
Chapter 2
Ultraproducts and Łoś’ Theorem

In this chapter, W denotes an infinite set, always used as an index set, on which
we fix a non-principal ultrafilter.1 Given any collection of (first-order) structures
indexed by W , we can define their ultraproduct. However, in this book, we will
be mainly concerned with the construction of an ultraproduct of rings, an ultra-
ring for short, which is then defined as a certain residue ring of their Cartesian
product. From this point of view, the construction is purely algebraic, although
it is originally a model-theoretic one (we only provide some supplementary back-
ground on the model-theoretic perspective). We review some basic properties
(deeper theorems will be proved in the later chapters), the most important of
which is Łoś’ Theorem, relating properties of the approximations with their ul-
traproduct. When applied to algebraically closed fields, we arrive at a result that
is pivotal in most of our applications: the Lefschetz Principle (Theorem 2.4.3),
allowing us to transfer many properties between positive and zero characteristic.

2.1 Ultraproducts

We start with the classical definition of ultraproducts via ultrafilters; for different
approaches, see §§2.5 and 2.6 below.

2.1.1 Ultrafilters

By a (non-principal) ultrafilter W on W , we mean a collection of infinite subsets of
W closed under finite intersection, with the property that for any subset D ⊆W ,
either D or its complement −D belongs to W. In particular, the empty set does
not belong to W, and if D ∈ W and E is an arbitrary set containing D, then also

1 We will drop the adjective ‘non-principal’ since these are the only ultrafilters we are interested
in; if we want to talk about principal ones, we just say principal filter; and if we want to talk
about both, we say maximal filter.
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8 2 Ultraproducts and Łoś’ Theorem

E ∈ W, for otherwise −E ∈ W, whence /0 = D∩−E ∈ W, contradiction. Since
every set in W must be infinite, it follows that any co-finite set belongs to W.
The existence of ultrafilters follows from the Axiom of Choice, and we make this
set-theoretic assumption henceforth. It follows that for any infinite subset of W ,
we can find an ultrafilter containing this set.

More generally, a proper collection of subsets of W is called a filter if it is closed
under intersection and supersets. Any ultrafilter is a filter which is maximal with
respect to inclusion. If we drop the requirement that all sets in W must infinite,
then some singleton must belong to W; such a filter is called principal, and these
are the only other maximal filters. A maximal filter is an ultrafilter if and only if it
contains the Frechet filter consisting of all co-finite subsets (for all these properties,
see for instance [81, §4] or [57, §6.4]).

In the remainder of these notes, unless stated otherwise, we fix an ultrafilter
W on W , and (almost always) omit reference to this fixed ultrafilter from our
notation. No extra property of the ultrafilter is assumed, with the one exception
described in Remark 8.1.5, which is nowhere used in the rest of our work anyway.
Ultrafilters play the role of a decision procedure on the collection of subsets of W
by declaring some subsets ‘large’ (those belonging to W) and declaring the remain-
ing ones ‘small’. More precisely, let ow be elements indexed by w ∈W , and let P
be a property. We will use the expressions almost all ow satisfy property P or ow

satisfies property P for almost all w as an abbreviation of the statement that there
exists a set D in the ultrafilter W, such that property P holds for the element ow,
whenever w ∈ D. Note that this is also equivalent with the statement that the set
of all w ∈W for which ow has property P , lies in the ultrafilter (read: is large).

2.1.2 Ultraproducts

Let Ow be sets, for w ∈ W . We define an equivalence relation on the Cartesian
product O∞ := ∏Ow, by calling two sequences (aw) and (bw), for w ∈ W , equiv-
alent, if aw and bw are equal for almost all w. In other words, if the set of indices
w∈W for which aw = bw belongs to the ultrafilter. We will denote the equivalence
class of a sequence (aw) by

ulim
w→∞

aw, or ulimaw, or a�.

The set of all equivalence classes on ∏Ow is called the ultraproduct of the Ow and
is denoted

ulim
w→∞

Ow, or ulimOw, or O�.

If all Ow are equal to the same set O, then we call their ultraproduct the ultrapower
O� of O. There is a canonical map O → O�, sometimes called the diagonal embed-
ding, sending an element o to the image of the constant sequence o in O�. To see
that it is an injection, assume o′ has the same image as o in O�. This means that
for almost all w, and hence for at least one, the elements o and o′ are equal.
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Note that the element-wise and set-wise notations are reconciled by the fact
that

ulim
w→∞

{ow} = {ulim
w→∞

ow}.
The more common notation for an ultraproduct one usually finds in the literature
is O∗; in the past, I also have used O∞, which in this book is reserved to denote
Cartesian products. The reason for using the particular notation O� in these notes
is because we will also introduce the remaining chromatic products O� and O� (at
least for certain local rings; see Chapters 9 and 8 respectively).

We will also often use the following terminology: if o is an element in an
ultraproduct O�, then any choice of elements ow ∈ Ow with ultraproduct equal to
o will be called an approximation of o. Although an approximation is not uniquely
determined by the element, any two agree almost everywhere. Below we will
extend our usage of the term approximation to include other objects as well.

2.1.3 Properties of Ultraproducts

For the following properties, the easy proofs of which are left as an exercise, let
Ow be sets with ultraproduct O�.

2.1.1 If Qw is a subset of Ow for each w, then ulimQw is a subset of O�.

In fact, ulimQw consists of all elements of the form ulimow, with almost all ow

in Qw.

2.1.2 If each Ow is the graph of a function f w : Aw → Bw, then O� is the graph of
a function A� → B�, where A� and B� are the respective ultraproducts of Aw

and Bw. We will denote this function by

ulim
w→∞

f w or f �.

Moreover, we have an equality

ulim
w→∞

( f w(aw)) = (ulim
w→∞

f w)(ulim
w→∞

aw), (2.1)

for aw ∈ Aw.

2.1.3 If each Ow comes with an operation ∗w : Ow ×Ow → Ow, then

∗� := ulim
w→∞

∗w

is an operation on O�. If all (or, almost all) Ow are groups with multipli-
cation ∗w and unit element 1w, then O� is a group with multiplication ∗�

and unit element 1� := ulim1w. If almost all Ow are Abelian groups, then
so is O�.
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2.1.4 If each Ow is a (commutative) ring under the addition +w and the
multiplication ·w, then O� is a (commutative) ring with addition +� and
multiplication ·�.

In fact, in that case, O� is just the quotient of the product O∞ := ∏Ow modulo
the null-ideal, the ideal consisting of all sequences (ow) for which almost all ow

are zero (for more on this ideal, see §2.5 below). From now on, we will drop
subscripts on the operations and denote the ring operations on the Ow and on O�

simply by + and ·.
2.1.5 If almost all Ow are fields, then so is O�. More generally, if almost each Ow

is a domain with field of fractions Kw, then the ultraproduct K� of the Kw

is the field of fractions of O�.

