
Introduction

Researchers have made enormous strides in the

past two decades in sorting the perplexing diver-

sity of Triassic stem crocodilians and stem avians

using important new fossils combined with

explicitly phylogenetic methods (Gauthier 1986;

Benton and Clark 1988; Sereno 1991; Parrish

1993; Juul 1994; Novas 1996; Benton 1999;

Rauhut 2003; Irmis et al. 2007; Langer et al. 2009;

Nesbitt 2009, in press; Brusatte et al. 2010). 

Nevertheless, most Triassic species remain too

fragmentary to allow us to draw firm con-

clusions about evolutionary trends at the root of

Archosauria, even in the well-studied locomotor

system (Cruickshank and Benton 1985; Gauthier

and Padian 1985; Parrish 1986, 1987; Novas 1989;

Gatesy 1991; Sereno 1991; Hutchinson 2006). The
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Abstract
We introduce a spectacular new specimen of a Late Triassic stem crocodilian identified as

Poposaurus gracilis. It is part of a poorly known group, Poposauroidea, that, because of its strik-

ing similarities with contemporaneous stem avians (“dinosaurs”), has long puzzled archosaur pa-

leontologists. Observed vertebrate locomotor behaviors, together with exceptional preservation

of distinctive anatomical clues in this fossil, enable us to examine locomotor evolution in light of

new advances in phylogenetic relationships among Triassic archosaurs. Because this stem croco-

dilian is unambiguously an archosaur, a diapsid, a tetrapod and a choanate sarcopterygian, we

can safely infer major components of its locomotor behavior. These inferences, together with

form-function constraints, suggest that P. gracilis was a fleet-footed, obligately erect-postured,

striding biped. That behavior seems to have been superimposed on the ancestral archosaur’s in-

novative locomotor repertoire, which includes the capacity to “high walk.” These novelties per-

sist in a recognizable form in archosaurs for at least 245 million years and are widely distributed

across Earth’s surface in diverse ecological settings. They thus qualify as evolutionary innovations

regardless of significant differences in diversification rates among extant diapsid reptiles.
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innovation
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problem is only exacerbated by the dearth of

anatomical correlates that clearly distinguish fac-

ultative from obligate behaviors (Lauder 1995). We

introduce an exceptionally preserved specimen of

a suchian stem crocodilian (Figure 1) from the

Late Triassic (Norian) Chinle Formation of Utah,

USA, which we assign to Poposaurus gracilis Mehl

1915. It is unique among specimens of fully 
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Figure 1. Poposaurus gracilis. A, Illustration of in situ P. gracilis (YPM VP 057100) from the base of the Chinle
Formation, Circle Cliffs, Grand Staircase–Escalante National Monument, Utah, USA. Scale bar equals 10 cm. 
B, Dorsal view of left manus as found in situ. C, Dorsal view of left pes after extraction from the block. D, Left
lateral view of acetabular portion of the pelvis. The femur has been removed to reveal the incompletely ossified
acetabulum. E, Left lateral view of the left ankle in situ. F, Skeletal reconstruction of the bipedal stem crocodil-
ian P. gracilis based on YPM VP 057100.



terrestrial carnivorous Triassic stem crocodilians

in that it consists of most of the postcranial skele-

ton of a single well-preserved individual in full

articulation (the skull, unfortunately, is known

only from the premaxillae and a few partial tooth

fragments).

Assessing the stance and gait of extinct verte-

brates such as Poposaurus gracilis has proven 

difficult because extant species provide few unam-

biguous morphological correlates applicable to

fossils (Lauder 1995). Even with strong correla-

tions, phylogenetic autocorrelation may leave lit-

tle statistical power from which to evaluate their

significance (Felsenstein 1985). This problem is

especially acute in the case of rare evolutionary

innovations; that is, synapomorphies bundled in

evolutionarily stable configurations that enable

organisms to confront the challenges of existence

in striking new ways (Wagner and Schwenk 2000).

Studying the origin of locomotor innovation is

further complicated because organisms often dis-

play complex accumulations of adaptations that

work in synchrony. As a result, it often remains

unclear whether isolated morphological features

found in incomplete fossils indicate compulsive

(obligate), voluntary (facultative) or nonexpressed

(potential) behaviors. Moreover, the presence in

stem species of one (or more) of the features that

in its descendant crown contributes to a highly

integrated functional complex tightly coupled to

a particular derived behavior does not necessarily

support the presence of that behavior in this

extinct stem species. Such characters might, after

all, have appeared prior to their integration into a

functional complex, and its associated behavioral

capabilities, within which we observe them today

(exaptation; Gould and Vrba 1982).

To avoid some of the potential pitfalls in puta-

tive form-function relations, we propose a tree-

based method that predicts which locomotor

capabilities Poposaurus gracilis should have had

solely on the basis of its phylogenetic position—

without even considering its morphology in a

“functional” sense. In this method, described

below, tree topology and justified inferences based

on observed locomotor repertoires in extant

species provide a null hypothesis about which

behaviors should be present in an extinct species.

That null hypothesis can then be tested in light of

the anatomical details preserved in the fossil in

question.

Institutional abbreviations used in this paper

include: AMNH, American Museum of Natural

History, New York, New York, USA; BMNH,

Natural History Museum, London, United King-

dom; BPI, Bernard Price Institute for Palaeonto-

logical Research, Johannesburg, South Africa;

BSPG, Bayerische Staatssammlung für Paläon-

tologie und historische Geologie, München, Ger-

many; FMNH, Field Museum of Natural History,

Chicago, Illinois, USA; IGM, Instituto de

Geología, Universidad Nacional Autónoma de

México, Ciudad Universitaria, Mexico; MNHN,

Muséum national d’Histoire naturelle, Paris,

France; OUM, Oxford University Museum,

Oxford, United Kingdom; SAM, South African

Museum, Cape Town, South Africa; SMNS,

Staatliches Museum für Naturkunde, Stuttgart,

Germany; TMM, Texas Memorial Museum,

Austin, Texas, USA; TTUM, Texas Tech Univer-

sity Museum, Lubbock, Texas, USA; YPM HERR,

Division of Vertebrate Zoology Herpetology Rep-

tile Collection, YPM VP, Division of Vertebrate

Paleontology Collection, and YPM VPPU, Divi-

sion of Vertebrate Paleontology Princeton Uni-

versity Collection, Peabody Museum of Natural

History, Yale University, New Haven, Connecti-

cut, USA.

