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Permafrost regions (in which the ground is frozen throughout the year) 
cover 24% of the northern-hemisphere land surface and hold ~1700 Gt 
of organic carbon. When it thaws it releases CO2 and CH4, turning a 
long-term carbon sink into a source and enhancing the greenhouse effect 
(1, 2). Permafrost degradation also intensifies thermo-karst development, 
coastline erosion and liquefaction of ground previously cemented by ice. 
The latter endangers infrastructure including major Siberian oil and gas 
facilities (3). An ability to predict the extent of future permafrost degra-
dation is desirable. 

Assessing the response of permafrost to changing climate is chal-
lenging. Significant warming and thawing of local permafrost conditions 
are seen in instrumental records during the last 20 years (4) but perma-
frost response at regional scale is slow to respond to warming and in-
strumental records are insufficient to capture the long-term behavior. To 
understand the long-term response of permafrost to climate change re-
quires knowledge of past permafrost conditions. Dating of organic mate-
rial (4) or ground ice (5) can indicate the age of existing permafrost, but 
cannot reveal the longer-term history of permafrost. 

In this study, we use cave carbonates (speleothems) as a tool to date 
past permafrost and its relationship to global climate. Vadose 
speleothems (stalactites, stalagmites and flowstones) form when meteor-
ic waters (i.e., water originating from atmospheric precipitation) seep 
through the vadose zone into caves. Cave temperatures usually approxi-
mate the local mean annual air temperatures (MAAT), because of buffer-
ing by the surrounding rock (6). When cave temperatures drop below 
0°C, waters freeze and speleothem growth ceases. Speleothems found in 
modern permafrost regions are therefore relicts from warmer periods 
before permafrost formed (7–9). Absence of water also prevents 
speleothem growth in arid settings, so speleothem growth episodes in 
modern deserts are proxies for past wet periods (10). Because 
speleothems can be robustly and precisely dated with U-Th techniques, 
they provide a detailed history of periods when liquid water was availa-
ble, and both permafrost and desert conditions were absent. 

We reconstruct the history of Siberian permafrost (and the aridity of 
the Gobi Desert) during the last ~500 kyr using U-Th dating of 

speleothems in six caves along a north-
south transect in northern Asia from 
Eastern Siberia at 60.2°N to the Gobi 
Desert at 42.5°N (Fig. 1). The north-
ernmost cave - Lenskaya Ledyanaya 
sits today on the boundary of continu-
ous permafrost with MAAT substantial-
ly below 0°C (11). The permafrost type 
changes to the south-west to discontin-
uous, sporadic, and then to permafrost-
free conditions (12) (Fig. 1). Annual 
precipitation in this Siberian region is 
400-600 mm/y falling mainly during 
summer. To the south, in the Gobi, 
MAAT ranges from +2°C to +8°C and 
little precipitation falls (200-80 mm/y) 
(13). 

Speleothem thickness provides an 
indication of long-term liquid-water 
availability along the transect. Only 8 
cm of growth is seen in the northern-
most cave, increasing to ~70 cm in the 
caves of southern Siberia and decreas-
ing again to less than 30 cm in the Go-
bi. As expected, southern Siberia is 
more suitable for speleothem growth 
than the cold north or the dry south. All 
recovered speleothems show a texture 

of calcium-carbonate layers alternating with growth hiatuses (see sup-
plementary materials). 
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Soils in permafrost regions contain twice as much carbon as the atmosphere, and 
permafrost has an important influence of the natural and built environment at high 
northern latitudes. The response of permafrost to warming climate is uncertain and 
occurs on timescales longer than has been assessed by direct observation. In this 
study, we date periods of speleothem growth in a north-south transect of caves in 
Siberia to reconstruct the history of permafrost in past climate states. Speleothem 
growth is restricted to full interglacial conditions in all studied caves. In the 
northernmost cave (at 60°N), no growth has occurred since Marine Isotopic Stage 
(MIS) 11. Growth at that time indicates that global climates only slightly warmer than 
today are sufficient to thaw significant regions of permafrost. 