Just to give an example of how to work with ultraproducts, let me give the
proof: if a ∈ O� is non-zero, with approximation aw (recall that this means that
ulimaw = a), then by the previous description of the ring structure on O�, almost
all aw will be non-zero. Therefore, letting bw be the inverse of aw whenever this
makes sense, and zero otherwise, one verifies that ulimbw is the inverse of a. �	
2.1.6 If Cw are rings and Ow is an ideal in Cw, then O� is an ideal in C� :=

ulimCw. In fact, O� is equal to the subset of all elements of the form ulimow

with almost all ow ∈ Ow. Moreover, the ultraproduct of the Cw/Ow is iso-
morphic to C�/O�. If almost every Ow is generated by e elements, then so
is O�.

In other words, the ultraproduct of ideals Ow ⊆ Cw is equal to the image of
the ideal ∏Ow in the product C∞ := ∏Cw under the canonical residue homomor-
phism C∞ →C�. As for the last assertion, suppose o1w, . . . ,oe(w),w generate Ow, for
each w, and let oi� be the ultraproduct of the oi,w, where we put the latter equal
to 0 if i > e(w). The ideal generated by the oi� can be strictly contained in O� (an
example is the ideal of infinitesimals, defined below in 2.4.13), but it is equal to it
if almost all ew are equal, say, to e. Indeed, any element o� of O� is an ultraprod-
uct of elements ow ∈ Ow, which therefore can be written as a linear combination
ow = r1wo1w + · · ·+ re,woe,w, for some ri,w ∈ Cw. Let ri� ∈ C� be the ultraproduct
of the ri,w, for i = 1, . . . ,e. By Łoś’ Theorem (see Theorem 2.3.2 below), we have
o� = r1�o1� + · · ·+ re�oe�.

2.1.7 If f w : Aw → Bw are ring homomorphisms, then the ultraproduct f � is
again a ring homomorphism. In particular, if σw is an endomorphism on
Aw, then the ultraproduct σ � is a ring endomorphism on A� := ulimAw.

2.2 Model-theory in Rings

The previous examples are just instances of the general principle that ‘alge-
braic structure’ carries over to the ultraproduct. The precise formulation of this
principle is called Łós’ Theorem (Łoś is pronounced ‘wôsh’) and requires some
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terminology from model-theory. However, for our purposes, a weak version of
Łoś’ Theorem (namely Theorem 2.3.1 below) suffices in almost all cases, and its
proof is entirely algebraic. Nonetheless, for a better understanding, the reader is
invited to indulge in some elementary model-theory, or rather, an ad hoc version
for rings only (if this not satisfies him/her, (s)he should consult any textbook,
such as [57, 67, 81]).

2.2.1 Formulae

By a quantifier free formula without parameters in the free variables ξ =
(ξ1, . . . ,ξn), we will mean an expression of the form

ϕ(ξ ) :=
m∨

j=1

f1 j = 0∧ . . .∧ fs j = 0∧g1 j �= 0∧ . . .∧gt j �= 0, (2.2)

where each fi j and gi j is a polynomial with integer coefficients in the variables
ξ , and where ∧ and ∨ are the logical connectives and and or. If instead we al-
low the fi j and gi j to have coefficients in a ring R, then we call ϕ(ξ ) a quantifier
free formula with parameters in R. We allow all possible degenerate cases as well:
there might be no variables at all (so that the formula simply declares that certain
elements in Z or in R are zero and others are non-zero) or there might be no equa-
tions or no negations or perhaps no conditions at all. Put succinctly, a quantifier
free formula is a Boolean combination of polynomial equations using the connec-
tives ∧, ∨ and ¬ (negation), with the understanding that we use distributivity and
De Morgan’s Laws to rewrite this Boolean expression in the (disjunctive normal)
form (2.2).

By a formula without parameters in the free variables ξ , we mean an expression
of the form

ϕ(ξ ) := (Q1 ζ1) · · · (Qp ζp)ψ(ξ ,ζ ),

where ψ(ξ ,ζ ) is a quantifier free formula without parameters in the free variables
ξ and ζ = (ζ1, . . . ,ζp) and where Qi is either the universal quantifier ∀ or the
existential quantifier ∃. If instead ψ(ξ ,ζ ) has parameters from R, then we call
ϕ(ξ ) a formula with parameters in R. A formula with no free variables is called a
sentence.

2.2.2 Satisfaction

Let ϕ(ξ ) be a formula in the free variables ξ = (ξ1, . . . ,ξn) with parameters from
R (this includes the case that there are no parameters by taking R = Z and the
case that there are no free variables by taking n = 0). Let A be an R-algebra and let
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a = (a1, . . . ,an) be a tuple with entries from A. We will give meaning to the ex-
pression a satisfies the formula ϕ(ξ ) in A (sometimes abbreviated to ϕ(a) holds in
A or is true in A) by induction on the number of quantifiers. Suppose first that
ϕ(ξ ) is quantifier free, given by the Boolean expression (2.2). Then ϕ(a) holds in
A, if for some j0, all fi j0(a) = 0 and all gi j0(a) �= 0. For the general case, suppose
ϕ(ξ ) is of the form (∃ζ )ψ(ξ ,ζ ) (respectively, (∀ζ )ψ(ξ ,ζ )), where the satisfac-
tion relation is already defined for the formula ψ(ξ ,ζ ). Then ϕ(a) holds in A, if
there is some b ∈ A such that ψ(a,b) holds in A (respectively, if ψ(a,b) holds in
A, for all b ∈ A). The subset of An consisting of all tuples satisfying ϕ(ξ ) will be
called the subset defined by ϕ , and will be denoted ϕ(A). Any subset that arises in
such way will be called a definable subset of An.

Note that if n = 0, then there is no mention of tuples in A. In other words, a
sentence is either true or false in A. By convention, we set A0 equal to the singleton
{ /0} (that is to say, A0 consists of the empty tuple /0). If ϕ is a sentence, then the
set defined by it is either { /0} or /0, according to whether ϕ is true or false in A.

2.2.3 Constructible Sets

There is a connection between definable subsets and Zariski-constructible subsets,
where the relationship is the most transparent over algebraically closed fields, as
we will explain below. In general, we can make the following observations.

Let R be a ring. Let ϕ(ξ ) be a quantifier free formula with parameters from
R, given as in (2.2). Let Σϕ(ξ ) denote the constructible subset of An

R = Spec(R[ξ ])
consisting of all prime ideals p which, for some j0, contain all fi j0 and do not
contain any gi j0 . In particular, if n = 0, so that A0

R is by definition Spec(R), then
the constructible subset Σϕ associated to ϕ is a subset of Spec(R).