Systematic Paleontology

Archosauria Cope 1869, 

sensu Gauthier and Padian, 1985

Suchia Krebs 1974, 

sensu Benton and Clark, 1988

Poposauroidea Nopcsa 1923, 

sensu Nesbitt, in press

Poposaurus gracilis Mehl, 1915

Holotype. FMNH 357, two dorsal vertebrae, one caudal verte-

bra, a left ilium, the proximal portion of a left femur, a right

femur, distal portion of the ischia.

Type locality and horizon. “[N]ear Lander” (Mehl 1915),

Freemont County, Wyoming, USA; Popo Agie Formation, Late

Triassic.

Temporal and spatial range of referred material. ?Carnian–early

Norian, Late Triassic: Popo Agie Formation, Wyoming, USA;

Blue Mesa Member, Chinle Formation, Arizona; Mesa

Redondo Member, Chinle Formation, Arizona, USA; Tecovas

Formation, Dockum Group, Texas, USA; Monitor Butte 

Member, Chinle Formation, southern Utah, USA.
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Material referred here. YPM VP 057100, nearly complete skele-

ton lacking most of the skull, Monitor Butte Member, Chinle

Formation, Late Triassic, Circle Cliffs, Grand Staircase–Escalante

National Monument, Garfield County, Utah, USA. More

detailed locality information is archived at the Yale Peabody

Museum Division of Vertebrate Paleontology.

Remarks. All elements preserved in the holotype are directly

comparable to those of YPM VP 057100. According to the

revised diagnosis of Poposaurus and P. gracilis of Weinbaum

and Hungerbühler (2007), the holotype and YPM VP 057100

share the following unique combination of character states:

long, low iliac blade; blade-like preacetabular process; postac-

etabular process elongate and expanded into a wing-like

process; a thick lateral ridge posterior to the acetabulum; and a

pit on the proximal ischium for reception of the ischial process

of the ilium (Figure 2).

Furthermore, both the holotype and YPM VP 057100 were

scored independently in the phylogenetic analysis presented in

Nesbitt (in press; see Figure 4). The holotype of Poposaurus gra-

cilis was found to be the sister of YPM VP 057100, a position

supported by one ambiguous synapomorphy: the presence of a

ridge connecting the posterior portion of the supra-acetabular

rim to the posterior portion of the ilium (character 272[1] in

Nesbitt [in press]). This character state is essentially equivalent

to “a thick lateral ridge posterior to acetabulum” of Weinbaum

and Hungerbühler (2007).

Methods

To understand how Poposaurus gracilis walked,

we apply a three-pronged approach to exploring

the innovations in terrestrial locomotion that this

species inherited from successively more 

distant ancestors within Osteichthyes (Figure 3).

In the first step, we infer the phylogenetic place-

ment of the taxon in question. In the second step,

we then consider the distribution of observable

locomotor behaviors to infer the sequence in

which these arose during phylogeny. This builds

on the logic of ancestral state reconstruction that

de Queiroz and Gauthier (1992) referred to as

“justified inferences” and Witmer (1995) termed

the “extant phylogenetic bracket.” Both methods

rely on parsimony-based character optimization

sensu Farris (1983): the former maintains that the

last ancestor of a crown clade can safely be inferred

to have had any characters, including plesiomor-

phies and “ambiguous” characters unknown in

stem fossils (such as a four-chambered heart), so

long as those characters are observed in their liv-

ing descendants; the latter method focuses mainly

on inferring soft, unlikely-to-be-preserved char-

acters in extinct organisms within crowns. The

first two steps in this three-pronged approach are

the basis for our null hypothesis; namely, we

expect descendants—in this case P. gracilis—to

retain the locomotor capacities of their ancestors.

In the third step, we refine our hypothesis regard-

ing locomotor behavior in extinct P. gracilis 

by focusing on mechanically limiting, or at least

tightly coupled, morphofunctional relations

observable in this fossil. The constraints so identi-

fied can then lead us to partially or fully reject our

null hypothesis, that P. gracilis could perform all

behaviors inferred to have been present in the

ancestral archosaur.

The phylogenetic hypothesis used herein is

taken from the analyses of Nesbitt (2009, in

press), which contain 83 species and 412 charac-

ters and resulted in 360 most parsimonious trees

of 1285 steps (consistency index 0.375, retention

index 0.776).

Results

Phylogenetic Placement 
of Poposaurus gracilis
A parsimony-based phylogenetic analysis of early

Archosauriformes performed in Nesbitt (2009, in

press) largely supports the current consensus in

basal archosaur phylogeny (Figure 4). For exam-

ple, most species assigned previously to either

bird-line (Pan-Aves) or crocodile-line (Pan-Croc-

odylia) archosaurs remain as such, and these two

great branches of the archosaur tree seem to have

diverged shortly after the Permian–Triassic mass

extinction (Nesbitt 2009, in press). The recently

described silesaurid Asilisaurus kongwe from the

Anisian of Tanzania predicts that the basalmost

divergences within Pan-Aves (for example,

Pterosauria and possibly Dinosauria) occurred by

at least the mid-Triassic (Nesbitt et al. 2010). Our

focal species, Poposaurus gracilis, lies deep in the

crocodilian stem clade in the branch Popo-

sauroidea, a clade that also includes the bizarrely

modified Effigia okeeffeae and Arizonasaurus bab-

bitti.

