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Abstract

Aim We reviewed the occurrence of Bergmann’s rule in birds (ninety-four species) and
mammals (149 species), using only studies where statistical significance of the results was
tested. We also tested whether studies using different characters as surrogates of body
size have a different tendency to conform to Bergmann’s rule, whether body size and nest
type (in birds) have an influence on the tendency to conform to the rule, and whether
sedentary birds conform to the rule more than migratory birds.

Location Worldwide.

Methods We reviewed published data on geographic and temporal variation in body
size, using only studies where the statistical significance of the results was tested. We
asked how many species conform to the rule out of all species studied in each order and
family.

Results Over 72% of the birds and 65% of the mammal species follow Bergmann’s rule.
An overall tendency to follow the rule occurs also within orders and families. Studies
using body mass in mammals show the greatest tendency to adhere to Bergmann’s rule
(linear measurements and dental measurements show a weaker tendency); while in birds,
studies using body mass and other surrogates (linear measurements and egg size) show a
similar tendency. Birds of different body mass categories exhibit a similar tendency to
follow Bergmann’s rule, while in mammals the lower body size categories (4–50 and 50–
500 g) show a significantly lower tendency to conform to the rule. Sedentary birds tend
to conform to Bergmann’s rule more than migratory species. Nest type does not affect
the tendency to conform to Bergmann’s rule.

Main conclusions Bergmann’s rule is a valid ecological generalization for birds and
mammals.

Keywords

Bergmann’s rule, body size, geographic variation, size clines, latitude, temperature, Aves,
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INTRODUCTION

Bergmann’s rule states in its original version that warm-
blooded vertebrate species from cooler climates tend to be
larger than congeners from warmer climates (Bergmann,
1847). This rule was later reformulated by Rensch (1938) to
refer to populations within species: �within a Rassenkreis
(i.e. species, see Mayr, 1942) of warm-blooded animals the
races living in colder climates are generally larger than the
races living in warmer regions� (Rensch, 1938; see also
Mayr, 1942, 1956, 1963). Although formulated for home-
otherms, a wealth of research describes such patterns (or
lack thereof) in poikilotherm vertebrates and in various
invertebrate taxa (e.g. Lindsey, 1966; Cushman et al., 1993;

Atkinson, 1994; Arnett & Gotelli, 1999; Porter & Hawkins,
2001; Ashton, 2002).

Despite a wealth of studies aiming to unravel the mecha-
nisms controlling geographic variation in body size, sur-
prisingly little was done to try to assess the empirical validity
of these patterns of variation (Zink & Remsen, 1986;
Ashton et al., 2000). As biological �rules� are, by definition,
empirical generalizations (Mayr, 1963), we reviewed the
literature on geographic variation in body size of both birds
and mammals, and asked whether the pattern predicted by
Bergmann (1847) is indeed prevalent in nature.

Bergmann’s (1847) explanation for his rule was that a
greater increase in size involves a more rapid increase of the
volume of an animal than of its surface area. As heat
production of a homeotherm is related to its volume, while
heat loss to its surface, larger animals will tend to produce
more heat and to lose relatively less, an advantage in cooler
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climates. James’s (1970, 1991) Neo-Bergmannian model
recommends use of wet-bulb temperatures as the appropri-
ate climatic variable because it incorporates the evaporative
power of the air.

It is, therefore, not surprising that much of the debate
regarding Bergmann’s rule and its mechanistic explanation
was generated by animal physiologists who offered alter-
native and conflicting hypotheses (Scholander, 1955, 1956;
Irving, 1957; McNab, 1971; Geist, 1987). Special emphasis
has been placed on McNab’s (1971) rejection of the rule on
theoretical grounds, claiming that larger organisms lose
absolutely more energy to the environment than do smaller
organisms. This analysis disregarded the fact that while large
birds and mammals do require more energy, they acquire
more energy from their surroundings than do smaller ones
(see exponents in Brown et al., 1993; Maurer, 1998). Berg-
mann’s (1847) rule implies that because of relatively large
energy loss, smaller homeotherms have a problem obtaining
enough food to meet their energetic demands (Thompson,
1942). It does not imply that these demands are absolutely
higher in small organisms than those of larger ones.

