghreshold, i.e. in excess of the 99% Bayesian credibilitgrival.
in the data. We perform the comparisons by using the HARRhile this threshold appears to be very low, it results frdwa t
RVs of HD 10700. We generate a total of fourteen data sets frdaet that the data set contains a large number of high-pogcis
the 4398 HARPS RVs by adding Keplerian signals to the tim&Vs.
series to see which ones of the AR and MA models yield the cor- Because the threshold in Eq. (10) is only a rough approxima-
rect RV amplitudes for these artificial signals. Out of thedmo tion, we use more robust criteria to determine whether $gna
els that yield results consistent with the parameters o#tli:- are present in a data set. We say that1 signals are detected
cially added signals, we select a model that has the grgadsst if (1) the posterior probability of a model with+ 1 signals is at
terior probability according to Eq. (9). We do not simply ose least 150 times greater than that of a model withignals (Kass
blindly the best model according to this Eq. but require iy~ & Raftery, 1995; Feroz et al., 2011; Tuomi, 2012), if (2) the
that the model yields results consistent with the Keplesiga RV amplitudes of all signals are statistically significgrgteater
nals introduced into the data. The reason for this choidesisit than zero, and if (3) the periods of all signals are well caised
is possible that a signal, or at least part of it, gets inttgat as from above and below (Tuomi, 2012). We adopt these criteria
being a consequence of significant autoregression in ttae diat but require also that the signal amplitude exceeds thehbhes
is generated by pure noise by some other means. Therefere pggsented in Eq. (10).
pecially with respect to the AR models, we analyse the riiigb
of the diferent noise models carefully.

After having found the best descriptions out of the AR a
MA models, especially the ones that do not result in biasé@sin We added twelve dierent Keplerian signals to the HARPS RV
artificial signals, we perform a comparison of our white eoisdata of HD 10700 to see which models could extract their pa-
models. rameters from these artificial data sets the most accuratedgse
signals were set to have periods of 20, 50, 100, and 200 days an
amplitudes of 1, 2, and 5 m§ which resulted in a collection of
twelve data sets. We also generated two additional setsdigad
Before analysing the RV data with and without artificiallydad a 200 days periodicity with amplitudes of 0.5 and 0.3 h®
signals, we discuss briefly the requirements for a positdtedd see whether such extremely low-amplitude signals couldebe r
tion of a periodic signal in the data. Because these critmga trieved from the data. We chose the 200 days period becaese th
essential in the detection of weak signals in, not only R\&, bpower spectrum of the HARPS velocities had the fewest peaks
in any measurements aiming at detecting periodic signads, etween roughly 150 and 300 days (Fig. 2). We state that a sig-
describe our criteria in this section. nal is detected reliably if (1) the detection criteria in irevious

[1- cosmb]_1 if ¥ < 1 and unity otherwise

n%' Artificial signals

5. Signal detection criteria



section are satisfied and if (2) the 99% Bayesian credilskty Table3. Relative posterior probabilities and log-Bayesian evagesrfor
(BCSs; as defined in e.g. Tuomi & Kotiranta, 2009), i.e. intediffert_ant noise_ models using the HARPS RVs. No Keplerian signals
vals in one dimension, of the period and amplitude pararaet@ere included in the model. The noise models are GaussiaiCeshy

contain the correct values of the added artificial signals. (C), Uniform (U), AR@), and MA(p).
According to the results presented in Table 2, the pure white

noise model and both first order AR and MA models could not Model PMd) _In P(IM)
be used to determine the parameter values of the artifigiahis G ~107° 84310
reliably. This was found to be the case even with the signals g+©|§(11) - 1&245 ';jj?g
with amplitudes as high as 5 mighat should be detectable from G+AR((3)) 32105 70045
high-precision data easily, especially, given the largaiper of N ' 48 '

: . . G+MA(3) 1.1x10° -6994.0
data points. We also found this to be the case for higher order 14

. . . . G+MA(5) 2.8x10° -6914.8

AR models that yielded severe biases in the signals bechase t G+MA(7) 1.9%10°° -6903.7
signals were interpreted, in part, as noise-related aifogls in G+MA(10) 0.61 -6884.1
the da_ta. Therefpre, de;pite the addition of AR components t C+MA(10) ~ 10°167 -7267.1
the noise model improving the goodness of the model, we do not G+U+MA(10) 0.39 -6884.5

consider the AR models trustworthy for our purposes. Acicayd
to the results in Table 2, the AR models underestimate theakig
amplitudes significantly.

The MA models were found to be reasonably reliable in
guantifying the properties of the signals in the data. Wtiiky the equiprobability contours of paramet@;sw;, y, ando; in
overestimated slightly the amplitudes of the 20, 50, andde30 Fig. 4 as obtained using the HARPS data and a model without
signals, they were accurate for the 200 day signal thougimagBeplerian signals.
somewhat overestimated the signal amplitudes when reicover
the 0.3 or 0.5 m injected signals. Also, apart from the 50 day
signal, the MA models of order seven and ten yielded the best
results for periods and eccentricities of the injected aligin 7. HARPS radial velocities of HD 10700

The reason the 50 day signal could not be extracted correctly )
and the fact that the MA models, even the most accurate (i%el- Noise model
that have the greatest posterior probabilities) seventhtemth

order ones, yielded biased estimates for the amplitudésedta Ve analysed the HARPS RVs using severdldent noise mod-

and 100 day day signals warrants an explanation. We are-es&fy e chose the same AR or MA models as in Table 2 and
tially studying the properties of the noise in the HARPS difta calculated their posterior probabilities to compare tiperfor-

HD 10700. However, there is a possibility that the noise noddN@nces in explaining the data. We started with pure noise mod
we use lack some important features that impinges on the affS Without any Keplerian signals. As was the case with the
ity to relialbly recover injected signals. Another poskipiis datasets with injected artificial signals, the AR models (BR
that there are already signals present in the data and vvallatctuam:c AR(3)), nol'lt to mhen}\l/cl)An thedpLIJre_\I/_vktl)llte go'ie mog_el, did not
detect the superpositions of these real signals and tHeiaiti Perform as well as the MA models (Table 3). According to our
ones. If this is the case, the above considerations depehdvn Probabilities in Table 3, the MA(10) model was the best descr

much the existing signalsfact the artificial ones. We expect tha ionlagth; datg tielcauseti)t had grehater gg_sterior probyaiin h
there are no significant signals at or around 200 days in ttee dift€ MA(7) model. It can be seen that adding components to the

because the 200 day signals were extracted the most adguraly* Model improves its performance until there are roughly 5-
with the best MA models. However, in Section 7 we show tha components. Therefore, we did not try more components and
there are genuine low-amplitude signals in the data neguehe continued analysing the data with the MA(10) noise moddi tha

riods that provided relatively poor recovery of signals andhe nad the greatest posterior probability.
lack of complete recovery of injected signals is not suipgs We also tested the relative performance of the twibedi