Let A be an R-algebra and assume moreover that A is a domain (we will never
use constructible sets associated to formulae if A is not a domain). For an n-tuple
a over A, let pa be the (prime) ideal in A[ξ ] generated by the ξi − ai, where ξ =
(ξ1, . . . ,ξn). Since A[ξ ]/pa ∼= A, we call such a prime ideal an A-rational point of
A[ξ ]. It is not hard to see that this yields a bijection between n-tuples over A and
A-rational points of A[ξ ], which we therefore will identify with one another. In
this terminology, ϕ(a) holds in A if and only if the corresponding A-rational point
pa lies in the constructible subset Σϕ(ξ ) (strictly speaking, we should say that it lies
in the base change Σϕ(ξ ) ×Spec(R) Spec(A), but for notational clarity, we will omit
any reference to base changes). If we denote the collection of A-rational points
of the constructible set Σϕ(ξ ) by Σϕ(ξ )(A), then this latter set corresponds to the
definable subset ϕ(A) under the identification of A-rational points of A[ξ ] with
n-tuples over A. If ϕ is a sentence, then Σϕ is a constructible subset of Spec(R)
and hence its base change to Spec(A) is a constructible subset of Spec(A). Since
A is a domain, Spec(A) has a unique A-rational point (corresponding to the zero-
ideal) and hence ϕ holds in A if and only if this point belongs to Σϕ .
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Conversely, if Σ is an R-constructible subset of An
R, then we can associate to it a

quantifier free formula ϕΣ (ξ ) with parameters from R as follows. However, here
there is some ambiguity, as a constructible subset is more intrinsically defined
than a formula. Suppose first that Σ is the Zariski closed subset V(I), where I is
an ideal in R[ξ ]. Choose a system of generators, so that I = ( f1, . . . , fs)R[ξ ] and
set ϕΣ (ξ ) equal to the quantifier free formula f1(ξ ) = · · ·= fs(ξ ) = 0. Let A be an
R-algebra without zero-divisors. It follows that an n-tuple a is an A-rational point
of Σ if and only if a satisfies the formula ϕΣ . Therefore, if we make a different
choice of generators I = ( f ′1, . . . , f ′s)R[ξ ], although we get a different formula ϕ ′,
it defines in any R-algebra A without zero-divisors the same definable subset, to
wit, the collection of A-rational points of Σ . To associate a formula to an arbitrary
constructible subset, we do this recursively by letting ϕΣ ∧ϕΨ , ϕΣ ∨ϕΨ and ¬ϕΣ
correspond to the constructible sets Σ ∩Ψ , Σ ∪Ψ and −Σ respectively.

We say that two formulae ϕ(ξ ) and ψ(ξ ) in the same free variables ξ =
(ξ1, . . . ,ξn) are equivalent over a ring A, if they hold on exactly the same tuples
from A (that is to say, if they define the same subsets in An). In particular, if ϕ and
ψ are sentences, then they are equivalent in A if they are simultaneously true or
false in A. If ϕ(ξ ) and ψ(ξ ) are equivalent for all rings A in a certain class K , then
we say that ϕ(ξ ) and ψ(ξ ) are equivalent modulo the class K . In particular, if Σ is
a constructible subset in An

R, then any two formulae associated to it are equivalent
modulo the class of all R-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsets of An

R and quantifier free
formulae with parameters from R up to equivalence.

2.2.4 Quantifier Elimination

For certain rings (or classes of rings), every formula is equivalent to a quantifier
free formula; this phenomenon is known under the name Quantifier Elimination.
We will only encounter it for the following class.

Theorem 2.2.1 (Quantifier Elimination for Algebraically Closed Fields). If
K is the class of all algebraically closed fields, then any formula without parameters is
equivalent modulo K to a quantifier free formula without parameters.

More generally, if F is a field and K (F) the class of all algebraically closed fields
containing F , then any formula with parameters from F is equivalent modulo K (F)
to a quantifier free formula with parameters from F .

Proof (Sketch of proof ). These statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that the projection of a
constructible subset is again constructible. I will only explain this for the first
assertion. As already observed, a quantifier free formula ϕ(ξ ) (without parame-
ters) corresponds to a constructible set Σϕ(ξ ) in An

Z
and the tuples in Kn satisfying

ϕ(ξ ) are precisely the K-rational points Σϕ(ξ )(K) of Σϕ(ξ ). The key observa-
tion is now the following. Let ψ(ξ ,ζ ) be a quantifier free formula and put
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γ(ξ ) := (∃ζ )ψ(ξ ,ζ ), where ξ = (ξ1, . . . ,ξn) and ζ = (ζ1, . . . ,ζm). Let Ψ := ψ(K)
be the subset of Kn+m defined by ψ(ξ ,ζ ) and let Γ := γ(K) be the subset of Kn

defined by γ(ξ ). Therefore, if we identify Kn+m with the collection of K-rational
points of An+m

K , then
Ψ = Σψ(ξ ,ζ )(K).

Moreover, if p : An+m
K → A

n
K is the projection onto the first n coordinates then

p(Ψ) = Γ . By Chevalley’s Theorem (see for instance [27, Corollary 14.7] or
[39, II. Exercise 3.19]), p(Σψ(ξ ,ζ )) (as a subset in An

Z
) is again constructible, and

therefore, by our previous discussion, of the form Σχ(ξ ) for some quantifier free
formula χ(ξ ). Hence Γ = Σχ(ξ )(K), showing that γ(ξ ) is equivalent modulo K
to χ(ξ ). Since χ(ξ ) does not depend on K, we have in fact an equivalence of
formulae modulo the class K . To get rid of an arbitrary chain of quantifiers, we
use induction on the number of quantifiers, noting that the complement of a set
defined by (∀ζ )ψ(ξ ,ζ ) is the set defined by (∃ζ )¬ψ(ξ ,ζ ), where ¬(·) denotes
negation.

For some alternative proofs, see [57, Corollary A.5.2] or [67, Theorem 1.6]. �	

2.3 Łoś’ Theorem

Thanks to Quantifier Elimination (Theorem 2.2.1), when dealing with alge-
braically closed fields, we may forget altogether about formulae and use con-
structible subsets instead. However, we will not always be able to work just in
algebraically closed fields and so we need to formulate a general transfer principle
for ultraproducts. For most of our purposes, the following version suffices:

Theorem 2.3.1 (Equational Łoś’ Theorem). Suppose each Aw is an R-algebra, and
let A� denote their ultraproduct. Let ξ be an n-tuple of variables, let f ∈ R[ξ ], and
let aw be n-tuples in Aw with ultraproduct a�. Then f (a�) = 0 in A� if and only if
f (aw) = 0 in Aw for almost all w.

Moreover, instead of a single equation f = 0, we may take in the above statement
any system of equations and negations of equations over R.

Proof. Let me only sketch a proof of the first assertion. Suppose f (a�) = 0. One
checks (do this!), making repeatedly use of (2.1), that f (a�) is equal to the ultra-
product of the f (aw). Hence the former being zero simply means that almost all
f (aw) are zero. The converse is proven by simply reversing this argument. �	

On occasion, we might also want to use the full version of Łoś’ Theorem,
which requires the notion of a formula as defined above. Recall that a sentence is
a formula without free variables.

Theorem 2.3.2 (Łoś’ Theorem). Let R be a ring and let Aw be R-algebras. If ϕ is a
sentence with parameters from R, then ϕ holds in almost all Aw if and only if ϕ holds
in the ultraproduct A�.
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More generally, let ϕ(ξ1, . . . ,ξn) be a formula with parameters from R and let aw

be an n-tuple in Aw with ultraproduct a�. Then ϕ(aw) holds in almost all Aw if and
only if ϕ(a�) holds in A�.