Justified Inferences about 
Vertebrate Appendicular Locomotion
Walking on land may be the archetypal adaptation

of crown Tetrapoda, even though important com-

ponents of that behavior originally arose under-

water. Ray-finned fish (Actinopterygii) and the

coelacanth (Latimeria chalumnae), for example,

Bulletin of the Peabody Museum of Natural History 52(1) • April 2011110
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Figure 2. The ilia of specimens referable to Poposaurus in left lateral view (unless otherwise noted). A, B, Illus-
tration and photograph of the ilium of the holotype of Poposaurus gracilis (FMNH UR357). C, D, Illustration
and photograph of the ilium of P. gracilis (YPM VP 057100). E, F, Illustration and photograph of the ilium of
P. gracilis (TMM 4368). G, H, Illustration and photograph of the right ilium of P. gracilis (TTUM 10419); image
flipped horizontally. I, J, Illustration and photograph of the ilium of P. gracilis (TTUM 9243). K, L, Illustration
and photograph of the ilium of P. gracilis (TTUM 11203). M, N, Illustration and photograph of the right ilium
of P. langstoni (TMM 31025-12); image flipped horizontally. Scale bars equal 10 cm. Abbreviations: a, acetabu-
lum; cip, concave ischial process; ip, ischial process; lr, lateral ridge; p, pubic process; pp, preacetabular process;
pap, postacetabular process; sab, supraacetabular buttress.



are like tetrapods in that they can use their mobile

pectoral appendages (Mckenzie et al. 2007)—and

in Latimeria muscular pelvic appendages as well

(Fricke and Hissmann 1992)—to propel themselves

while swimming at low speeds. It thus seems rea-

sonable to suppose that the ancestor of crown Sar-

copterygii could do likewise. And because living

lungfish (Dipnoi) also have the alternating step

cycle characteristic of Tetrapoda (Greenwood 1986;

Kemp 1986), the ancestral choanate (Choanata)

likely could forage by dragging itself, primarily with

its forelimbs, across a submerged, and perhaps even

subaerial, substrate. On land, however, tetrapods

normally hold themselves off the ground on all four

limbs while walking and, indeed, most of the meta-

bolic costs of terrestrial locomotion derive from

simply supporting body weight (Teunissen et al.

2007). Moreover, their robust hindlimbs assumed a

far greater role in locomotion than was the case in

the ancestral choanate (Clack 2002); while the fore-

limbs could still be said to be “pulling” the body

along, the hindlimbs were now “pushing” the body

forward during terrestrial locomotion in crown

tetrapods.

Hindlimb Locomotion in Diapsid Reptiles
The role of the hindlimbs in lizard locomotion

has received considerable attention, particularly

in relation to facultative bipedality (the ability to

achieve a bipedal stance while sprinting; Snyder

1954, 1962; Huey and Hertz 1984; Snell 

et al. 1988; Losos 1990; Sinervo and Losos 1991;

Sinervo et al. 1991; Garland and Losos 1994;

Bauwens et al. 1995; Irschick and Jayne 1998,

1999; van Damme and Vanhooydonck 2001;

Aerts et al. 2003; Husak and Fox 2006; Husak 

et al. 2006; Peterson and Husak 2006; Goodman

2007; Clemente et al. 2008). There is surprisingly

little gain in either speed or efficiency to running

bipedally, as opposed to quadrupedally, in a

sprawling posture, and the energetic advantages

of bipedal locomotion remain obscure (Clemente
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Figure 3. Diagrammatic representation of the three-pronged approach (dashed-line arrows) used to study the
locomotor ability of Poposaurus gracilis. Step 1 involves determining the phylogenetic relationship of the fossil
taxon of interest. A null hypothesis of that fossil’s behavioral repertoire is then established (Step 2) by reconstruct-
ing the ancestral repertoire of the least inclusive crown clade containing that fossil (Crown Clade E). This reper-
toire is inferred from behavioral observations of the extant representatives of this, and successively more
inclusive, crown clades and serves as the null hypothesis of what that extinct taxon should be doing behaviorally
based solely on its position on the tree. Step 3 is the testing of this hypothesis by determining which of these pre-
dicted behaviors are precluded, or elaborated, based on the morphology of the fossil.



et al. 2008; Rocho-Barbosa et al. 2008). Potential

advantages of seeing farther while running

bipedally have not been explored, though being

seen in this pose may have its rewards (Husak and

Fox 2006; Clemente et al 2008). But note that a

neck modified to elevate the head well above the

body arose deep in the archosaur stem shortly

after the origin of crown diapsids (Gauthier

1994). This would have further broadened the

visual field available to this originally macro-

predatory clade, an adaptation that is particularly

marked in exceptionally long-necked bipedal

archosaurs such as poposauroids and dinosaurs.

Yet simply having exceptionally long

hindlimbs whose enlarged muscles are the pri-

mary force producers during locomotion, espe-

cially at speed or while leaping or climbing, is

diagnostic of crown Diapsida, and not just

lizards. Indeed, Pennsylvanian stem diapsids

such as Petrolacosaurus kansensis are like other

Paleozoic amniotes, and like living turtles

(Table 1), in retaining forelimbs and hindlimbs

of roughly equal length (Reisz 1981). In con-

trast, the last ancestor of crown diapsids had

shorter forelimbs that were only about two-

thirds the length of its much longer hindlimbs

(Gauthier 1994). This results in an even more

caudal displacement in the center of mass in

crown diapsids, and may underlie facultative

bipedality in small diapsids while accelerating

in a sprawling posture (Aerts et al. 2003;

Clemente et al. 2008).