The artificial signals at 200 days with the lowest amplient white-noise models, namely the Cauchy and the coneoluti
tudes received slightly biased amplitudes. The amplitusfes of Gaussian and uniform density (C and-G in Table 3, re-
the recovered artificial signals were systematically acoii5- spectively), in explaining the HARPS velocities. Accomglito
0.20 ms?! greater than their real values. While these valu&$!r results, the Cauchy noise model does not perform wet wit
were within the 99% BCSs of the obtained estimates, this-ové@spect to the Gaussian white noise model (Table 3). The uni-
estimation is a rather awkward feature and implies that thé-m form component, containing one extra parameter that peesli
els are not as good descriptions of the data as they should the. probability of this model in accordance with the prireip
Yet, this might again be a caused by the fact that there are s parsimony, does not increase the performance of the noise

nals — or their aliases — at or around 200 days in the HARPS daigdel enough to receive a greater posterior probability the
that cause biases to our estimates. Gaussian model. This indicates that the white noise compgone

In Table 2, the estimates are 0n|y shown for models MA(S@I the HARPS velocities has aShape that resembles the Gaussi
MA(7), and MA(10), because the other models did not identiﬁfnSiW and can be modelled well using the density in Eq.f(6) i
any significant periodicities at or around 200 days. the variance is written as the sum qf the variances of theunst

When sampling the posterior density, we observed that tRent noise ¢7) and the excess noise) for every measure-
joint posterior density of the noise parameters and reteree- MenNtr;. In practice Fhlfs also_me_ans th_at the additional parameter
locity was close-Gaussian in all the samplings we performedin Ed. (8) is statistically indistinguishable from zero imist
Therefore, we are confident that the adaptive Metropolis &&S€-
gorithm enables fast convergence and enables us to draw sta-Thus we proceed to model the noise in the HARPS velocities
tistically representative samples. We illustrate this Igtting  using the tenth order MA model and Gaussian white noise.



Table 2. Artificial (first column) and retrieved (subsequent colunsignals (their MAP parameter estimates) in terms of patars&, P, ande
using a model without any of the AR or MA components (0) andhwitlected AR or MA models for each data set. Signals deteetidbly, i.e.
whose 99% Bayesian credibility intervals contain the patemvalues of the artificially added signals, are emphdsiseng boldface.

Signal 0 AR(Q) MA(Q) AR(@) MAQ3) MA(G) MA(7) MA(10)
K=5[ms] 550 287 549 203 532 536 539 5.38
P=20[days] 19.99 19.99 19.99 19.99 2000 2000 20.00  20.00
e=0 005 006 005 000 001 003 000 0.02
K=2[ms] 260 125 257 075 239 241 237 2.40
P=20[days] 19.98 19.98 19.98 19.97 1999 2000 2000  20.00

0 008 008 007 010 008 002 005 0.03
Ims Y 168 080 165 044 141 139  1.39 1.40
20 [days] 19.96 19.97 19.97 19.96 19.98 2000 2000  20.01
0 011 006 010 001 007 007 003 0.03
5[ms ] 532 263 533 1/8 530 531 527 5.31
50 [days] 50.08 50.08 50.07 50.06 50.05 50.05 50.04  50.05

0 0.07 0.07 0.07  0.00 0.05 0.04 0.00 0.00
=2[msT] 2.42 1.13 2.45 0.65 2.40 2.37 2.33 2.33
= 50 [days] 50.12 50.13 50.14 50.17 50.11 50.09 50.09 50.11
=0 0.14 0.13 0.13 0.03 0.11 0.08 0.07 0.07
=1[ms1] 1.58 0.72 1.56 0.39 1.41 1.37 1.36 1.36
= 50 [days] 50.21 50.21 50.20 50.21 50.16 50.16 50.17 50.19
=0 0.25 0.22 020 021 0.15 0.11 0.10 0.05
=5[msT] 5.46 2.64 5.45 1.76 5.39 5.40 5.36 5.35
=100 [days] 99.98 99.85 9992 100.07 99.96 99.99  99.98 99.99

0.09 0.00 0.07 0.04 0.05 004 0.05 0.03
[ms7] 2.67 1.30 2.58 0.68 2.43 2.36 2.39 2.36
00 [days] 100.47 100.43 100.38100.02 100.00 99.99 100.02  100.00

HNO

=0 0.30 0.30 0.30 0.05 0.16 0.11 0.10 0.10
=1[ms1] 1.72 0.80 1.63 0.44 1.48 1.41 1.42 1.40
=100 [days] 100.48 100.45 100.41100.44 100.06 100.11 100.07 100.13
=0 0.30 0.29 0.29 027 0.27 0.24 0.17 0.19
=5[msT] 4.84 2.34 4.86 1.46 491 5.00 5.03 5.03
=200 [days] 200.74 200.69 200.62 200.66200.34 200.15 200.14 200.09
=0 0.08 0.06 0.07  0.02 0.07 0.07 0.07 0.07
2 [ms7] 195 0.94 1.96 0.59 2.03 2.00 2.05 2.09
200 [days] 201.97 201.73 201.71201.33 199.92 201.04 200.13 199.84

0.14 0.12 0.14 0.09 0.16 0.13 0.12 0.12
[msT] 113 0.54 1.06 0.33 1.05 1.10 111 112
00 [days] 203.55 203.18 203.55202.14 20192 201.68 200.57 198.06

l\)|—\o

® TUX®UOUX®TUTX®TUTX®UXR®UX®TUX®®UR®OUX®TUX®P®TUTX®TUX®

0 0.20 0.14 0.15 0.12 0.14 0.15 0.15 0.14
=05[ms ] - - - - - 0.66 0.64 0.65
= 200 [days] - - - - - 202.08 201.97 201.36
=0 - - - - - 0.09 0.13 0.11
=0.3[ms R - - R R 0.50 0.48 0.48
= 200 [days] - - - - - 201.84 202.62 203.16
=0 - - - - - 0.17 0.11 0.09
7.2. Signals in the HARPS data ing periodicity of 35 days significantly present in the data.

However, the residuals of the one-Keplerian model showed an
After removing the MAP estimated MA(10) components o&dditional peak exceeding the 1% FAP at 14 days (Fig. 5, sec-
the noise from the data and calculating the Lomb-Scargle psrd panel), and we continued analysing the data with a two-
riodogram of the residuals, most of the peaks appearingen teplerian model. This model further increased the modebpro
"raw” velocity data (Fig. 2) seem to disappear from the poweibility by a factor of 9.6&10'°. Finally, the residuals of this two-
spectrum (Fig. 5, top panel). However, there is one stromgx pekeplerian model contained one more signal at roughly 94 days
that exceeds the 1% FAP at 35.3 days and four others that gt exceeded the 10% FAP level (Fig. 5, third panel). Adghia,
ceed the 10% FAPs at 13.9, 20.1, 363, and 595 days. Sincestgeresponding periodicity in a three-Keplerian model @ased
did not perform binning of the data, the measurements likelie model probability significantly by a factor of k207, After
contain more information than the binned data from which sigemoving this signal there were no strong powers in the power
nificant periodicities have not been found (Pepe et al., 201%pectrum (Fig. 5, bottom panel) and the samplings of the pa-
Therefore, we added one Keplerian signal to our model ard cedmeter space of a four-Keplerian model failed to identify a
culated its posterior probability to see if the strongestksein  additional significant periodicities. Therefore, thergear to be
the periodogram were significant signals according to oitg-cr three Keplerian signals in the HARPS RVswoCeti. The pos-
ria. terior probabilities in Table 4 indicate that taking theggnals

The one-Keplerian model increased the model probability Bjto account improves the model very significantly, which im
a factor of 1.&10' (Table 4), which makes the correspondpPlies that there is strong evidence for three periodic sigea
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Fig. 4. Equiprobability contours containing 50%, 10%, 5%, and 1%hefprobability density of all the combinations of parameg w1, y, and
o3 from a single Markov chain using a model without Kepleriggnsils and a MA(10) noise description.