The proof is tedious but not hard; one simply has to unwind the definition of
formula (see [57, Theorem 9.5.1] for a more general treatment). Note that A� is
naturally an R-algebra, so that it makes sense to assert that ϕ is true or false in A�.
Applying Łoś’ Theorem to a quantifier free formula proves Theorem 2.3.1.

2.4 Ultra-rings

An ultra-ring is simply an ultraproduct of rings. Probably the first examples of
ultra-rings appearing in the literature are the so-called non-standard integers, that
is to say, the ultrapowers Z� of Z,2 and the hyper-reals, that is to say, the ultra-
power R� of the reals, which figure prominently in non-standard analysis (see, for
instance, [36, 80]). Ultra-rings will be our main protagonists, but for the moment
we only establish some very basic facts about them.

2.4.1 Ultra-fields

Let Kw be a collection of fields and K� their ultraproduct, which is again a field by
2.1.5 (or by an application of Łoś’ Theorem). Any field which arises in this way
is called an ultra-field.3 Since an ultraproduct is either finite or uncountable, Q is
an example of a field which is not an ultra-field.

2.4.1 If for each prime number p, only finitely many Kw have characteristic p,
then K� has characteristic zero.

Indeed, for every prime number p, the equation pξ − 1 = 0 has a solu-
tion in all but finitely many of the Kw and hence it has a solution in K�, by
Theorem 2.3.1. We will call an ultra-field K� of characteristic zero which arises
as an ultraproduct of fields of positive characteristic, a Lefschetz field (the name is
inspired by Theorem 2.4.3 below); and more generally, an ultra-ring of character-
istic zero given as the ultraproduct of rings of positive characteristic will be called
a Lefschetz ring (see §7.2.1 for more).

2 Logicians study these under the guise of models of Peano arithmetic, where, instead of Z�, one
traditionally looks at the sub-semi-ring N�, the ultrapower of N (see, for instance, [63]). Caveat:
not all non-standard models are realizable as ultrapowers.
3 In case the Kw are finite but of unbounded cardinality, their ultraproduct K� is also called a
pseudo-finite field; in these notes, however, we prefer the usage of the prefix ultra-, and so we
would call such fields instead ultra-finite fields.
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2.4.2 If almost all Kw are algebraically closed fields, then so is K�.

The quickest proof is by means of Łoś’ Theorem, although one could also give
an argument using just Theorem 2.3.1.

Proof. For each n ≥ 2, consider the sentence σn given by

(∀ζ0, . . . ,ζn)(∃ξ )ζn = 0 ∨ ζnξ n + · · ·+ ζ1ξ + ζ0 = 0.

This sentence is true in any algebraically closed field, whence in almost all Kw,
and therefore, by Łoś’ Theorem, in K�. However, a field in which every σn holds
is algebraically closed. �	

We have the following important corollary which can be thought of as a model-
theoretic Lefschetz Principle (here Falg

p is the algebraic closure of the p-element
field Fp; and, more generally, Falg denotes the algebraic closure of a field F).

Theorem 2.4.3 (Lefschetz Principle). Let W be the set of prime numbers, endowed
with some ultrafilter. The ultraproduct of the fields Falg

p is isomorphic with the field C
of complex numbers, that is to say, we have an isomorphism

C∼= ulim
p→∞

F
alg
p

Proof. Let F� denote the ultraproduct of the fields Falg
p . By 2.4.2, the field F� is

algebraically closed, and by 2.4.1, its characteristic is zero. Using elementary set
theory, one calculates that the cardinality of F� is equal to that of the continuum.
The theorem now follows since any two algebraically closed fields of the same
uncountable cardinality and the same characteristic are (non-canonically) isomor-
phic by Steinitz’s Theorem (see [57] or Theorem 2.4.7 below). �	
Remark 2.4.4. We can extend the above result as follows: any algebraically closed
field K of characteristic zero and cardinality 2κ , for some infinite cardinal κ , is
a Lefschetz field. Indeed, for each p, choose an algebraically closed field K p of
characteristic p and cardinality κ . Since the ultraproduct of these fields is then an
algebraically closed field of characteristic zero and cardinality 2κ , it is isomorphic
to K by Steinitz’s Theorem (Theorem 2.4.7). Under the generalized Continuum
Hypothesis, any uncountable cardinal is of the form 2κ , and hence any uncount-
able algebraically closed field of characteristic zero is then a Lefschetz field. We
will tacitly assume this, but the reader can check that nowhere this assumption is
used in an essential way.

Remark 2.4.5. Theorem 2.4.3 is an embodiment of a well-known heuristic prin-
ciple in algebraic geometry regarding transfer between positive and zero charac-
teristic, which Weil [113] attributes to Lefschetz. Essentially metamathematical
in nature, there have been some attempts to formulate this principle in a formal,
model-theoretic language in [10,28]; for a more general version than ours, see [32,
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Theorem 8.3]. In fact, Theorem 2.4.3 is a special instance of model-theoretic com-
pactness applied to the theory of algebraically closed fields. For instance, the next
result, due to Ax [8], is normally proven using compactness, but here is a proof
using Theorem 2.4.3 instead:

2.4.6 If a polynomial map Cn → C
n is injective, then it is surjective.

Indeed, by the Pigeon Hole Principle, the result is true if we replace C by any
finite field; since Falg

p is a union of finite fields, the assertion remains true over it;
an application of Theorem 2.4.3 then finishes the proof. �	
Theorem 2.4.7 (Steinitz’s Theorem). If K and L are algebraically closed fields
of the same characteristic and the same uncountable cardinality, then they are
isomorphic.

Proof (Sketch of proof ). Let k be the common prime field of K and L (that is to say,
either Q in characteristic zero, or Fp in positive characteristic p). Let Γ and Δ
be respective transcendence bases of K and L over k. Since K and L have the same
uncountable cardinality, Γ and Δ have the same cardinality, and hence there exists
a bijection f : Γ →Δ . This naturally extends to a field isomorphism k(Γ )→ k(Δ).
Since K is the algebraic closure of k(Γ ), and similarly, L of k(Δ), this isomorphism
then extends to an isomorphism K → L. �	

The previous results might lead the reader to think that the choice of ultrafilter
never matters. As we shall see later, for most of our purposes this is indeed true,
but there are many situations were the ultrafilter determines the ultraproduct. For
instance, consider the ultraproduct of fields Fw, where Fw is either F2 or F3. Since
almost all Fw are therefore equal to one, and only one, among these two fields, so
will their ultraproduct be (to see the latter, note that there is a first-order sentence
expressing that a field has exactly two elements, and now use the model-theoretic
version of Łoś’ Theorem, Theorem 2.3.2). More precisely, the ultraproduct is
equal to F2 if and only if the set I2 of indices w for which Fw = F2 belongs to
the ultrafilter. If I2 is infinite, then there exists always an ultrafilter containing it,
and if I2 is also co-finite, then there exists another one not containing I2, so that
in the former case, the ultraproduct is equal to F2, and in the latter case to F3.
We will prove a theorem below, Theorem 2.5.4, which tells us exactly all possible
ultraproducts a given collection of rings can produce (see also Theorem 2.6.4).