Limb proportions have varied considerably

during the past 310+ million years of amniote his-

tory. Perfectly preserved specimens suitable for

morphometric analyses are uncommon in the early
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Figure 4. Phylogenetic placement of the holotype of Poposaurus gracilis (H) and that of the new specimen 
P. gracilis, YPM VP 057100 (Y) according to Nesbitt (2009, in press). Taxa in uppercase letters are 
collapsed for brevity, but were originally represented by at least two species (see Nesbitt, in press). Numbers
below nodes refer to Bremer support (on left) and bootstrap partitions (if more than 50%; on right).
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TABLE 1. Femur-to-humerus ratios among select representatives of Tetrapoda and the sources from which these
values were derived.

Species Ratio Source

Stem amniote

Limnoscelis paludis 0.92 YPM VPPU 000811

Stem mammals

Caseidae

Casea broilii 0.89 Olson 1968

Caseoides sanangloensis 0.92 Olson 1968

Cotylorhynchus romeri 0.91 Olson 1968

Varanopidae

Varanops brevirostris 1.21 Langston and Reisz 1981

Aerosaurus wellesi 1.18 Langston and Reisz 1981

Ophiacodontidae

Ophiacodon uniformis 1.12 Romer and Price 1940

Ophiacodon retroversus 1.15 Romer and Price 1940

Edaphosauridae

Edaphosaurus boanerges 1.12 Hurlburt 1999

Sphenacodontidae

Dimetrodon limbatus 1.13–1.23 Ontogenetic series, 

Romer and Price 1940

Haptodus garnettensis 1.06 Laurin 1993

Sphenacodon ferocier 1.11 YPM VP 000818

Stem turtles

Milleretta rubidgei 1.26 Gow 1972

Odontochelys semitestacea 1.09 Li et al. 2008

Proganochelys quenstedti 1.08 SMNS 16980

Eudibamus cursorius 1.40 Berman et al. 2000

Nyctiphruretus acudens 1.21 Cisneros 2008

Barasuchus sp. 1.14 Cisneros 2008

Tichvinskia vjatkensis 1.06 Cisneros 2008

Procolophon trigoniceps 1.02 Cisneros 2008

Sclerosaurus armatus 1.06 Cisneros 2008

Continued
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Table 1 CONTINUED

Species Ratio Source

Stem diapsids

Captorhinus 1.10 Case 1911

Hylonomus lyelli 1.10 Carroll and Baird 1972

Paleothyris acadiana 1.08 Carroll and Baird 1972

Araeoscelis sp. 1.12 Reisz et al. 1984

Coelurosauravus elivensis 1.07 Carroll 1978

Claudiosaurus germaini 1.13 Type, MNHN 1978-6-1

Youngina capensis 1.48 Gow 1975

Crown diapsids

Stem archosaurs

Protorosaurus speneri 1.56 Gottmann-Quesada 

and Sander 2009

Prolacerta broomi 1.64 BPI 2676

Chasmatosaurus yuani 1.48 Young 1963

Euparkeria capensis 1.40 SAM 7696

Stem lepidosaurs

Saurosternon bainii 1.41 Type, BMNH 1234

Icarosaurus siefkeri 1.73 Type, AMNH 2101

Stem squamate

Huehuecuetzpalli mixtecus 1.56 Type, IGM 7389

Crown squamates

Dipsosaurus dorsalis 1.40 YPM HERR 013364

Leiolepis triploida 1.42 YPM HERR 12864

Eichstaettisaurus schroederi 1.40 Type, BSPG 1937 I 1a

Aspidoscelis tigris 1.43 YPM HERR 013342

Stem sphenodons

Kallimodon pulchellus 1.33 BSPG 1887 VI 1

Homeosaurus sp. 1.46 BSPG 1922 I 15

Crown sphenodon

Sphenodon punctatus 1.20 YPM HERR 010646



amniote record, so paleontologists often rely on the

femur–humerus ratio as a proxy for relative limb

length. Even by that imperfect measure—for exam-

ple, most of the added hindlimb length in the teiid

lizard Aspidoscelis tigris is contributed by the foot—

there is nonetheless some phylogenetically infor-

mative variation. Among the earliest Paleozoic

amniotes, for example, there were apparently at

least two transitions from a humerus that was

longer than the femur (the original tetrapod condi-

tion) to one in which the femur was about 10%

longer than the humerus (that is, once in early stem

mammals and once in early stem reptiles; see Table

1). Surprisingly, Eudibamus cursoris (Berman et al.

2000), an aberrant stem turtle (Lyson et al. 2010; but

see Rieppel and Reisz 1999 for an alternative view),

rivals crown diapsids in the ratio of hindlimb to pre-

sacral vertebral column length. Snyder (1962) found

this relation to be the most sensitive indicator of the

capacity for facultative bipedality in sprawling

lizards today. Nevertheless, with a femur that is

about 40% longer than the humerus, crown diap-

sids are the only major reptilian clade whose ances-

tor was committed to locomotion on the basis of

powerfully developed hindlimbs (see Table 1).

Upright Archosaurs
Locomotor systems in amphibious crocodilians

and volant avians are wildly divergent, complicat-

ing inferences about the capabilities of their last

common ancestor on the basis of behavioral obser-

vations of living species alone. Neither clade seems

to have conserved the ancestral locomotor system

fully intact (Gatesy and Middleton 1997; Reilly and

Elias 1998). Avians are obligate bipeds unable to

sprawl like other reptiles (although there are some

conspicuous exceptions among the foot-propelled

divers). Crocodilians remain quadrupedal, retain a

long heavy tail, and can use the full range of

hindlimb postures from sprawling to more upright

poses (Reilly and Blob 2003). But crocodilians are

no less remarkable among archosaurs for being

slow-growing, low-energy ambush predators that

rely mainly on the tail for propulsion while swim-

ming (Willey et al. 2004) and they have relatively

short limbs conspicuous for their negatively allo-

metric pattern of growth (Dodson 1975).