Table 4. Relative posterior probabilities and log-Bayesian evidsnof the process of recovering the artificial signals. We exgastis
modelsMy with k = 0, ..., 3 Keplerian signals, given the HARPS RVs. the reason the 20 and 100 days signals were poorly recovered
from our artificial test data. However, there do not appedeo

k  PWMdd) InPIMy) PMd)  InP(dIMy) very strong periodicities around 200 days (Fig. 5), whichdea
PM PM AlCc AlCc it possible to extract the corresponding artificial sigriedsn the

0 410%™ -68841 1&10%  -6886.7 data reasonably reliably given afBaiently sophisticated noise

1 8410%  -6846.0  1&10%  -6851.1 model. Yet, even the artificial signals at 200 days receivad a

g 8-1><11(Tls '2%8-8 7-‘*11014 'g%ig plitudes that were systematically greater than the valsesd to

generate them. This suggests that despite the fact that we co
not detect additional signals in the HARPS data, there nsitilht
be some low-amplitude signals hidden in the measuremesgnoi

in the = Ceti data. The probabilities based on the simple AICY longer periods.

imply the same qualitative results (Table 4). . We note that, with the samplings of the parameter space of
We show the MAP phase-folded orbits of our thregyggels with more than one Keplerian signal, the non-linear ¢

Keplerian solution in Fig. 6. While these plots are not visua rg|ations slow the convergence rate of the Markov chainis Th
very impressive, they do indicate that the large amount & d&sect arises because the multivariate Gaussian proposatyens
together with the improved modelling of the noise enables tyes not resemble the posterior very well. For this reasen, w
detection of these signals. The RV amplitudes of all thrge Siadopted arute force approach and simply increased the chain
nals were found to have MAP estimates below 1.0°mevel |engths suficiently to obtain samples that are statisgicap-

but they were still well constrained andfi@ir from zero very |qosentative. In practice, we increased the chain lengti to

significantly (Table 5). _ few 10 to ensure that they had indeed converged to the posterior
With respect to the artificial data sets we analysed in the Pensity.

vious section, we suspect that the artificial signals at %@ da

not get detected reliably because there already were period The signals in the HARPS velocities are of low amplitude
ities at 35 and 94 days in the data. The strongest perioditityand it is therefore relevant to ask whether they can be vettie
the data, namely at 35 days with an amplitude of roughly 1'msfrom the HARPS data with dierent noise models. We tested
is likely preventing the reliable detection of the artifi®@ days the dependence of the extracted signals on the noise mogels b
signals. While we still could extract them significantly ofithe seeing whether the same probability maxima existed in the pe
data, their amplitudes were biased, which is likely causetthé riod space. The exact amount of MA components was found
fact that the superposition of the artificial and real sigifahdor to impact the resuts little and we could retrieve the thrge si
their aliases) was actually the one that we detected. Tdhisst nals using models with less (5) or more (12) MA components.
hypothesis, we analysed one of the data sets with injecgedisi With the MA(3) model, however, the period space was found
(K = 1.0 ms?%, P = 50 days) while simultaneously modellingto contain much more maxima likely arising from noise cor-
the existing signals in the data. While we still obtainedsbi relations that were not accounted for in the model. We could
estimates for the parametePsand K, taking into account all also obtain two of the signals (at periods of 14 and 35 days)
three periodicities at periods of approximately 14, 35, 84d by using an AR(5)MA(5) model and observed a maximum peri-
days (Table 5) enabled us to retrieve the injected 50 dayabkigndogram power in the residual periodogram at 95 days butcoul
correctly given the uncertainties of the parameters. TiniB-i not constrain the corresponding signal by samplings. Wédcou
cates that the existing periodicities might indeed cauasdsi to also detect the three signals by using the "flat Gaussiasfilik




Table 5. MAP estimates and the corresponding 99% BCSs of the paresyadtthe three-Keplerian model for the HARPS RVs.

21.62

18.01

14.41

10.81

Power

7.21
3.60

21.26
17.72
14.17

10.63

Power

7.09

3.54

21.01
17.51
14.01

10.51

Power

7.00
3.50
0.00

20.75
17.29
13.83

10.37

Power

6.92

3.46

Parameter HD 10700 b HD 10700 ¢ HD 10700 d
PId] 13.927[13.901, 13.957] 35.314 [35.142, 35.434] 9432§2, 95.12]
e 0.17 [0, 0.41] 0.11 [0, 0.28] 0.21[0, 0.42]

K [ms™] 0.60 [0.30, 1.02] 0.89[0.52, 1.32] 0.89[0.42, 1.22]
w [rad] 2.210, Z] 2.8 1[0, 21] 3.91[0, 21]

Mo [rad] 3.41[0, Z] 3.9[0, 21] 5.1 [0, 21]

My sini [Mg] 2.0[1.0, 3.3] 4.0[2.2,5.7] 5.5[2.6, 7.5]
a[AU] 0.106 [0.099, 0.110] 0.197 [0.184, 0.204]  0.379 [0.366393]
o Mms 7 1.05 [1.01, 1.12]
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Fig.6. Phase-folded signals of the three-Keplerian solution \tligh
other two signals and the moving average component (MA(@D)e
noise removed.

Fig. 5. Lomb-Scargle periodograms of the HARPS data residuals afte

removing moving average components from the noise (toplpand
removing the 35, 14, and 95 day signals (subsequent paiiéks)dot-
ted, dashed, and dot-dashed lines indicate the analytit®,0%, and

10% FAPs, respectively.

10

hood model in Eq. (8). These results indicate that the siginal
the HARPS data are rather independent of the exact noiselmode



0.3

0.5 ms? if the properties of the noise in the velocities are taken
% % into account.

0.2¢

o 1

+ 7.4. Analysis of partial HARPS data

To check the robustness of our solution to the HARPS RVs, we
tested whether it was possible to receive consistent eewiith
only part of the HARPS velocities.