2.4.2 Ultra-rings

Let Aw be a collection of rings. Their ultraproduct A� will be called, as already
mentioned, an ultra-ring.

2.4.8 If each Aw is local with maximal ideal mw and residue field kw := Aw/mw,
then A� is local with maximal ideal m� := ulimmw and residue field k� :=
ulimkw.
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Indeed, a ring is local if and only if the sum of any two non-units is again a
non-unit. This statement is clearly expressible by means of a sentence, so that by
Łoś’ Theorem (Theorem 2.3.2), A� is local. Again we can prove this also directly,
or using the equational version, Theorem 2.3.1. The remaining assertions now
follow easily from 2.1.6. In fact, the same argument shows that the converse is
also true: if A� is local, then so are almost all Aw. �	

Recall that the embedding dimension of a local ring is the minimal number of
generators of its maximal ideal. The next result is therefore immediate from 2.1.6
and 2.4.8.

2.4.9 If Aw are local rings of embedding dimension e, then so is A�. �	
As being a domain is captured by the fact that the equation ξ ζ = 0 has no

solution by non-zero elements; and being reduced by the fact that the equation
ξ 2 = 0 has no non-zero solutions, we immediately get from Łoś’ Theorem:

2.4.10 Almost all Aw are domains (respectively, reduced) if and only if A� is a
domain (respectively, reduced). �	

In particular, using 2.1.6, we see that an ultraproduct of ideals is a prime
(respectively, radical, maximal) ideal if and only if almost all ideals are prime (re-
spectively, reduced, maximal).

2.4.11 If Iw are ideals in the local rings (Aw,mw), such that in (A�,m�), their
ultraproduct I� is m�-primary, then almost all Iw are mw-primary.

Recall that an ideal I in a local ring (R,m) is called m-primary if its radical is
equal to m. So, mN

� ⊆ I� for some N, and therefore, mw ⊆ Iw for almost all w, by
Łoś’ Theorem. �	

Note that here the converse may fail to hold: not every ultraproduct of
mw-primary ideals need to be m�-primary (see Proposition 2.4.17 for a partial
converse). For instance, the ultraproduct of the mw is no longer mR�-primary in
the ultrapower R� (see 8.1.3). An ideal in an ultra-ring is called an ultra-ideal, if it
is an ultraproduct of ideals.4

2.4.12 Any finitely generated, or more generally, any finitely related ideal a in an
ultra-ring A� is an ultra-ideal, and A�/a is again an ultra-ring.

Let A� be the ultraproduct of rings Aw. Recall that an ideal a is called finitely
related, if it is of the form (I : J) with I and J finitely generated. Suppose
I = ( f1, . . . , fn)A� and J = (g1, . . . ,gm)A�. Choose fiw,giw ∈ Aw with ultraproduct
equal to fi and gi respectively, and put

aw := (( f1w, . . . , fnw)Aw : (g1w, . . . ,gmw)Aw).

4 In the literature, such ideals are often called internal ideals.
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It is now an easy exercise on Łoś’ Theorem, using 2.1.6, that a is the ultraproduct
of the aw, and A�/a the ultraproduct of the Aw/aw. �	

Not every ideal in an ultra-ring is an ultra-ideal; for an example, see the
discussion at the start of §4.2. Another counterexample is provided by the fol-
lowing ideal, which will play an important role in the study of local ultra-rings
(see Proposition 2.4.19 for an example).

Definition 2.4.13 (Ideal of Infinitesimals). For an arbitrary local ring (R,m),
define its ideal of infinitesimals, denoted IR, as the intersection

IR :=
⋂

n≥0

mn.

The m-adic topology on R is Hausdorff (=separated) if and only if IR = 0.
Therefore, we will refer to the residue ring R/IR as the separated quotient of R.
In commutative algebra, the ideal of infinitesimals hardly ever appears simply
because of:

Theorem 2.4.14 (Krull’s Intersection Theorem). If R is a Noetherian local ring,
then IR = 0.

Proof. This is an immediate consequence of the Artin-Rees Lemma (for which
see [69, Theorem 8.5] or [7, Proposition 10.9]), or of its weaker variant proven
in Theorem 8.2.1 below. Namely, for x ∈ IR, there exists, according to the latter
theorem, some c such that xR∩mc ⊆ xm. Since x ∈ mc by assumption, we get
x ∈ xm, that is to say, x = ax with a ∈ m. Hence (1−a)x = 0. As 1−a is a unit in
R, we get x = 0. �	

It would be dishonest to claim that the above yields a non-standard proof of
Krull’s theorem via Theorem 8.2.1, as the latter proof uses the flatness of cat-
aproducts (Theorem 8.1.15), which is obtained via Cohen’s Structure Theorems,
and therefore, ultimately relies on Krull’s Intersection Theorem. The exact con-
nection between both results is given by Theorem 8.2.3.

Corollary 2.4.15. In a Noetherian local ring (R,m), every ideal is the intersection
of m-primary ideals.

Proof. For I ⊆ R an ideal, an application of Theorem 2.4.14 to the ring R/I shows
that I is the intersection of all I +mn, and the latter are indeed m-primary. �	

Most local ultra-rings have a non-zero ideal of infinitesimals.

2.4.16 If Rw are local rings with non-nilpotent maximal ideal, then the ideal of
infinitesimals of their ultraproduct R� is non-zero. In particular, R� is not
Noetherian.

Indeed, by assumption, we can find non-zero aw ∈ mw (let us for the moment
assume that the index set is equal to N) for all w. Hence their ultraproduct a� is
non-zero and lies inside IR�

. �	
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As we shall see later, being Noetherian is not preserved under ultraproducts.
However, under certain restrictive conditions, of which the field case (2.1.5) is
a special instance, we do have preservation (this also gives a more quantitative
version of 2.4.11):

Proposition 2.4.17. An ultraproduct A� of rings Aw is Artinian of length l if and
only if almost all Aw are Artinian of length l.

Proof. By the Jordan-Holder Theorem, there exist elements a0 = 0,a1, . . . ,al = 1
in A� such that

a0A� � (a0,a1)A� � (a0,a1,a2)A� � · · ·� (a0, . . . ,al)A� = A�

is a maximal chain of ideals. Choose, for each i = 0, . . . , l, elements aiw ∈Aw whose
ultraproduct is ai. By Łoś’ Theorem, for a fixed i < l, almost all inclusions

(a0w, . . . ,aiw)Aw ⊆ (a0w, . . . ,ai+1w)Aw (2.3)

are strict. This shows that almost all Aw have length at least l. If almost all of them
would have length bigger than l, then for at least one i, we can insert in almost
all inclusions (2.3) an ideal Iw different from both ideals. By Łoś’ Theorem, the
ultraproduct I� of the Iw would then be strictly contained between (a0, . . . ,ai)A�

and (a0, . . . ,ai+1)A�, implying that A� has length at least l + 1, contradiction. �	
Proposition 2.4.18. An ultra-Dedekind domain, that is to say, an ultraproduct of
Dedekind domains, is a Prüfer domain.