As the largest living reptiles, most crocodilians

are, moreover, simply too heavy to be effective

runners. Many crocodilians surpass the 119 kg

body mass optimal for erect-postured running in

mammals and all far exceed the 48 g optimal for

sprawling-postured running in lepidosaurs (van

Damme and Vanhooydonck 2001). Indeed, 600

kg adult Gavialis gangeticus are ungainly at best on

land, often merely belly sliding along the ground,

and have never been reported to high walk, much

less to gallop (C. Brochu to J. A. Gauthier, pers.

comm. 2010). The controversial position of Gavi-

alis in crocodilian phylogeny further complicates

the matter; if that species is embedded within

Crocodylia, as molecular data indicate (e.g., Willis

et al. 2007), then poor performance of Gavialis on

land would be autapomorphic; but if it is sister to

all other crown crocodilians, as morphology sug-

gests (e.g., Brochu 2003), that might compromise

our ability to safely infer the locomotor behavior

in the last ancestor of Archosauria. We must rely

on anatomical correlation and broaden our phylo-

genetic scope for progress on this question.

Given the relatively large hindlimbs ubiqui-

tous among diapsids and early archosaurs such 

as the near-crown stem archosaur Euparkeria

capensis (Ewer 1965), early stem crocodilians such

as Gracilisuchus stipanicicorum (Romer 1972;

Nesbitt, in press) and early stem avians such 

as Lagosuchus talampayensis (Bonaparte 1975;

Sereno and Arcucci 1994), it seems that the rela-

tively very reduced limbs of adult Gavialis are

autapomorphic regardless of uncertainty in its

relationships among crown crocodilians. This

suggests that it would be inappropriate to regard

the inability of Gavialis to raise itself off the

ground as somehow an evolutionary reversal to

the ancestral condition for archosaurs. On the

contrary, its poor performance on land is likely a

consequence of adaptation in this specialized

riverine piscivore to an even more profound 

commitment to aquatic habits than is generally

the case among amphibious crown crocodilians.

It seems safe to infer that the capacity of the

hindlimbs to assume an upright posture in a high-

walking crocodilian is homologous with the fixed

posture of the legs in an obligately bipedal avian

(regardless of how many subsequent changes in

hindlimb form and function occurred along the

avian line after it diverged from the crocodilian

line). The last ancestor of Archosauria could thus,

at least at low speeds on land, perform a “high

walk” in which the hindlimbs swung in a more

parasagittal plane closer to the center of mass,

with the knees and foreshortened toes pointing

Bulletin of the Peabody Museum of Natural History 52(1) • April 2011116



forward throughout the step cycle (Gatesy 1991;

Hutchinson and Gatesy 2000; Reilly et al. 2005).

A suite of anatomical changes in the feet, legs

and pelves thought to enable a more upright pose

and parasagittal gait (Parrish 1986)—coupled with

those strengthening the torso and enhancing

dorsoventral flexion of the vertebral column (Frey

1984), as well as complex lungs with unidirectional

airflow (Farmer and Sanders 2010) and mammal-

like hearts that pumped oxygenated and deoxy-

genated blood from separate chambers (fully

divided ventricles; Goodrich 1919)—are jointly

thought to facilitate the ability to breathe while

running in the ancestral archosaur (Carrier 1987;

Farmer 1999; Carrier and Farmer 2000). The

sequence of emergence of musculoskeletal char-

acters anatomically correlated to this style of loco-

motion in the archosaur stem is reasonably well

understood and seemingly this system was fully in

place by the earliest appearance of archosaurs in

the fossil record (early Triassic [Scythian]; Parrish

1987; Gatesy 1991; Sereno 1991; Gauthier 1994;

Hutchison and Gatesy 2000).

A more upright pose likely antedated

Archosauria, because evidence of such behavior is

also preserved in fossil trackways attributed to the

phytosaurian sister to crown Archosauria (Padian

et al. 2009; Figures 4 and 5). This further confirms

the hypothesis that the so-called “crocodile-nor-

mal” crurotarsal ankle joint, in which a rotatory

calcaneum with a prominent heel that turned

along with the foot on a slightly hemispherical

“ball” on a fixed astragalus, antedates the origin of

Archosauria. That is, only the convex distal por-

tion of the diagnostic concavo-convex articular

surface originally present on the astragalus of

Archosauromorpha (Benton 1985) is involved in

the crurotarsal joint ancestral for Archosauria

(Gauthier 1994). The proximal portion of the orig-

inal joint surface above the perforating artery

(proximal to the ankle in crown archosaurs) was

lost as the tibia and fibula shifted to nearly contact

one another at their articulations on the ankle

within Archosauriformes. In this model of char-

acter evolution, the “crocodile-reversed” joints of

Euparkeria capensis and Ornithosuchidae are but

variants of the “crocodile-normal” joint, rather

than representing  separate evolutions of intra-

tarsal mobility within Archosauriformes from dif-

ferent parts of the ankle as originally conceived

(Cruickshank 1979).

Nevertheless, the relatively primitive form of

crurotarsal joint in phytosaurs is distinctly less

modified compared to the fully elaborated cruro-

tarsal system of stem crocodilians in general, and

suchians in particular (Parrish 1987; Sereno

1991). In contrast, crurotarsal motion is reduced

(Lagosuchus talampayensis), and then is lost

entirely (Silesaurus opolensis), in the evolution of

the simplified hinge-like ankle joint (Novas 1989)

characteristic of striding bipedal, cursorial pan-

avians (Gauthier and Padian 1985).