As our partial data set, we chose the last 2763 HARPS ve-
locities. This choice, while rather arbitrary, was madeduse it
corresponds to excluding the first two observation peridgs d
Fig.7. Estimated MA componentis for the HARPS RVs. tinguished clearly in Fig. 1 (top panel) because of the ahnua
gaps. We decided to exclude the first two observational peri-

Table 6. MAP estimates and the corresponding 99% BCSs of tt%ds because the overall stability of HARPS has likely been im

Component magnitude
o
——
——
—

-0.1

MA component

MA(10) noise parameters. proved after the first two years of operation. We therefopeek
not only that can we extract the same signals from this partia

Parameter AD 10700 b HARPS data, but that we might be able to constrain them better
w1 0.212[0.168, 0.261] and see the noise levels in the data decrease because of a bet-
Wy 0.120 [0.075, 0.170] ter stability of the partial data between epochs 3593 an® 508
ws 0.230[0.182, 0.282] [JD-2450000].
Wa 0.150[0.097, 0.208] With this smaller dataset and the same procedures as in the
Ws (())'81761 [[_%%%’ %%27?1]] previous section, we identified the same three signals tleat w
zs 0.066 [0_'007 ’0_'126] found in the full HARPS data set. We could not find a clear prob-
ws .0.027 [_0.092’, 0.031] ability maximum for a four-Keplerian model. This confirmsith
we 0.146 [0.080, 0.213] there are three statistically significant signals in theadéthen
w10 0.010 [-0.054, 0.073] we increased the number of Keplerian signals in the stegisti

model from zero to three, the posterior probabilities iasesl

by factors of 3.%10'6, 3.5<10'°, and 3.410°, which indicates
that these signals are again very significant. However, eoimg
these values to the factors received for the full data séténtels
The best noise model of the HARPS data was found to be tthet, while they are very similar when moving fro= 0 to
tenth order MA model with Gaussian white noise componerk= 2, the significance of the third signal decreases consitierab
This model cc_)ntains_ 13 frge parameters, namely, the mabmitdor the partial HARPS data.

of the Gaussian white noise (), reference velocity about the  Thege results are consistent with the ones received for the
data meary, a parameter describing the MA time-scleand  f,| HARPS data set but we found a significantlyfdrent noise

ten MA componentso;, j = 1,...,10. While the MA COMPO- |eyel in the partial HARPS data set. The parametgthat de-
nentsw; received values between roughly 0.3 and 0.0 indicatingjnes the magnitude, i.e. standard deviation, of the Sans
that the dependence of the noise of ittemeasurement on the g, cess white noise in the data, received a MAP estimate @f 0.8
10 previous ones was only moderate at most, the time-scale pac1 (with a 99% BCS of [0.78, 0.87] m&). This can be com-
rameter, with units of i, received an interesting value Closepared to the MAP estimate of, 1.05 mdgor the full HARPS

to unity with a MAP estimate of 1.19% and a 99% BCS of (ja(4 set (Table 5). Thus, the first two observing periodsddde
[0.98, 1.40] I~. This means that the noise correlations exist 9k, ntain considerably more noise than the subsequent ohiss. T
the time-scale of an hour. Also, the MA components roughly dgq|d be due to improvements in the instrumental stabifitpe
cre.ase'd as a function of their olrder in a natural way (Fig. thaRPS spectrograph over the years, but we cannot know this
which indicates that the correlations between the meamem,, gyre as it might also be caused by a more quiescent pefriod o
errors were the greatest the closer these measurementsnweggq target star with e.g. a lower amount of starspots. Eittest
time, both quantitatively and qualitatively. We show the MA i |50ks like the first two observing periods are contamidlaiy

estimates of all the MA parameters in Table 6. a significantly greater amount of noise than the subsequent p
Another interesting parameter, the magnitude of Gaussi

white noise, received a low MAP value of 1.06 Thgwith 99%

BCS of [1.02, 1.11]%) This value is considerably lower than

the original 1.7 ms' we obtained when modelling the noise ag.5. HARPS activity indicators

pure Gaussian white noise. This indicates that removinyylthe

components and the three signals from the data reducesthe@ear Bayesian analyses identify three clear periodic sgpal
viation of the data from the mean considerably. It also @rpla possibly caused by periodic Doppler shifts — in the RV data ac
why the three signals can be detected in the data. The ressoquiired using HARPS, but the possibility of these signalsipei
that the amplitudes of these signals are only slightly bettoev caused by activity-related phenomena on the stellar sairfacst
noise magnitude enabling the detections, whereas theyoare de accounted for. Therefore, we extracted the HABRSromo-
siderably below the noise level when the noise correlatayas spheric activity indices using methods honed using othgh hi
not accounted for. Based on these results and the estimatedrdsolution spectrographs (Jenkins et al., 2006, 2011; Tedm
tection thresholds from the analytical criterion in Eq. X1®e al., 2012) to search for periodicities in the activitiesg/an cor-
estimate that with the current precision of HARPS velosiite relations between the activity of HD10700 and the RV signals
is already possible to detect signals with RV amplitudes.8f 0 we find.

7.3. Noise properties
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Fig. 8. The distribution of HARPSS-index. The solid curve indicates 15

the fitted Gaussian curve.

Power

The distribution of HARPSS-indices for HD 10700 was
found to have an approximately Gaussian profile, as shown in s
Fig. 8. We can see that HD 10700 has a very tight spread of
chromospheric activities which helps us to realise thatstar is
magnetically very stable. The standard deviation ofShedex N ‘ ‘ ]
distribution (Fig. 8) is only 0.001 dex, which is very stalite 1 10 100 1000 10000
comparison to other typical G-dwarf stars. For instanae Shn Ortital Period {Days)
can exhibit activity index changes at the level of 0.005 dexro
long timescales (Livingston et al., 2007). This suggesis HD
10700 is exhibiting some period of sustained magnetic ligbi
or its orientation in space is such that it appears from ontage
point that the spot patterns on the stellar surface are gfleer Baliunas et al. (1996) and is something we discuss further in
number and do not change considerably over the baseline of ection 11.

HARPS measurements. Since the signals we have discovered in the RVs are of very

Another feature worth noting is that the distribution of théow amplitude we can investigate whether activity indicatae.
S-index is well described by a Gaussian function except the S-index and the BIS value, correlate with the RV variations
the lower wing region. There appears to be a small excessitothe HD10700 data. We calculated the phase-folded sigasals
low activity values for HD 10700 that may require an addishown in Fig. 6) and searched for such correlations betwaemn e
tional modification of the best fit distribution. It may be tlza of the signals and the activity indicators. We could not fingt a
double Gaussian is needed, similar to the distribution $een strong linear correlations between these indices and atiyeof
HD 114613 (Tuomi et al., 2012) but at a much more reducesthnals. None of these correlations were found to be sigmific
level. This may indicate that double Gaussian distribigtiof5- and the corresponding Pearson correlatiorffadents do not ex-
indices are common for F, G, and K dwarf and subgiant stazeed+0.08. This supports the argument that spot modulation, or
over these timescales of few years at these levels of poacisi some other periodic stellar phenomena ttigais the stellar line

The top panel in Fig. 9 shows a Lomb-Scargle periodogrdﬁﬁOf"eS, is not the root Cagse Of the per|0d|C|t|eS that we fim
analysis of thes-indices and there only appears to be one regidhe data for HD 10700, reinforcing the possibility that theee
in the period space that exhibits strong signals comparéukto Signals might be induced by planets orbiting the star.
rest of the data. The strongest power in this periodogranahas
period of 4.34 days and the eight strongest powers are faund,i : o
a range between 3.7 and 5.5 days. Interestingly, we detectet AAPS and HIRES radial velocities
weak signal, i.e. a clear probability maximum but not a statiThe AAPS and HIRES velocities had significantly more noise
tically significant periodicity, in the partial HARPS datatva _ roughly three times more — than the HARPS precision veloci-
period of 3.70 days. Taking into account the features inthiga ties, which suggests that detecting the same signals migten
ity data, we expect that this short period signal is likelyseed  possible from them. We started by finding the best noise model
by activity-related features in the RV data and not by a gemuifor the AAPS and HIRES RVs. We compared the performance
Doppler shift of planetary origin. of different MA models because the AR models could not be