Proof. Recall that a domain is Prüfer if any localization at a maximal ideal is a
valuation ring. By [34, §1.4], this equivalent with the property that every finitely
generated ideal is projective, and so we verify the latter. Let Aw be Dedekind
domains, that is to say, one-dimensional normal domains, and let A� be their ul-
traproduct. Let I� be a finitely generated ideal. By 2.4.12, we can find non-zero
ideals Iw ⊆ Aw such that their ultraproduct equals I�. Since each Iw is generated by
at most two elements we can find a split exact sequence

0 → Jw → A2
w → Iw → 0

for some submodule Jw ⊆ A2
w. Since ultraproducts commute with direct sums, we

get an isomorphism I� ⊕ J�
∼= A2

� , where J� is the ultraproduct of the Jw, showing
that I� is projective. �	
Proposition 2.4.19. An ultra-discrete valuation ring V �, that is to say, an ultraprod-
uct of discrete valuation rings V w, is a valuation domain. Its ideal of infinitesimals IV �

is an infinitely generated prime ideal, and the separated quotient V �/IV �
—in Chapter 8

we will call this the cataproduct V � of the V w—is again a discrete valuation ring.
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Proof. Recall that a valuation ring is a domain such that for all a in the field
of fractions of V , at least one of a or 1/a belongs to V . By 2.1.5, the field of
fractions K� of V � is the ultraproduct of the field of fractions Kw of the V w. Let
aw ∈ Kw be an approximation of a ∈ K�. For almost each w, either aw or 1/aw

belongs to V w. Therefore, by Łoś’ Theorem, either a ∈ V � or 1/a ∈ V �, proving
the first claim. If IV �

is finitely generated, then it is principal, say, of the form
b�V �, since V � is a valuation domain. Let bw ∈V w be an approximation of b�, and
let cw := bw/πw, where πw is a uniformizing parameter of V w. Since, for each n,
almost all bw have order at least n, almost all cw have order at least n− 1. Hence
their ultraproduct c� also belongs to IV �

= b�V �. Let π � be the ultraproduct of
the πw, so that it generates the maximal ideal m� of V � by the proof of 2.4.9. By
Łoś’ Theorem, b�/π � = c�, so that b� ∈ c�m� ⊆ b�m�, contradiction. Finally, to
show that V � := V �/IV �

is a discrete valuation ring, and hence, in particular, IV �

is prime, observe that for any non-zero element a in V �, there is a largest n such
that a ∈ mn

� = πn
�V �. The assignment a �→ n is now easily seen to be a discrete

valuation. �	
The previous proof in fact shows that an ultraproduct of valuation rings is

again a valuation ring.

2.4.3 Ultrapowers

An important instance of an ultra-ring is the ultrapower A� of a ring A. It is
easy to see that the diagonal embedding A → A� is a ring homomorphism. We
will see in the next chapter that this embedding is often flat (see Corollary 3.3.3
and Theorem 3.3.4). However, an easy application of Łoś’ Theorem immediately
yields that this map is at least cyclically pure. Recall that a homomorphism A→ B
is called cyclically pure, if IB∩A = I for all ideals I ⊆ A. Examples of cyclically pure
homomorphisms are, as we shall see, faithfully flat (Proposition 3.2.5) and split
maps (see 5.5.4). It follows from Proposition 2.4.17 that the ultrapower of an
Artinian ring is again Artinian. However, by 2.4.16 and Theorem 2.4.14, these
are the only rings whose ultrapower is Noetherian. The next result is immediate
from 2.1.6 and its proof:

2.4.20 If I is a finitely generated ideal in a ring A, then its ultrapower in the
ultrapower A� of A is equal to IA�. In particular, the ultrapower of A/I
is A�/IA�.

The following is a counterexample if I is not finitely generated: let A be the
polynomial ring over a field in countably many variables ξi, and let I be the ideal
generated by all these variables. The ultraproduct f of the polynomials f w :=
ξ1 + · · ·+ξw is an element in the ultrapower I� of I but does not belong to IA�, for
if it were, then f must be a sum of finitely many generators of I, say, ξ1, . . . ,ξi,
and therefore by 2.1.6, so must almost all f w be, a contradiction whenever w > i.
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2.4.4 Ultra-exponentiation

Let A� be an ultra-ring, given as the ultraproduct of rings Aw. Let N� be the
ultrapower of the natural numbers, and let α ∈ N� with approximations αw. The
ultra-exponentiation map on A with exponent α is defined as follows. Given x ∈ A,
let xw ∈ Aw be an approximation of x, that is to say, ulimxw = x, and set

xα := ulimxαw
w .

One easily verifies that this definition does not depend on the choice of approx-
imation of x nor of α: if x′w and α′

w are also respectively approximations of x
and α, then almost all xw and x′w are the same, and so are almost all αw and α′

w,
whence almost all xαw

w are equal to (x′w)α′
w , and, therefore, they have the same

ultraproduct. By Łoś’ Theorem, ultra-exponentiation satisfies the same rules as
regular exponentiation:

(xy)α = xα · yα and xα · xβ = xα+β and (xα)β = xα·β

for all x,y ∈ A� and all α,β ∈ N�.
If A is local and x a non-unit, then xα is an infinitesimal for any α in N� not

in N. In these notes, the most important instance will be the ultra-exponentiation
map obtained as the ultraproduct of Frobenius maps. More precisely, let A� be
a Lefschetz ring, say, realized as the ultraproduct of rings Ap of characteristic p
(here we assumed for simplicity that the underlying index set is just the set of
prime numbers, but this is not necessary). On each Ap, we have an action of the
Frobenius, given as Fp(x) := xp (for more, see §5.1).

Definition 2.4.21 (Ultra-Frobenius). The ultraproduct of these Frobenii yields
an endomorphism F� on A�, called the ultra-Frobenius, given by F�(x) := xπ, where
π ∈N� is the ultraproduct of all prime numbers. Since each Frobenius is an endo-
morphism, so is any ultra-Frobenius by 2.1.7. In particular, we have

(x + y)π = xπ + yπ

for all x,y ∈ A�.

2.5 Algebraic Definition of Ultra-rings

Let Aw, for w ∈ W , be rings with Cartesian product A∞ := ∏w Aw and direct sum
A(∞) :=

⊕
Aw. Note that A(∞) is an ideal in A∞. Call an element a ∈ A∞ a strong

idempotent if each of its entries is either zero or one. In other words, an element
in A∞ is a strong idempotent if and only if it is the characteristic function 1D

of a subset D ⊆ W . For any ideal a ⊆ A∞, let a◦ be the ideal generated by all
strong idempotents in a, and let Wa be the collection of subsets D ⊆ W such
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that 1− 1D ∈ a. Using the identities (1− 1D)(1− 1E) = 1− 1E for D ⊆ E and
1−1D∩E = 1E(1−1D)+ 1−1E, one verifies that Wa is a filter.