On the basis of the distribution of locomotor

behaviors among ingroups and outgroups, we

can safely infer that the ancestral archosaur

could crawl (belly-slide) and run in a sprawling

posture (but see Reilly and Elias [1998], for an

alternative view). Its ability to high walk at slow

speeds also seems a justifiable inference. But it

remains unclear whether the ancestral archosaur

could produce a gallop—with all four feet air-

borne during the step cycle—in this upright

pose. The capacity to gallop is evidently wide-

spread in Crocodylidae (Britton 1995–2009), 

but it has yet to be reported in Alligatoridae.

Moreover, no cases of bipedality, facultative or

otherwise, have been reported in any living 

crocodilian.

Crown avians are, of course, derived in that

they are obligately bipedal, a mode of locomotion

seemingly of great antiquity in the avian stem, as

close-set, digitigrade, tridactyl trackways from the

Triassic attest (Leonardi 1989). Avians are also

able to produce a fully suspended phase in the

step cycle at speed (e.g., Rubenson et al. 2007),

albeit in a bipedal rather than a quadrupedal pose

as in crocodylids. An apomorphic behavior could

of course be conserved even if how it is achieved

changes over time; sharks and snakes may ingest

prey in very different ways, but it is no less clear

that they inherited jaw-based prey prehension

from their last gnathostome ancestor. Thus, the

ability to take such a long stride as to produce a

fully suspended phase in the step cycle at speed

could be conserved from the locomotor repertory

present in the last common ancestor shared by

extant crocodilians and avians.

Note that juveniles of the smaller and more

terrestrial living crocodylids display elaborate

neuromuscular control while running (e.g.,

Renous et al. 2002) and can even produce a

bounding symmetrical gallop at high speed (e.g.,
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Crocodylus johnstoni Zug 1974; Webb and Gans

1982). And although large alligatorids are not par-

ticularly nimble, forest-dwelling Paleosuchus

spp.—so committed to a terrestrial existence as to

have lost the webbing on their feet—are said to be

remarkably agile and fleet-footed, even if their

ability to gallop has yet to be determined (P.

Brazaitis to J. A. Gauthier, pers. comm. 2010).

Given the overall similarity in postcranial ana-

tomy among most living crocodilians, it is tempt-

ing to consider that the ability to produce a gallop

at speed could be regarded as a potential behavior

for the ancestor of crown Crocodylia.

In any case, this gait was simply not available

to the diapsid ancestor, which still retained an

unmodified amniote femur with an internal

trochanter, an intertrochanteric fossa, a ventral

ridge system, asymmetrical feet and an obligately

sprawling limb posture (Romer 1956). In con-

trast, basal archosaurs display characteristically

“crocodyloid” femora, with prominent fourth

trochanters, in which the original ventral features

are gone, enabling the femur to swing closer to

the body in a more parasagittal plane (Romer

1956). Given their small size relative to extant

crocodilians, their long and powerful diapsid

hindlimbs and their presumed terrestrial habits,

the basalmost archosaurs could well have been

able to achieve a gallop while sprinting in an

upright posture. Likewise, provided it was not too

heavy, that ancestor could even have been able to

achieve a bipedal gait at speed (Ewer 1965); that

seems especially likely for Triassic stem avians

such as Lagosuchus talampayensis, whose very

long hindlimbs relative to presacral column

length are distinctly bird-like in this respect

(Bonaparte 1975; Sereno 1991).

Testing the Null Hypothesis: 
Striding Bipedality in Poposaurus gracilis 
Given its phylogenetic position, it seems safe to

infer that Poposaurus gracilis could at least per-

form the “high walk” at low speed, which is to say

that it had an “upright” posture as that term 

is defined here (see Figure 4). Instead of the usual

“semi-erect” and “fully erect” distinction, we 
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Figure 5. Comparison of trackways among tetrapod vertebrates with “sprawling” (A), “upright” (B, C) and
“narrow-track” (C) limb postures. All trackways are scaled to the same stride length. A, Tracks of the extant
varanid lizard Varanus komodoensis, redrawn from Padian and Olson (1984). B, Tracks from the Triassic track-
way called Apatopus lineatus, redrawn from Baird (1957). C, Tracks from the Triassic trackway called Chi-
rotherium storetonense, based on specimen OUM G.55.



prefer to think of the stages in archosaur locomo-

tor evolution as first being “upright” followed by

the fixation of “bipedal” habits along the avian

stem. The upright posture is facilitated mainly by

the hindlimbs, as anatomical correlation indicates

that the forelimbs were held in a more flexed pose

in the archosaur ancestor (e.g., Santa Luca 1980),

as they are in crocodilians (and avians) today.

“Fully erect” postures, in which the forelimbs are

also held in a vertical pose close to the body, apply

in archosaurs mainly to some giant dinosaurs 

in which the demands of bearing weight are 

paramount.

Ultimately, the fossil itself must condition fur-

ther inferences about the full range of the loco-

motor capabilities of Poposaurus gracilis. That is

to say, inferences about the ancestral archosaur

based on observations of its living descendants

hardly guarantees that every descendant can, for

example, “high walk” (hummingbirds cannot

walk). Although there may be substantial limits

to inferences that are based on anatomical corre-

lation—not the least of which is that specialized

functions can be performed by non-specialized

forms (Greene 1982)—some morphological

modifications are nonetheless tightly coupled

with particular activities (such as a prominent

anterior process on the ilium and the capacity to

extend the ankle anterior to the knee in sprawl-

ing lizards) and others are mechanically limiting

(for example, avian hip, knee and ankle anatomy

prohibits sprawling limb postures).

The pelvic and femoral morphology of

Poposaurus gracilis makes it clear that it was

upright. We submit further that it also walked

with footfalls very close to the mid-line, more

like an avian than a crocodilian (see Figure 5).