Over the years, other ecological and evolutionary hypo-
theses were advanced to supplement or replace the thermo-
regulatory mechanism proposed by Bergmann (1847) and
James (1970). It was claimed that size clines can result from
latitudinal differences in primary productivity (Rosenzweig,
1968; Geist, 1987), or from differences in environmental
predictability, leading to improved survival of large animals
in higher latitudes (Calder, 1974, 1984; Boyce, 1978, 1979;
Lindstedt & Boyce, 1985; Millar & Hickling, 1990; McNab,
1999; see also Dunbrack & Ramsay, 1993). These mechan-
isms are not easy to tease apart, as many of the climatic
variables are intercorrelated (Wigginton & Dobson, 1999).
It can also be argued that the adaptive influence exerted on
animal body size by these various mechanisms might be
additive, and that no single such explanation can adequately
describe all cases of Bergmannian size clines (Mayr, 1963;
Lawton, 1996; Yom-Tov et al., 2002).

Irrespective of the driving mechanism(s), Bergmann’s rule
as formulated by Rensch (1938) and Mayr (1956, 1963) is
an empirical generalization whose significance hinges upon
its prevalence among homeotherms. Clearly, other selective
forces may well affect the evolution of body sizes in various
populations and result in regional or global deviations from
Bergmann’s rule (Dayan et al., 1991). However, Mayr
(1956, 1963) suggested that if over 50% of species studied
conform to an ecogeographic rule, its validity should not be
questioned. Although Blackburn et al. (1999) suggest that
this �is rather generous in respect of a ��rule’��, they agree that
a rule probably implies that a pattern should be seen more
often than not.

Rensch (1936) concluded that the majority of North
American and European mammals conformed to Berg-
mann’s rule, but Scholander (1955) questioned the biological
significance of Rensch’s findings, and his choice of charac-
ters. McNab’s (1971) study of geographic variation in North
American mammals failed to support the rule, but his
method was recently criticized by Ashton et al. (2000), who

noted that it limited sample size and geographic range over
which a correlation between size and latitude was sought.
Their study of the prevalence of Bergmann’s rule in mam-
mals of the world supports the rule (Ashton et al., 2000). For
birds, on the other hand, the only review so far was con-
ducted by Zink & Remsen (1986), who argued that a min-
ority of species conform to Bergmann’s rule, unless species
that showed weak support were also considered.

Do mammals follow Bergmann’s rule, while birds fail to
do so? Zink & Remsen’s (1986) review included many
studies that lacked statistical analysis and that examined
very small samples, so it may not be the critical evaluation
that this issue merits. Patterns of geographic variation in
sixty-one additional bird species were studied and published
in the past 16 years since Zink & Remsen’s (1986) publi-
cation, which was limited to North American birds species;
so a new look at the occurrence of Bergmann’s rule in birds
is warranted.

In this study, we review the evidence for Bergmann’s
rule among avian species using only studies that include
statistical testing of the data. We test for the prevalence of
�Bergmannian� size clines in species within the class as well
as within orders and families of birds studied. We also ask
whether there is a different tendency for birds within
different size categories to conform to Bergmann’s rule, as
has been suggested for mammals (Mayr, 1956; Searcy,
1980; Calder, 1984; Steudel et al., 1994; Ashton et al.,
2000).