The bottom panel in Fig. 9 shows the periodogram for theonsidered trustworthy descriptions of RVs based on this tes
bisector span (BIS) values of the HARPS data set. These Bi&h artificially injected signals. According to our resslthe
values were drawn directly from the HARPS-DRS analysis affifth order MA model was the best description of the AAPS data
details of their usefulness can be found in Santos et al.QR01and increasing the number of MA components did not resultin a
There are no significant periodicities in the BIS values @&ta model with a greater posterior probability. For HIRES d#te,
ther. These results, i.e. the lack of significant periotisiin first order MA model was already a reasonably accurate gescri
both, theS indices and BIS values, indicate that activity or lingion and increasing the order above three resulted in onlyam
asymmetries are not the cause of the periodicities we digtecimprovement that we do not consider significant. The pasteri
the HARPS RVs. Nevertheless, we should note that our 35.3@@babilities of the statistical models are shown in Tablgp7o
day signal is close to the 34 day period (Table 1) reported byfifth order MA model. Based on these posterior probabidljtie

Fig. 9. Lomb-Scargle periodograms of tBeindices (top panel) and the
BIS values (bottom panel).
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Table 7. Relative posterior probabilities of noise models for AARSla referred to the long series of publications titled "The HARP

HIRES RVs. search for southern extra-solar planets” of which two reoaes
are: Dumusque et al., 2011; Ségransan et al., 2011), whidd ¢
Model P(Md) (AAPS)  P(M|d) (HIRES) enable the detection of noise correlations over time-scalla
G 7.8<10°1%" 4.5¢10°% few hours — possibly arising from stellar surface phenomena
G+|V|A(1) 2.7)(1028 0.04 from HARPS data.
giMﬁg 9-8f1105 g'% Whether caused by the telescope-instrument combinations
: or the surface of the stellar target, the noise correlatimes to
be taken into account when analysing AAPS and HIRES RVs.
While their inclusion in the statistical model improves ter-
175.53 | E formance of the model considerably (Table 7), it also erabte
146.28 77T E to remove these correlations from the data, which couldaieve
g 7ok E signals otherwise hidden in the noise. For a pure Gaussiae no
§ 87.77 | E model, the magnitude of the excess jitter was found to be 3.18
s8.51 | 1 [2.90, 3.48] ms! and 2.45 [2.17, 2.74] m$ for the AAPS and
2926 - ] HIRES data sets, respectively. These values decreased@o 2.
‘ : ‘ ‘ ‘ [1.93, 2.44] ms! and 2.11 [1.86, 2.42] ms for the best MA
' Y et 1000 models, which indicates that a considerable amount of ribate
results from correlations was interpreted as Gaussiarevaoise
in the pure Gaussian white noise model. Therefore, as was the
109.38 | ] case for the HARPS RV data, accurate noise modelling can im-
Bl R RRREAREEEELEELELERE LR ] prove the potential of the AAPS and HIRES programmes to find
L 192 f ] lower amplitude signals.
£ saeof ] We note that the white noise component appeared to be close
M seac | . to Gaussian in the AAPS and HIRES data sets. The Cauchy
18.23 % ] model provided a much worse description of these data sets be
! : ! ‘ ‘ cause they lack considerable outliers. Also, the noise iriade
! 10 Perifg @ 1000 10000 Eq. 8 was worse than the pure Gaussian model because it has

one extra parameter that appears to be unnecessary belsause t
noise distribution does not have a flat maximum.

Fig. 10. Lomb-Scargle periodograms of the AAPS (top) and HIRES

(bottom) data sets after removing the noise correlatioom fthem. . . .

Dotted, dashed, and dash-dotted lines indicate the acailytt0%, 1%, 9- Combined radial velocities

and 0.1% FAPs, respectively. We combined the HARPS, AAPS, and HIRES RV data in an
attempt to see if the signals detected in the HARPS data alone
could be extracted from this combined set as well, and espe-
we use the MA(5) and MA(3) models for the AAPS and HIREGjally, whether their significances would change with respe
data in the following analyses. those found in the HARPS data alone. For obvious reasons, the
After removal of the identified noise components, we couktbmbined data set had a better phase coverage than any of the
neither identify any significant periodic signals in the AABnd individual data sets and a baseline corresponding to thtteof
HIRES RVs nor significant powers in their periodograms (FIAAPS data of approximately 13.5 years. We modelled the noise
10). Despite several samplings of the parameter space of-a gfroperties of this combined set by using the best noise ipescr
Keplerian model, our Markov chains did not converge to anjons found for each data set. While the periodogram of te-co
periodicities for either data set. This indicates, thatstgmals bined data did not show any signatures of periodic signas af
detected from the HARPS velocities are below the detectigd@moving the correlations in the noise, we performed sargpli
thresholds of these two data sets and cannot be obtained fightodels withk Keplerian signals, witlk = 1, 2, ..., anyway.
them. Identifying the 35 day periodicity was again straightfordia
The nature of the noise in the AAPS and HIRES data seiad the corresponding one-Keplerian model received a poste
turned out to be dierent from that observed in the HARPS R\ior probability that was 82102 times greater than that of
data. The noise in AAPS and HIRES data sets did not requirethe model without Keplerian signals (see Table 8). Simjlarl
many MA components as HARPS data did and the time-scalearfding more Keplerian signals in the statistical model wedo
the correlations turned out to befidirent as well. We find that identify the 13.9 and 94 day periodicities rather easilkiiig
the & parameter in Eq. (2) received values of 0.0026 [0.000fhese periodicities into account increased the model fibba
0.0080] ' and 0.0244 [0.0006, 0.07407 hfor the AAPS and ties further by factors of 25610 and 2.510'®, respectively,
HIRES velocities, respectively. These values correspondise which means that the three Keplerian signals detected fhem t
correlations on the time-scale of days to weeks, not the faw h HARPS data alone were present in the combined data set as
time-scale of the HARPS data. well with high significances. However, we note that with the
This different time-scale of noise correlations in the AAP$ree-Keplerian model, these three signals did not receive
and HIRES data sets could be caused by e.g. instability of taetly the same parameter estimates as they did for the HARPS
instruments from night-to-night that exceeds any noiseetar data alone. Their RV amplitudes received values of approxi-
tions on shorter time-scales. Indeed asterioseismologlys@s mately 0.10 ms' lower than for the HARPS data and their ec-
suggest that the short-term performance of the spectrbgiae centricities received slightly lower values better cotesis with
relatively similar (Bedding et al., 2007). The HARPS spectr circular orbits. Yet, given their 99% BCSs, all parameter va
graph is shown to have good short-term stability (the re&lerues were consistent with the estimates in Table 5. We note tha
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fifth periodicity in either subspace as separate models.Wse
this division because our initial samplings indicated thath
subspaces contained probability maxima and sampling arpara
eter space with well-separated modes is computaionaljyder
manding. The division enabled us to perform the correspandi
samplings much more rapidly than performing the samplirigs o
the full period space.