Thirty-six speleothems were collected from the caves and 111 U-Th 
ages conducted (Fig. 2A). In each speleothem, at least one sample was 
taken from the outermost layer and from each section of growth (i.e., 
between hiatuses) inward, until the limits of the U-Th chronology were 
reached (~500 ka) to assess all periods of growth. A full description of 
the samples, and their sub-sampling and dating is given in the supple-
mentary materials. 

The youngest speleothem growth in the region of modern continuous 
permafrost (i.e., at 60°N) occurred during interglacial MIS-11, con-
trasting with the center of the transect where speleothems grew during 
all interglacials (Fig. 2, A and B). Age ranges in southern Siberia also 
demonstrate that the duration of speleothem deposition in MIS-11 was 
longer than during subsequent interglacials. These observations indicate 
that permafrost thawing during MIS-11 was more extensive than at any 
other point during the last 450 kyr and extended northward of 60°N, 
significantly further north than the present limit of continuous perma-
frost. Some similar thawing may also have occurred at MIS-13 in this 
most northerly cave. The absence of any observed speleothem growth 
since MIS 11 in the northerly Lenskaya Ledyanaya cave (despite dating 
outer edges of 7 speleothems), suggests the permanent presence of per-
mafrost at this latitude since the end of MIS-11. Speleothem growth in 
this cave occurred in early MIS-11, ruling out the possibility that the 
unusual length of MIS-11 caused the permafrost thawing. 

MIS-11 was also characterized by wetter conditions in the Mongoli-
an Gobi Desert, as shown by two ages from Shar-Khana Cave 
speleothems (Fig. 2A), which contrast with the absence of growth during 
subsequent interglacials. The existence of a humid event in the Gobi 
during early MIS-11 is supported by mollusk assemblages from Chinese 
Loess Plateau (14), and by the dominance of input into Lake Baikal via 
the Selenga River during MIS-11 (15). 

The degradation of permafrost at 60°N during MIS-11 allows an as-
sessment of the warming required globally to cause such extensive 
change in the permafrost boundary. There is significant evidence that 
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MIS-11 was the warmest of recent interglacials, including the presence 
of boreal forest on South Greenland at that time (16), the absence of ice-
rafted debris in the North Atlantic (17), increased sea levels (18), and 
higher sea-surface temperatures (SST) in the tropical Pacific (19–21). 
Mg/Ca reconstructions (20, 21) indicate that SST of the Pacific Warm 
Pool (PWP) reached >30°C in early MIS-11, compared to 29.5°C in 
MIS-5.5 and ~28.5°C during the pre-industrial Late Holocene (Fig. 2D). 
This tropical heat was transported poleward (22) and there is evidence of 
unusual warmth in Siberia during MIS-11, evidenced by the high frac-
tion of biogenic silica in the sediments of Lake Baikal (23) (Fig. 2C) and 
high spruce pollen content in Lake El’gygytgyn, suggesting local tem-
peratures 4-5°C above present (24). When PWP temperatures reach 
30°C this appears to cause more pronounced warming of northern conti-
nents, and lead to significant northward migration of the permafrost 
boundary. 

Periods of Siberian speleothem growth since MIS-11 suggest a close 
link between greenhouse warming/global temperatures and permafrost 
extent. After a brief post MIS-11 hiatus in growth (from 370 to 355 ka), 
coinciding with a minimum in atmospheric CO2 and in PWP SST during 
MIS-10 (Fig. 2, D and F), significant thicknesses of speleothem grew in 
Southern Siberia during MIS-9 as greenhouse gases returned to higher 
values. Speleothems also grew actively during MIS-5.5 and the Holo-
cene (>5 cm) when CO2 levels were high. In contrast, growth during 
MIS-7, a period of lower CO2 and cooler global conditions, is minimal 
(maximum 1.5 cm in any studied cave) and no growth is observed during 
MIS-5.4 to 5.1. Conditions during MIS-7 were at the very limit for 
growth in southern Siberia: speleothems grew during MIS-7.3 and 7.1 in 
Okhotnichya Cave (52°N) but only during MIS-7.1 just to the north at 
Botovskaya Cave (55°N). No growth occurred during MIS-7.5 at either 
cave despite higher concentrations of CO2 and CH4 than later in MIS-7 
(25, 26) and high PWP SST (Fig. 2, D to F) (20, 21). Lake Baikal bio-
genic silica (23) and the percentage of arboreal pollen in Lake 
El’gygytgyn sediments (27) are also lower during MIS-7.5 than during 
MIS-7.3 and 7.1. Lower local summer insolation during MIS-7.5 (Fig. 
2G) (28) suggests a role for local insolation in overprinting a Siberian 
climate dominantly controlled by global greenhouse gas levels. 