2.5.1 Given an ideal a⊆ A∞, the filter Wa is maximal if and only if a is a prime
ideal; it is principal if and only if the ideal a◦ is principal, if and only if a
does not contain the ideal A(∞).

Indeed, given an idempotent e, its complement 1− e is again idempotent, and
the product of both is zero, that is to say, they are orthogonal. It follows that any
prime ideal contains exactly one among e and 1−e. Hence, if a is prime, then Wa

consists of those subsets D ⊆W such that 1D /∈ a. Since 1−1D is the characteristic
function of the complement of D, it follows that either D or its complement
belongs to Wa. Moreover, if D∈Wa and D⊆E, then 1D ·1E = 1D does not belong
to a, whence neither does 1E , showing that E ∈ Wa. This proves that Wa is a
maximal filter. It is not hard to see that if a◦ is principal, then it must be generated
by the characteristic function of the complement of a singleton, and hence Wa

must be principal (the other direction is immediate). The last equivalence is left
as an exercise to the reader. �	

We can now formulate the following entirely algebraic characterization of an
ultra-ring.

2.5.2 Let P be a prime ideal of A∞ containing the direct sum ideal A(∞). The
ultraproduct of the Aw with respect to the ultrafilter WP is equal to A∞/P◦,
that is to say, P◦ is the null-ideal determined by WP. Furthermore, any
ultra-ring having the Aw as approximations is of the form A∞/P◦, for some
prime ideal P containing A(∞).

Let n be the null-ideal determined by WP, that is to say, the collection of
sequences in A∞ almost all of whose entries are zero. If D ∈ WP, then almost all
entries of 1− 1D are zero, and hence 1− 1D ∈ n. Since this is a typical generator
of P◦, we get P◦ ⊆ n. Conversely, suppose a = (aw) ∈ n. Hence aw = 0 for all w
belonging to some D ∈ WP. Since 1−1D ∈ P◦ and a = a(1−1D), we get a ∈ P◦.

Conversely, if W is an ultrafilter with corresponding null-ideal n ⊆ A∞, then
one easily checks that any prime ideal P containing n satisfies n = P◦. �	

In fact, if P ⊆ Q are prime ideals, then P◦ = Q◦, showing that already all
minimal prime ideals of A∞ determine all possible ultrafilters.

Corollary 2.5.3. If all Aw are domains, then A� is the coordinate ring of an irre-
ducible component of Spec(A∞/A(∞)). More precisely, the residue rings A∞/G, for
G ⊆ A∞ a minimal prime containing A(∞), are precisely the ultraproducts A� hav-
ing the domains Aw for approximations. Moreover, these irreducible components are
then also the connected components of Spec(A∞/A(∞)), that is to say, they are mutually
disjoint.

Proof. Since the ultraproduct A� determined by G is equal to A∞/G◦ by 2.5.2,
and a domain by 2.4.10, the ideal G◦ must be prime. By minimality, G◦ = G.
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To prove the last assertion, let G1 and G2 be two distinct minimal prime ideals of
A∞ containing A(∞). Suppose G1 +G2 is not the unit ideal. Hence there exists a
maximal ideal M ⊆ A∞ such that G1,G2 ⊆ M, and hence

G1 = G◦
1 = M◦ = G◦

2 = G2,

contradiction. Hence G1 +G2 = 1, showing that any two irreducible components
of Spec(A∞/A(∞)) are disjoint. �	

Note that the connected components of Spec(A∞), apart from the Spec(A�),
are the Spec(Aw) corresponding to the principal (maximal) filters. In the following
structure theorem, Z∞ := ZW denotes the Cartesian power of Z. Any Cartesian
product A∞ := ∏Aw is naturally a Z∞-algebra.

Theorem 2.5.4. Any ultra-ring is a base change of a ring of non-standard integers
Z�. More precisely, the ultra-rings with approximation Aw are precisely the rings of the
form A∞/GA∞, where G is a minimal prime of Z∞ containing the direct sum ideal.

Proof. If P is a prime ideal in A∞ containing the direct sum ideal A(∞), then the
generators of P◦ already live in Z∞, and generate the null-ideal in Z∞ correspond-
ing to the ultrafilter WP. By Corollary 2.5.3, the latter ideal therefore is a minimal
prime ideal G ⊆ Z∞ of Z(∞). Since GA∞ = P◦, one direction is clear from 2.5.2.
Conversely, again by Corollary 2.5.3, any minimal prime ideal G ⊆ Z∞ is the
null-ideal determined by the ultrafilter WG, and one easily checks that the same
is therefore true for its extension GA∞. �	

2.6 Sheaf-theoretic Definition of Ultra-rings

We say that a topological Hausdorff space X admits a Hausdorff compactification
X∨, if X ⊆ X∨ such that for every compact Hausdorff space Y and every continu-
ous map f : X → Y , there is a unique map f∨ : X∨ → Y extending f . Since this is
a universal problem, a Hausdorff compactification is unique, if it exists.

Proposition 2.6.1. Every infinite discrete space X has a Hausdorff compactification.

Proof. Let X∨ be the Stone-Čech compactification of X consisting of all maximal
filters on X . We identify the principal filters with their generators, so that X be-
comes a subset of X∨. For a subset U ⊆ X , let τ(U) ⊆ X∨ consist of all maximal
filters containing U . For any U ⊆ X , we have

X∨− τ(U) = τ(X −U), (2.4)

by the ultrafilter condition. We define a topology on X by taking the τ(U), for
U ⊆ X , as a basis of open subsets. This works, since the intersection of two basic
opens τ(U1) and τ(U2) is the basic open τ(U1 ∩U2). Note that U ⊆ τ(U) with
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equality if and only if U is finite. In fact, by the definition of the embedding
X ⊆ X∨, we have τ(U)∩X = U , and hence the topology induced on X is just the
discrete topology. In particular, every non-empty open has a non-empty intersec-
tion with X , showing that X is a dense (open) subset of X∨.

To see that X∨ is Hausdorff, take two distinct points in X∨, that is to say,
distinct maximal filters on X . In particular, there exists a subset U ⊆ X belong-
ing to one but not the other. Hence τ(U) and τ(X −U) are disjoint opens, each
containing exactly one of these two points. To prove compactness, we need to
verify that the finite intersection property holds, that is to say, that any collection
of non-empty closed subsets which is closed under finite intersections, has non-
empty intersection. By (2.4), any basic open subset is also closed, that is to say, is a
clopen, and hence any closed subset is an intersection of basic opens. Without loss
of generality, we may therefore assume that {τ(Ui)}i is a collection of non-empty
closed subsets which is closed under finite intersections, and we have to show that
their intersection is also non-empty. Since X ∩τ(Ui) = Ui, it follows that the {Ui}i

are closed under finite intersections. Let Y be the collection of all subsets U ⊆ X
such that some Ui is contained in U . One checks that Y is a filter, whence is con-
tained in some maximal filter W. By construction, Ui ∈ W, for all i, showing that
W lies in the intersection of all τ(Ui).