Samplings of the parameter space identified three additiona
probability maxima in the period space at roughly 170, 32d, a
1300 days. These periods correspond to orbital distancesawh
low-mass planets would likely remain on stable orbits beeau
they retain a sfiicient orbital spacing. Also, we note that the

320 day signal shows as a peak exceeding the 10% FAP in Fig.
N 5 (top panel) but because of the fact that this peak is so tdose
one year periodicity, which also shows in the window funetio
as a result of HARPS data sampling (Fig. 2, bottom panel), we
cannot conclude that it actually corresponds to a genugrasi

According to our samplings of the parameter space of the
five-Keplerian model, the probability maximum around 1300
days did not turn out to be significant. The amplitude of tlge si
nal corresponding to this probability maximum was not found
distinguishable from zero, and we could conclude that tha,da
when interpreted using the five-Keplerian model, did nopsuip
the existence of a signal at or around 1300 days. Also, though
there are other lower probability maxima beyond 1300 day pe-
riod (especially around 2000 days) up to the maximum perniod i
the parameter space of ten times the data baseline, nonemof th

N was found significant either.

_ Instead, the period space between 95 and 630 days provided
Fig.11. Convergence of the parameters of the fourth Keplerian assgme interesting solutions for the fifth signal. Especjalig
gjnqgﬂ?u“ dgf(!‘]f'g”ggvnsg"’(‘g‘oltfg%hf;? ﬁlf’:‘;'gge?;gf&gﬁésv(;ﬁ :S Fa/e found a global probability maximum for the fifth period at 168
noted using dferent colours). Arrows indicate the randomly selectegays which mcreased(t;e model probability of the flve-KBph_e
initial values K is chosen to be initially close to zero). The chains hav'g]Odel afactor of 3)X1 ; greate_r than that of th_e fou_r-_KepIerlan
been thinned by a factor of ten. one (Table 8). In addition to this solution, we identified treo

possible solution for the fifth signal at 315 days. This loxa

lution was found to have a significantly greater probabitlitgn
these observed fierences in the MAP estimates from HARPShe four-Keplerian model did, but it was not as probable &s th
data and the combined data could be caused byfingnt noise global solution corresponding to the 168 day periodicitg &ifth
modelling. signal (Table 8). Yet, both these solutions satisfied allditec-

We continued by sampling the parameter space of a fotien criteria by having RV amplitudes statistically sigoé#ntly
Keplerian model, and despite the fact that none of the rasidgreater than zero and by having well-constrained periods an
periodograms of the individual data sets or the full set sfbwthe Markov chains converged to either one of them very rgpidl
any powers in addition to the three aforementioned sigmads, regardless of the initial choice of the fifth period (Fig. 1®je
discovered a significant probability maximum in the parameote that 168 and 315 day periodicities are actually eacéristh
ter space corresponding to another signal with a period 6f 68ne-year aliases. We could easily verify this by samplinixa s
days and a RV amplitude of 0.52 [0.24, 0.85]thsThis signal Keplerian model with these two periodicities as initialtetaof
satisfied all our detection criteria by making the four-kadan the periods of two signals. These samplings did not converge
model 1.%10° times more probable than the three-Kepleriatwo signals but altered between either of the periodicitithe
one. Also, all the MCMC samplings we performed witlfdi- sense that the RV amplitudes of the 168 and 315 day signals had
ent initial states converged to this same solution (Figaht)we a negative correlation with either reaching a maximum when t
could safely conclude that the 630 days periodicity comesis other approached zero.
to a reasonably high probability maximum and is one of thé per  The five-Keplerian solution with the 168 day periodicity is
ods in the four-Keplerian model. We note that this 630 dagalig clearly favoured by the data according to the model probabil
shows in the periodogram of the HARPS data as well before iiges in Table 8. However, the solution with the 315 day peri-
moving any periodicities from the data as a peak exceediag dicity still has a considerable probability of 0.06 (thbugis
10% FAP (Fig. 5, top panel). not significant based on the AlCc), which means that we cannot

When sampling the parameter space of a five-Keplerianmpletely rule out this alternative solution. Becausehaf &l-
model, we chose the four-Keplerian one as a starting poitht aiernative solution and a local maximum in the period space of
set the initial parameter values corresponding to the figmads the fifth Keplerian signal at roughly 1300 days, we carried on
close to their MAP estimates. However, the period of the fiftstampling the parameter space of a six-Keplerian modeldurth
one was chosen randomly either between the 95 and 640 daysThe global solution of the six-Keplerian model was found
or above 630, such that its velocity amplitude was set closetb correspond to periodicities at 14, 35, 94, 168, 640, afiD13
zero. This division of the period-space into two parts waslenadays. However, despite the fact that the global solutionainad
because we could then treat the corresponding models véth the 1300 day signal, this signal was found to have an amglitud

[ms
0.2 04 06 028
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Table 8. Relative posterior probabilities and log-Bayesian evidsnof models\, with k Keplerian signals given the combined HARPS, AAPS,
and HIRES RV dataPs denotes the MAP period estimate of the signal added to theisol

k

P(Myd)
TPM

In P(d|Mk)
TPM

P(Myd)
AlCc

In P(d|Mk)
AlCc

Ps [days]

0
1
2
3
4
5
5

5.0<10>3
4.0x10°%
1.1x10°%7
2.6x10°12
3.%107
0.937
0.063

-10689.4
-10656.7
-10629.7
-10593.6
-10581.1
-10565.6
-10568.3

6.510°°
2.310°%
2.810°2%6
1.4101
8.810°°
~1
3310+

-10699.0
-10669.4
-10645.6
-10610.9
-10596.9
-10584.5
-10592.6

35.2
13.9
95.4
630
168
315

Pe [doy]
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400

P, [day]
300

200
x
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N
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Keplerian model. These samplings did not help identifying a
other significant probability maxima in the parameter space
Therefore, we conclude that the best description of the com-
bined velocities of HD 10700 contains five Keplerian signéle
present this orbital solution in Table 9 and show the phataetl
signals in Fig. 13. We also show the distributions of orlii-

ods, RV amplitudes, and eccentricities in Fig. 14 to denratest
that the periods and amplitudes are well constrained ampe;es
cially, fully comply with our detection criteria. In ordeo isu-
alise the significance of the signals, we plotted the phakked
orbits by dividing the phase of each signal into 200 bins and
by calculating the means and standard deviations for eath bi
These plots are shown in the Appendix for the combined data
set and for the HARPS data alone (Figs. A.1 and A.2). When
comparing these two figures, it can also be seen how the phase
coverages of the signals are improved when using the comhbine
data set instead of the HARPS data alone.

The five signals we observe in the combined data of HD
10700 are all consistent with circular orbits and have MA#? es
mated amplitudes below 1 mis Despite these low amplitudes,
their detection is robust in the sense that (1) their inclug the
statistical model increases the model probabilities fiicamtly,

(2) they have well-constrained periods and amplitudesdifiztr
statistically from zero. We have shown in Section 7.5 thaséh
signals do not have counterparts in the S and BIS activity ind
cators. It also seems unlikely that they arise from data famp
since the phase-folded RV curves have a good phase-coverage
(Fig. 13) and the signals are constrained reasonably aetyira
(Fig. 14 and Table 9).

Fig. 12. Convergence of the period of the fifth Keplerian as a funabion
Markov chain length to periods of 168 (top) and 315 days (o}t The

details of the panels are as in Fig. 11 but the chains havetheered

by a factor of ten.