U-Th dating of Siberian speleothem growth during recent 
interglacials allows detailed comparison of permafrost history with other 
aspects of the global climate system (Fig. 3). During MIS-5.5, 
speleothems started growing between 128.7 and 127.3 ka, and ended 
between 119.2 and 118.1 ka (determined from Bayesian analysis of U-
Th data using OxCal-4.1; see supplementary materials). The permafrost 
thawing initiated when insolation was close to its maximum and green-
house gases had just reached maximum values. Holocene permafrost 
degradation at our sites lags maximum insolation and greenhouse gas 
concentrations slightly, and starts between 10.0 and 9.8 ka. This lag may 
be due to the time required for permafrost to thaw at the slightly lower 
insolation and CO2 levels of the Holocene (relative to MIS-5.5). 

Overall, dated periods of speleothem growth allow an assessment of 
the relationship between global temperature and permafrost extent. PWP 
SST was 0.5-1.0°C higher during MIS-5.5 and ~1.5°C higher during 
early MIS-11 relative to the pre-industrial Late Holocene (Fig. 2D) (20, 
21). Using PWP SST as a surrogate for global temperature (20) suggests 
that increase in global temperatures by 0.5-1.0°C will degrade only non-
continuous permafrost in southern Siberia with the Gobi Desert remain-
ing arid. Warming of ~1.5°C (i.e., as in MIS-11) may cause a substantial 
thaw of continuous permafrost as far north as 60°N, and create wetter 
conditions in the Gobi Desert. Such warming is therefore expected to 
dramatically change the environment of continental Asia, and can poten-
tially lead to substantial release of carbon trapped in the permafrost into 
the atmosphere. 
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Fig. 1. Map showing the extent of permafrost types in 
eastern Siberia, the Gobi Desert, and the location of studied 
caves (black circles). Permafrost data are taken from Brown 
et al. (2001) (29). 
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Fig. 2. (A) Distribution of speleothem U-Th ages (±2σ) in 
time and space (n – total number of U-Th age determinations 
per cave, including those beyond the U-Th range) with grey 
bars signifying periods of growth in Okhotnichya and 
Botovskaya caves. (B) Benthic δ18O stack (30) with MIS 
numbers. (C) Concentration of biogenic silica in Lake Baikal 
sediments (%) (23). (D) Pacific Warm Pool Mg/Ca SST, with 
the pre-industrial Late Holocene SST shown by red 
horizontal fragmented line (20, 21). (E and F) CH4 and CO2 
records of EPICA Dome C respectively (25, 26). (G) Summer 
insolation at 55°N (28). Speleothems with ages exceeding 
500 ka (within ±2σ range) are not shown, but accounted for 
in n. Two samples SLL9-2-A+B and SOP-32-B are not 
included because they reflect a mixture of material from 
different layers; please refer to table S1. 
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Fig. 3. Siberian speleothem growth periods during Holocene 
and MIS-5.5 (A) with grey bars indicating periods of growth. 
Compared with East-Asian Monsoon record from Hulu and 
Sanbao caves (B) (31), GICC05 δ18O (C) (32, 33), CH4 (D) 
and CO2 (E) records of EPICA Dome C (25, 26), and 55°N 
summer insolation (F) (28). 
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