Finally, we verify the universal property. Let f : X → Y be an (automatically
continuous) map with Y a compact Hausdorff space and fix a point in X∨, that
is to say, a maximal filter W on X . Let FW be the intersection of all closures
clos( f (U)), where U runs over all subsets in W. Since any finite intersection

clos( f (U1))∩·· ·∩ clos( f (Us)),

for Ui ∈W contains the (non-empty) image of U1∩·· ·∩Us ∈W under f , and since
Y is compact, FW is non-empty. Suppose y and y′ are two distinct elements in FW.
Since Y is Hausdorff, we can find disjoint opens V and V ′ containing respectively
y and y′. In particular, their pre-images f−1V and f−1V ′ are disjoint, and so one
of them, say f−1V cannot belong to W. It follows that X − f−1V belongs to W
and hence FW is contained in the closure of f (X − f−1V ) = f (X)−V . Since V is
an open containing y ∈ FW, it must therefore have non-empty intersection with
f (X)−V , contradiction. Hence FW is a singleton, and we now define f∨(W) to
be the unique element belonging to FW. Immediate from the definitions we get
that f∨(W) = f (W) in case W∈ X , that is to say, is principal. So remains to show
that f∨ is continuous.

To this end, let V ⊆ Y be open and W ∈ X∨ a point in ( f∨)−1(V ). We need
to find an open containing W and contained in ( f∨)−1(V ). By construction,
the intersection of all clos( f (U)) with U ∈ W is contained in V . By compact-
ness, already finitely many of the clos( f (U)) have an intersection contained in
V (since their complements together with V form an open cover of Y ). Letting
U ∈ W be the intersection of these finitely many members of W, then, as above,
clos( f (U)) ⊆ V . To see that τ(U) ⊆ ( f∨)−1(V ), take Y ∈ τ(U). So U ∈ Y and
hence, per construction, f∨(Y) ∈ clos( f (U)) ⊆V . �	
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If U is infinite, then intersecting each set in W ∈ τ(U) with U yields a maximal
filter on U , so that we get an induced map τ(U)→U∨. It is not hard to show that
this is in fact an homeomorphism. Since U is dense in U∨, we showed that the
closure of U in X∨ is just τ(U) = U∨. Let Aw be rings, indexed by w ∈ X . Define
a sheaf of rings A on X by taking for stalk Aw := Aw in each point w ∈ X (note
that since X is discrete, this completely determines the sheaf A ). Let i : X → X∨
be the above embedding and let A ∨ := i∗A be the direct image sheaf of A under
i. By general sheaf theory, this is a sheaf on X∨. For instance, on a basic open
τ(U) the ring of sections of A ∨ is A (τ(U)∩X) = A (U), and the latter is just the
Cartesian product of all Aw for w ∈U .

2.6.2 The stalk of A ∨ in a boundary point W ∈ X∨ −X is isomorphic to the
ultraproduct ulimAw with respect to the ultrafilter W.

Indeed, by definition of stalk, A ∨
W is the direct limit of all A ∨(V ) where V

runs over all open subsets of X∨ containing W. It suffices to take the direct limit
over all basic opens τ(U) containing W, that is to say, for U ∈ W. Now, as we
already observed above,

A ∨(τ(U)) = A (U) = ∏
w∈U

Aw
∼= A∞/(1−1U)A∞.

Hence this direct limit is equal to the residue ring of A∞ modulo the ideal gen-
erated by all 1− 1U for U ∈ W, that is to say, by 2.5.2, modulo the null-ideal
corresponding to W. �	
2.6.3 Under the identification of P(X) with the Cartesian power (F2)∞ (see

Example B.2.3), the assignment p �→ Wp defined in §2.5 yields a home-
omorphism between the affine scheme Spec(P(X)) and X∨. Infinitely
generated prime ideals then correspond to ultrafilters.

The only thing to observe is that the inverse image of the basic open τ(U)
for U ⊆ X is the basic open D(1−U) in Spec(P(X)). Note that if we view X∨
as the set of maximal filters, and hence as a subset of P(X), then p is sent to its
complement under this homeomorphism. �	

Let us call a scheme X Boolean if it admits an open covering by affine schemes
of the form SpecB with B a Boolean ring (see Proposition B.1.5 for some basic
properties of Boolean rings). Equivalently, any section ring is Boolean, and this
is also equivalent by (B.1.5.vii) to all stalks having two elements. In particular,
Spec(P(W )) is Boolean, for any set W . We call x ∈ X a finite point if the prime
ideal associated to x is finitely generated, whence principal by (B.1.5.iii); in the
remaining case, we call x an infinite point. By (B.1.5.x), the infinite points form
a closed subset with ideal of definition the ideal generated by all atoms. We call
X atomless if every point is infinite, and by (B.1.5.x) this is equivalent with any
section ring of an open subset being atomless. The dichotomy between finite and
infinite points is robust by Corollary B.1.8, in the sense given in 2.6.5 below.
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Theorem 2.6.4. Let A be a sheaf of rings on a Boolean scheme X . If x ∈ X is infinite,
then the stalk Ax is an ultra-ring. If X is the affine scheme of a power set ring P(W ),
then Ax is the ultraproduct of the stalks Ay at finite points y ∈ X with respect to the
ultrafilter given as the image of x under the homeomorphism X ∼= W∨ from 2.6.3.

Proof. Let us first show this in the case X is Spec(P(W )). Infinite points cor-
respond to ultrafilters by 2.6.3, and the result follows by 2.6.2. In the general
case, since stalks are local objects, we may assume that X is an affine scheme
with Boolean coordinate ring B. By the Stone Representation Theorem (see
Theorem B.2.7 below for a proof), there exists a faithfully flat embedding B ⊆
C := P(W ) for some W (we will actually show that one can take W equal to an
ultrapower of N). Since x is infinite, B must be infinite by (B.1.5.viii), whence so
must W be. Let Y := Spec(C). We need:

2.6.5 If f : Y → X is a dominant morphism of Boolean schemes and x ∈ X is
infinite, then there exists an infinite y ∈Y with f (y) = x.

Indeed, we may reduce to the affine case, in which case we have an injective
homomorphism B →C between Boolean rings and a non-principal maximal ideal
p ⊆ B corresponding to x. The fiber f−1(x) has coordinate ring C/pC. If C/pC
is infinite, then it contains a non-principal maximal ideal by (B.1.5.viii), and its
pre-image in C must then also be non-principal, so that we are done in this case.
So assume C/pC is finite and any maximal ideal containing pC is principal. Since
C/pC is finite, pC is the intersection of the finitely many maximal ideals con-
taining p by (B.1.5.vi). Hence pC is an intersection of principal ideals whence
is principal by (B.1.5.iii). Since B → C is an embedding, p must be principal by
Corollary B.1.8, contradiction. �	

So, returning to the case at hand, there exists an infinite y ∈Y such that f (y) =
x. Let f−1A be the inverse image of A under the morphism f : Y → X . Since
( f−1A )y is isomorphic to Ax and the former is an ultra-ring by the above, so is
therefore the latter. �	

In particular, any stalk over an atomless Boolean scheme is an ultra-ring!
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