9.1. Signals in periodograms

To examine whether the three most significant signals are in-
deed present in the data and whether the two longer periodici

that was not statistically significantlyfiérent from zero. Also, €S 0f 168 and 640 days are distinguishable from the data, we
We could not identify a solution where the sixth signal had $btracted the MA components of the best model in our anal-
period between the 168 and 640 day ones. In the six-Kepleri&fS from the combined data and analysed the residuals using
solution, the periodicity of 1300 days was well constraifiech (€ Lomb-Scargle periodograms. The sequence of residual pe
above and below, but the RV amplitude of this signal was onfjlograms is shown in Fig. 15.
barely constrained with a MAP estimate of 0.36 and a 99% In Fig 15, the top left panel shows the residual periodogram
BCS of [0.00, 0.66] mg!, which demonstrates that there is after removing the MA components from the data. This peri-
fair chance that this signal in fact has a negligible amggtu.e. odogram shows several features exceeding the 0.1% FAP level
there is no evidence in favour of its existence. Because wklcoThe highest peak corresponds to a periodicity at 35 daysasd h
not distinguish this signal in the six-Keplerian model fraevo, an analytical FAP of 2.210°%%. Similarly, after removing the
we did not calculate the probability for this model becauge wnost significant periodicities and again calculating thedeal
could not be sure whether the corresponding Markov chaids hseriodograms the one- and two-signal residuals show potver a
converged. 13.9 and 95 days (left middle and bottom panels) exceedimg th
To make sure that we did not miss any additional signalt,5x1072" and 1.41071° FAPs, respectively. These three signals
we performed samplings of the parameter space of a sevearrespond to the ones detected from the HARPS data alone.
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Fig. 13. Phase-folded Keplerian signals in the combined HARPS (QréeAPS (red), and HIRES (blue) RVs of HD 10700. Verticalsais scaled
to the interval of [-7, 7] ms' for clarity and the RVs deviating more than that from zerothezefore not shown.

Table9. Five-planet solution of HD 10700 RVs. MAP estimates of theapgeters and their 99% BCSs. Paramegtdenotes the time of periastron.

Parameter HD 10700 b HD 10700 c HD 10700 d

P [days] 13.965[13.941, 13.982] 35.362 [35.256, 35.450] 19493.48, 94.81]

e 0.16 [0, 0.38] 0.03 0, 0.31] 0.08 [0, 0.34]

K [ms™] 0.64 [0.40, 0.88] 0.75[0.48, 0.99] 0.59[0.34, 0.87]

w [rad] 1510, Z] 3.0[0, 2] 4.0 [0, 21]

Mo [rad] 2.6 [0, ] 3.2 [0, 2] 5.8 [0, 2]

to [days[ 4.17 [ 20.62 [] 2.31[]

m, sini [Mg] 2.0[1.2,2.8] 3.1[2.0,4.5] 3.6[1.9,5.3]

a[AU] 0.105 [0.099, 0.110] 0.195[0.184, 0.204] 0.374[0.384391]
HD 107700 e HD 10700 f

P [days] 168.12 [166.01, 170.44] 642 [615, 679]

e 0.05 [0, 0.27] 0.03 [0, 0.29]

K [ms™] 0.58[0.30, 0.86] 0.58[0.26, 0.85]

w [rad] 5.5[0, 2] 3.9[0, 21

Mo [rad] 0.5[0, Z] 1.6 [0, 2n]

to [days} 37.42 [] 168.49 [-]

m, sini [Me] 4.3[2.2,6.3] 6.6 [3.1, 10.1]

a[AU] 0.552[0.522, 0.575] 1.35[1.26, 1.43]

051 [ms 1] (HIRES) 2.14[1.92, 2.41]

012 [ms™] (AAPS) 2.13[1.88, 2.41]

033 [ms1] (HARPS) 1.06 [1.02, 1.10]

Notes. (x) Days after J3:2450000 that was used as the zero-point in our analyses.

In Fig. 15(right top panel) we calculate the residual peref HD 10700 on the basis that the noise in the data is modelled
odogram of the three-signal model.This periodogram has tlg using the MA models and Gaussian white noise.
significant powers exceeding the 1% FAP level at 15 and 168
days. Because we did not find signals at 15 days in our analy-
ses, we adopted the 168 day periodicity as a fourth signal an@l. Dynamical stability of the Keplerian solution
carried on by calculating the residual periodogram of the-fo ] o )
signal model (Fig. 15, right top panel). Removing the 168 dayhe discovery of these periodic signals has only been plesaib
signal also removed the peak at 15 days, which indicates tﬁd’psult of noise modelling and mdee_-d we can not b<_-:- confidento
the latter was an alias of the former. The periodogram shbevs this procedure because we cannot find the signals indeptiyden
640 day periodicity as a last significant power (with a FAP df the diferent datasets. We n(_)ne_theless consider it instructive to
2.5x10°3, Fig. 15 right middle panel). Based on these results, tRgsess Whether these periodic signals correspond to aarane
periodogram analyses support the results of the Bayesiy-anSystem that is dynamically stable in long-term. Thus, feilg

ses that there are five periodic signals in the combined Ry ddt/omi (2012), we investigated the stability of the plangtays-
tem corresponding to the five signals by plotting the appnate
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Lagrange stability thresholds for each subsequent paiaofgs bital distances where additional low-mass planets coutthie
in the system (Barnes & Greenberg, 2006). According to our ren stable orbits.

sults shown in Fig. 16, the system appears to be long-tetntesta o .
if the orbital eccentricities are not much greater thanrtheAP We tested the predictions of the stability thresholds by as-

estimates (see Table 9). Fig. 16 also indicates that thererar SUming that the putative planets in the HD 10700 system have
co-planar orbits. With this assumption, we increased theses

corresponding to the inclination of the orbital plane apuio
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Fig. 16. Approximate Lagrange stability thresholds calculatedtfer
HD 10700 signals. The hatched areas surrounding the ohbAR esti-
mates (red circles) indicate the parameter space whereihlelouring

planets would make the system unstable.

ing zero. According to our results, if the eccentricitiesrd five
planets are at or below their MAP estimates, the stabilitgsh-

to actual masses of roughly 40 times the minimum masses re-
ported in Table 9. Therefore, the orbital spacing of the fptda
five-planet system around HD 10700 enables almost any brbita
inclinations, and thus the system can still be dynamicaéiple

on long timescales for masses considerably greater thanithe
imum masses. We note that full-scale numerical integratain

the orbits of the putative planets are needed to verify tlwab
results and are beyond the scope of this paper.