Although Bergmann’s rule was originally formulated for
body mass of homeotherms, it has been tested using several
different morphological characters as surrogates for body
size. Different body size characters tend to be highly corre-
lated with one another within mouse-to-elephant plots, but
intraspecific comparisons reveal that the relationship may be
weak (Dayan & Simberloff, 1994). Surrogates for body size
may be affected by other selective forces than those
responsible for Bergmann’s rule. Wing length, for example,
may be influenced by migratory habits (Hamilton, 1961;
Zink & Remsen, 1986) and Allen’s rule (in bats; Burnett,
1983). Wing length may also increase after a bird has
reached its final body size (Merom et al., 1999). Teeth,
another common surrogate, may be influenced by competi-
tion (Dayan et al., 1989a,b, 1992). Thus, characters other
than mass may not accurately reflect body size (Rising &
Somers, 1989; Dunning, 1993). Body mass, on the other
hand, may be influenced by seasonal and daily fluctuations
and by reproductive condition (Ralls & Harvey, 1985;
Dunning, 1993). We, therefore, ask whether use of different
surrogates for body size results in a significantly different
tendency to conform to the rule.

We test three hypotheses regarding Bergmann’s rule in
birds. One is that sedentary species will be more likely to
follow Bergmann’s rule than migratory ones. Our rationale
is that migratory birds do not encounter the severe climates
of their breeding ranges during winter, so the selective
pressures acting upon them may, therefore, be lower than
those acting on sedentary birds (Hamilton, 1961; Zink &
Remsen, 1986).
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Another hypothesis follows Kendeigh’s (1969) physiolo-
gical study, which demonstrated that non-passerine birds are
more strongly affected by a drop in temperatures than are
passerines. This phenomenon may imply that the selective
pressures acting upon non-passerines are stronger, and thus
make them more inclined to vary in their body sizes in
accord with Bergmann’s rule.

We also test the hypothesis that there is a relationship
between nest type and the tendency of bird species to comply
with Bergmann’s rule. Our rationale is that the same
selective forces affecting birds must also affect avian eggs. As
eggs in open nests may be more exposed to climatic condi-
tions than those in closed nests, the former might be
expected to show greater conformity to Bergmann’s rule at
the intraspecific level.

For both birds and mammals we ask: (a) whether over
50% of the species studied (within class, order, and family)
show geographic size clines conforming to Bergmann’s rule;
(b) whether species of different size categories have differing
tendencies to conform to it; (c) whether use of different
morphological characters results in a differential tendency to
comply with Bergmann’s rule.

METHODS

We reviewed the literature concerning geographic and tem-
poral variation in body size of birds and mammals. We used
only data that were statistically tested (by the authors) for
geographic variation. This conservative procedure ensures
that perceived patterns used in the analysis are real and not
mere artefacts of insufficient sampling (although Ashton
et al., 2000, found similar patterns whether all, or only
statistically significant data were used). The inclusion of
statistically insignificant data may confound efforts to
determine whether a species conforms to Bergmann’s rule or
shows no geographic variation in body size. We, therefore,
drew the line at the 95% confidence level, although this
method of analysis has low power to reject the null hypo-
thesis. Each species was assigned �1� (¼accords with the
predictions of Bergmann’s rule), or �0� (¼any other body size
trend, or no trend at all). As many studies did not give
correlation coefficients, sample sizes or even P -values (in the
latter case simply stating their results are significant at the
0.05 level), we did not present these data in Tables 1 and 6.
For the same reason we did not perform a meta-analysis test,
as such an analysis will greatly limit the number of studies;
hence, seriously limit the review’s scope. Studies of birds and
mammals using relatively large (> 1000) or small (< 100)
sample sizes did not differ significantly from the general
trend.

We did not attempt to separate studies into those dealing
with different geographic variables such as latitude, tem-
perature, wet bulb temperature and actual evapotranspira-
tion (AE). The climatic data in studies of geographic
variation are far from uniform (cf., e.g. Stebbings, 1973;
Snell & Cunnison, 1983; Murphy, 1985; Langvatn &
Albon, 1986; Yom-Tov & Nix, 1986; Erlinge, 1987; Bost
et al., 1992; Di-Meglio et al., 1996; Olcott & Barry, 2000).