We base this inference primarily on hallmark

modifications to the pelvic girdle—most not-

ably an overhanging, finger-like extension of a

prominent supra-acetabular buttress that

entraps the femoral head dorsolaterally—that

prevent the hindlimb from assuming a sprawl-

ing pose without disarticulating at the hip joint

(see Figures 1 and 2). This constraint would also

fix the height of the acetabulum relative to foot-

fall while running, yielding the more graceful

gait with less vertical displacement of the center

of mass as in cursorial mammals and birds and

very unlike the more lumbering gait of living

crocodilians (Reilly et al. 2006).

That the hindlimbs were typically held in a

more vertical pose is also supported by additional

tightly coupled functional modifications to the

acetabulum: the hip socket is deep, ventrally ori-

ented and partly open medially owing to an

incomplete ventral margin of the ilium and

reduced contributions of the pubis and ischium

to the acetabulum. These modifications indicate

that the weight of Poposaurus gracilis, as in other

suchians (Bonaparte 1981), was primarily trans-

mitted vertically down the hindlimbs, rather than

laterally through the acetabular wall and out the

femur as in sprawling tetrapods. The caudal

aspect of each femoral shaft also shows enlarged

attachment sites for the adductor muscles, which

would have kept the limbs aligned along the

parasagittal plane during locomotion (Schachner

2010). This was possibly a myological adaptation

associated with the “pillar-erect” suchian hip

joint, although this hypothesis has yet to be tested.

Two additional apomorphies in the pelvis sug-

gest that the hindlimb was habitually held close to

the body in a parasagittal pose: a long and trans-

versely narrow pubis and ischium indicating a

deep but compressed body form (consistent with

the carcass being preserved on its side with both

limbs on the same side of the body) and a calcaneal

tuber that is directed posteriorly at a right angle to

the rotary ankle joint. Neither condition is seen in

reptiles with habitually sprawling limb postures.

These inferences find compelling support in

trackways attributed to “rauisuchians.” The track-

way called Chirotherium storetonense (see Figure

5), for example, represents a less modified foot

than that of P. gracilis, because it still has five fully

functional toes, including a prominent and diver-

gent fifth toe that in P. gracilis is reduced to a mere

splint appressed to the fourth metatarsal. The

emphasis on the robust middle three toes for sup-

port, and especially a slender first toe less than half

the length of the second, are striking apomorphic

resemblances shared by the track maker and P.

gracilis. The impressions of both the hands and

feet, like those attributed to suchians generally

(King et al. 2005), support the thesis that the ances-

tral suchian normally walked with a narrow-

tracked parasagittal gait in an upright quadrupedal

pose (Brusatte et al. 2008; but see Carpenter 2009).

Additional modifications in the postcranial

skeleton of Poposaurus gracilis also suggest that

this animal was a fleet-footed cursor. This species
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Spinal column

Estimated length of vertebral column 405.0 cm

Estimated number of vertebrae 

(assumes 7 cervicals present)
87

Estimated presacral column length
(measured from acetabulum and
including functional sacrals)

120.0 cm

Forelimb

Scapula 20.5 cm

Humerus 17.5 cm

Ulna 19.5 cm

Preserved gap of carpals 2.5 cm

Metacarpal III 4.0 cm

Digit III of manus 4.0 cm

Total length of forelimb 47.5 cm

Total length of the third
digit of the manus 

10.5 cm

Hindlimb

Pubis 39.0 cm

Ischium 27.0 cm

Femur 37.0 cm

Tibia 30.5 cm

Astragalus 3.0 cm

Metatarsal III 15.0 cm

Digit III of pes 15.5 cm

Total length of hindlimb 101.0 cm

Total length of the third
digit of the pes 

30.5  cm

Forelimb-to-hindlimb ratio 47%

Manus-to-pes ratio 34%

Hindlimb-to-presacral column ratio 84%

TABLE 2. Measurements of the new specimen of
Poposaurus gracilis (YPM VP 057100). All measure-
ments were taken in millimeters and rounded to the
next half centimeter. 

is, for example, conspicuous for having a cal-

caneal tuber—a lever-like heel that shifts the

insertion tendon for the gastrocnemius muscle

(which rotates the foot about the ankle) distally

away from the ankle joint—that ranks among the

largest known in any archosaur. Perhaps most

significantly, exceptionally long hindlimbs (84%

of presacral column length) with long, appressed

metatarsals (Table 2), coupled with a narrow

foot that functionally is nearly tridactyl, are tied

closely to cursorial habits among living amniotes

(Snyder 1962; Sereno 1991).

It is not clear whether Poposaurus gracilis

walked on the balls of its feet only (digitigrade) or

whether it first placed the sole of its foot on the

ground and then rolled up onto the ball while

walking (plantigrade), like archosaurs ancestrally

(see Figure 5). Note that even some otherwise

plantigrade lizards with relatively long appressed

metatarsals like those of P. gracilis can produce

short bouts of digitigrady while sprinting (such as

Callisaurus draconoides, albeit in a “sprawling”

bipedal gait in which the body rotates the

hindlimbs medially so that they assume a slightly

more erect pose; Irschick and Jayne 1999; Rocha-

Barbosa et al. 2008). There was no medial or lat-

eral rotation of the pes in P. gracilis because of the

tight articulation of the proximal surface of 

the astragalus and the distal articular surfaces of

the tibia and fibula, as well as the morphology 

of the calcaneal rotary joint. Wear facets on the

flexor surfaces of the metatarsals and calcaneum,

in conjunction with the overall morphology of the

pes, suggest that P. gracilis could have shifted back

and fourth between both foot postures—planti-

grady when walking and digitigrady while run-

ning—during locomotion. This hypothesis has,

however, yet to be tested.