11. Discussion

Signals with amplitudes lower than 1 mMshave been reported
in quiescent HARPS targets such as HD 20794 and HD 85512
(Pepe et al., 2011). The lowest reported RV amplitude in the
literature appears to be the 0.56Thene of HD 20794 ¢ (Pepe et
al., 2011). In practice, such accuracy corresponds to ediey
to find habitable zone super-Earths and hot rocky planets eve
less massive than the Earth orbiting nearby Solar-typs.star

In the current work, we have considered several noise models
for high-precision velocities using a large data set for D00
from the HARPS, AAPS and Keck exoplanet surveys. Our tests
indicate that noise models containing a moving average com-
ponent and assuming Gaussian white noise is the nitet-e

olds are still in favour of a dynamically stable system whiea t tive modelling strategy for such data. Our simulations & th
inclination of the orbital plane is below’3This corresponds HARPS data for HD10700 indicate that even the recovery of
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signals with amplitudes of 0.3 mswith a period of 200 days is the removal of the "moving average* noise apparent in tha dat
possible. Our tests also indicate that noise modelling ceatty and with the assumption of Gaussian errors and that (2) with
improve the sensitivity of RV searches to low-amplitudensilg. the available data we cannot discover any of the signals inde
For instance, while the practise of nightly binning mightweve pendently in more than oneftkrent dataset. It is worth noting
correlations from the noise and make the excess noise appgat all the signals have similar MAP amplitudes betweer8 0.5
"whiter*, it also artificially decreases the amount of datada and 0.75 ms'. Given the nature of these signals appearing after
may lead to the undesirable sidffezt that low-amplitude sig- removal of noise it is unsurprising that they all have low #&mp
nals cannot be detected in the data after all. tudes. However, for a planetary interpretation it mightuieg

We find that after removal of the moving average noise coraeme coincidence that the planets in this system have such an
ponents in the HARPS data for HD10700, three signals can &gangement that the masses and periods conspire to aamgesp
discerned. Although, these signals can not be confirmed indie similar Doppler amplitudes. Although, our simulationsli
pendently in the AAPS and Keck datasets, they are found cortfite that the recovery of such low-amplitude signals is aot p
dently in the combined HARPS, AAPS, and HIRES data set tisularly dependent on the details of the moving averagseoi
well. These three signals can also be found when using klightemoval, the actual recovered amplitude of such small tsgna
modified (sub-optimal w.r.t. the preferred noise model af thin our simulations might be overestimated. Thus, care mest b
HARPS data with MA(10) term and Gaussian white noise cortgken in the interpretation of the nature of the signals.
ponent) noise models, such as the MA(5) and MA(7). Also, two We note that there are many possible ways to model the noise
additional signals become statistically significant in ttem- in radial velocity data and that in this work we have only ex-
bined dataset. These signals discerned with Bayesianitpes plored a few of them. Indeed, the signals we detect may also
and periodogram analysis are found at periods of 13.9, 98.4, result from the combination of inflicient noise modelling and
168, and 630 days and do not have activity-induced courntisrpaur lack of understanding of stellar physics: asteroselisgyy
based on the S and BIS indices from HARPS. The strongestséfrspots, magnetic cycles, granulation and other phenawfe
these signals at 35.4 days is close to the 34 day rotationiakpe stellar surfaces.
of the star which is a cause for concern. However, in addition In the future, we hope to expand the quantity of high preci-
to the lack of activity-induced signals near the rotationigumy  Sion radial velocity data of HD 10700 and to consider a wider
we also note that the period distribution in the posteriarsile range of noise models and incorporate an improved undekstan
ties giveso ~ 0.0334 (see Fig. 14) for the 35.362 day signaing of stellar phenomena. While our noise model choiceseserv
If this signal was indeed induced by stellar rotation andvagt to account for asteroseismological noise on timescalesratar
we would expect it to receive a much larger uncertainty und#e exposure times they do not necessarily correspondgailysi
the reasonable assumption that a magnetic cycle dfefeiitial to e.g. granulation noise in the data. Comparisons of a mere e
rotation were present. Any spot induced RV signal would be efensive collection of statistical models taking into aatboion-
pected to change periodicity depending on its emergemudisi  White features in the RV noise are needed to verify or falgigy
(which varies between 0 and 40 degrees on the Sun during arexistence of the signals we report in this work. Also, futtia¢a
year magnetic cycle), due to the latitude dependefiemintial will be of essence in determining the nature of the signals we
rotation. We note that the HARPS data set has a baseline of 8gdect. If the five periodicities can be detected indepettylen
years (13.5 years for the combined data set), a significant pdifferent datasets, their genuine nature as signals of steliar o
portion of theSolar activity cycle. The degree of rotational sheagin will be verified. While even this will not imply that theye
can be written as(f) = Qe — AQ sir?(6), whered is the stellar definitely Doppler signatures of low-mass planets, it wilh
surface latitude§2 the angular velocity, anfe the equatorial ruling out spurious periodicities that inSicient modelling and
angular velocity. Following Barnes et al. (2005), who fotnat instrumental instability might cause.
AQ scales with stellar mass but is only weakly dependent on With a distance of only 3.7 pc, HD 10700 is the third clos-
rotation rate, we obtainQ = 0.06 rad day* or equivalently, est star reported to be a host to a putative planetary sydtem a
AP = 11.04 days. This represents the maximum rotation periedEridani (Hatzes et al., 2000) with a distance of 3.2 pc and
variation (i.e. between equator and polar regions), buttier Centauri B (Dumusque et al., 2012) with a distance of 1.3 pc,
solar-like case with spots limited to 0 and 40 degrees weaxpé&rough both of these remain to be confirmed and Zechmeister et
to measure a rotation period variation of_(14sir?(4o) = 456 al. (2005) have casted considerable doubt on the existdrece 0
days. This would lead to a considerably largein the poste- planetaround Eridani. This makes HD 10700 an ideal target for
rior density distribution than we find, even if we take intmeo future direct-imaging missions. The signals we find, whiag-s
sideration that the HD10700 data only span the equivalent @gsts the presence of low-mass planets, are consistenbettth
approximately half a solar cycle where the maximum variaticcurrent theoretical models for low-mass planet formatiuohex-
on latitude might be closer to 3.3 days. This is still an omfer tant observational evidence for the presence of low-masets
magnitude greater than the uncertainty in the obtainedgeim in the immediate Solar neighbourhood. Assuming the sigarals
other words, our posterior period distribution width foetB5.4 indeed of planetary origin, the orbital periods of the twoen
day signal ishot consistent with an activity induced signal that anost candidates appear to suggests a 5:2 commensurdimlity t
solar-like star might be expected to produce. would likely enable the long-term stability of the systered®.g.

Similar arguments can be applied to the constrained nat@@gimilar stabilising resonance of NN Serpentis Horner,2301
of the other signals in the posterior densities (see Figahd) Given this assumption, we also note thata candidate camesp
thus we do not consider that rotation and spots are a ready &g to the signal with a period of 168 days would have an orbit
planation for the signals. Thus it is plausible that the algn inside the liquid water habitable zone as defined by (Setsik,e
are caused by a system of five planets with minimum mass&¥07). However, these issues remain merely speculativiehmt
of 2.0, 3.1, 3.6, 4.3, and 6.6 M respectively. Indeed, such aplanetary origin of the signals can be verified by an independ
system would be dynamically stable. However, before gaamg f detection.

ther with a planetary explanation, it should be emphasisat! t acnowiedgements. M. Tuomiis supported by RoPACS (Rocky Planets Around
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Appendix A: Phase-folded orbits
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Fig. A.1. Phase-folded Keplerian signals for the combined HARPS BE8Rand AAPS data. Orbital phase of each signal is divided200 bins
and the means and the corresponding standard deviatiohs déta in each bin are plotted together with the Keplerignagi
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Fig.A.2. Asin Fig. A.1 but for the high-precision HARPS data alone.
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