Body mass is an obvious limiting factor in

cursorial tetrapods. The optimal weight in curso-

rial mammals is around 119 kg (van Damme and

Vanhooydonck 2001). In this measure Popo-

saurus gracilis is well positioned: according to

midshaft femoral circumference our subadult

specimen would weigh in at roughly 60 to 75 kg,

with the larger type specimen at 90 to 100 kg

(Anderson et al. 1985).

Finally, we propose that Poposaurus gracilis

was also an obligate biped not only while run-

ning, but also while walking, or even standing

still, balanced on its hindlimbs alone just like a



stem avian. The sacrum could support an

increased load because of its five sacral vertebrae,

rather than the two present ancestrally in

archosaurs, and the counterbalancing tail is

remarkably long. The forelimbs are much too

short and gracile to play a role in bearing weight

or in locomotion (the forelimb-to-hindlimb

ratio is 47%) and the hindlimbs are easily long

enough (the hindlimb-presacral-column ratio is

84%), and the feet large enough (30% of total

hindlimb length), to support the entire body

weight. These values are well within the range

observed in undisputed striding bipedal thero-

pod dinosaurs of the early Mesozoic (Jones et al.

2000; see Table 2). The Chirotherium storeto-

nense trackways indicate that poposauroids, or

at least the most recent common ancestor of Effi-

gia okeeffeae and P. gracilis, derived their bipedal

habits from an erect-postured ancestor that

already walked with a very narrow-tracked gait,

even if in a quadrupedal stance (see Figure 5).

Discussion

Archosaur Locomotion as Innovation
Skulls of stem archosaurs from the late Permian

display several conspicuous modifications—

including dentary fangs and serrated teeth—suit-

ing them to subduing and ingesting larger prey

(macrocarnivory; see Clark et al. 1993). Subse-

quent postcranial modifications during the early

Triassic suggest that they foraged widely for prey

(Gauthier 1994). At the same time, sprawlers such

as stem lepidosaurs remained small enough to

dash beneath cover or climb out of reach, stem

turtles effectively became armored tanks, and the

small and more erect-postured cynodont stem

mammals might have already embarked on the

mammalian “crown habit” of emerging at night.

The new Poposaurus gracilis specimen provides

fresh insight into an early sideline of crocodilian

evolution, classically termed the “rauisuchians.”

This sideline potentially rivaled stem avians for

dominance in the top-carnivore guild during the

Triassic (see Brusatte et al. 2008) when the croco-

dylian line was considerably more diverse than the

bird line (conservatively approximately 70 species

compared with about 40 species, respectively; pers.

obs. S. J. Nesbitt), in conspicuous contrast to the

reversed diversity of today’s archosaurs (23 species

compared with about 10,000 species). The two

bipedal clades—poposaurids and pan-avians—

display remarkable convergences, although the

sequence of character acquisition differs somewhat

in each case. Approximately one-third of all homo-

plasy between P. gracilis and stem avians is associ-

ated with posture and gait, although this character

class comprises only one-fourth of all characters in

Nesbitt’s (in press) phylogenetic analysis. Moreover,

nearly all characters displayed in the contemporary

theropod dinosaur Coelophysis bauri that pertain to

striding bipedality are expressed in P. gracilis as well.

These include an extreme reduction of the forelimb

and manus, powerful cursorial hindlimbs, integra-

tion of five vertebrae into the sacrum, loss of 

dermal armor and an obligately upright bipedal

posture.

Innovations, or evolutionary novelties that add

new dimensions to evolutionary history (Wagner

and Stadler 2003), are often identified by significant

correlations between organismal characters and

species diversification rates (Moore 2007). Innova-

tions lead to the reproductive success of organisms

that have them, and thus to the geographic expan-

sion of the species these organisms belong to,

thereby exposing them to more opportunities for

subdivision into new evolutionary lineages (species

sensu de Queiroz 1998). Implicit in this is that inno-

vative characters must persist over time—becoming

more deeply burdened by subsequent evolutionary

change (Riedl 1978)—and spread through space

across Earth’s surface even as the clades bearing

them differentiate through ecospace. Evolutionary

stasis in organismal characters, as well as the char-

acter-bearing clade’s geographic distribution, could

thus provide additional means by which to identify

innovation, quite apart from the plethora of phe-

nomena that might influence diversification rates

(e.g., Trends in Ecology and Evolution 2001; the K/T

boundary asteroid impact). Thus clades with com-

paratively few species, such as the 313 extant species

of crown turtles (Testudines) with unexceptional

diversification rates for vertebrates (Alfaro et al.

2009), might still have evolutionary innovations.

Crown-clade turtles arose at least 150 mya (Joyce

and Gauthier 2004), have an unmistakable “body

plan” and are distributed worldwide (even if driven

toward the equator during Neogene “Ice House”

climatic regimes). Likewise, a single species, such as

Homo sapiens, could even qualify: the descendants

of “Eve,” with their enormous brains and elaborate

cultures based on hunting and gathering, emerged
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in sub-Saharan Africa to spread around the globe,

reaching Monte Verde, Colombia, in a mere

125,000 years (based on the time interval between

“Eve” at about 140,000 years BP [Campbell and

Tishkoff 2008] to the first appearance in South

America around 14,500 years BP [Dillehay et al.

2008]).

The evolutionary sequence of locomotor

behaviors in sarcopterygians—shifting, so to speak,

from front-wheel, to all-wheel, to rear-wheel

drive—up the branch leading to the diapsid crown,

certainly has those qualities (Figure 6). We accord-

ingly propose that the ability to bring the hindlimbs

beneath the body—coupled with the capacity to

breathe while running and thereby increase stam-

ina during vigorous exercise, persisting for more

than 245 Ma in the novel behaviors and facilitat-

ing morphologies underlying archosaur locomo-

tion, in diverse ecological settings and with a global

distribution—should qualify as an evolutionary

innovation (sensu Wagner and Schwenk 2000).
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