The use of different climatic variables in different studies
leads to different results, the significance of which is not
always clear (Wigginton & Dobson, 1999). �Temperature� is
not a single character. Body size might be influenced by the
coldest temperature, the hottest one, the variance, or range
of temperatures, by heat load (James, 1970) or by other
temperature-related phenomena. �Bergmannian� size clines
may stem from any one, or a combination of variables, as
well as from other latitude related ones. Wigginton &
Dobson (1999) and Ashton et al. (2000) found no significant
differences between latitude and temperature, in their influ-
ence on the tendency of mammals to follow Bergmann’s rule.
Finally, an ecological phenomenon might be the additive
product of different factors (Mayr, 1956, 1963; Lawton,
1996), and so we only sought the occurrence of gross
�Bergmannian� trends.

When different abiotic variables yielded different results,
priority was given to the body size changes (or lack thereof)
with latitude (which may be correlated with a large number
of other variables such as temperature, day length, AE,
number of snow days, etc.; Yom-Tov et al., 2002), over
different temperature variables, then altitude, and finally AE.

We followed Gill (1995) for taxonomic designations of
bird families and orders, and Monroe & Sibley (1993) for
bird species. We followed Wilson & Reeder (1993) for
taxonomic designations of mammals. Neotoma magister
Baird was considered a distinct species [from N. Floridana
(Ord), following Hayes & Richmond, 1993; see also Wilson
& Reeder, 1993]. Likewise, we recognize the two species of
Arvicanthis treated by Fadda & Corti (1998).

Island mammals often differ dramatically in their body size
from their mainland conspecifics, and large differences in size
occur between mammals on different islands (Foster, 1964;
Heaney, 1978; Lomolino, 1985; Dayan & Simberloff, 1998;
Marquet & Taper, 1998). Therefore, we did not include
studies in which a major source of variation is because of
differences in body size between mammals inhabiting differ-
ent islands [Baker et al., 1978; Tideman, 1986; Kaneko,
1988; Fooden & Albrecht, 1993; Worthy et al., 1996; Abe,
1996, for Mogera wogura (Temminck); Yom-Tov et al.,
1999]. We did not follow the same procedure for birds,
because size changes in birds are usually found only in very
small and isolated islands (McNab, 1994).

McNab’s (1971) methods of dividing his data for each
species into latitudinal bands serve to limit both the sample
sizes, and the latitudinal range over which a correlation
between size and latitude was sought. His analysis, there-
fore, has low power to detect a Bergmannian size cline, even
if such a cline exists. In fact, many of the species [such as
Scalopus aquaticus (Linnaeus), Eptesicus fuscus (Beauvois),
Panthera onca (Linnaeus), Puma concolor (Linnaeus), Lepus
americanus Erxleben, Odocoileus virginanus (Zimmermann)
and Sylvilagus floridanus (Allen); see Table 6] in which
McNab (1971) failed to detect a cline, were found to exhibit
a geographic size cline by other researchers. Therefore, we
did not include McNab’s (1971) data in the analysis.

When geographic variation of a species was examined in
more than one study, the study encompassing the greatest
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Table 1 Avian database

Order,

family and species

Mass

(g) Findings Source

Size

parameter Nest

Migratory

habits

Anseriformes

Anatidae

Anas platyrhynchos 1082 1 DuBowy (2000) L 1 s

Branta canadensis 2880 0 Leafloor & Rusch (1997) L 1 m
Caprimulgiformes

Podargidae

Podargus strigoides 350 1 Ford (1986) L 1 s
Charadriiformes

Chionididae

Chionis minor 579 1 Bried & Jouventin (1997) L 3 s

Alcidae
Fratercula arctica 381 1 Moen (1991) L 3 m

Pinguinus impennis 5000 1 Burness & Montevecchi (1992) L 1 ?

Charadriidae

Vanellus vanellus 218 1 Chylarecki et al. (1997) EV 1 m
Scolopacidae

Calidris alba 57 1 Castro et al. (1992) M, L 1 m

Calidris alpina 52 0 Shepherd et al. (2001) L 1 m
Calidris maritima 82 1 Summers et al. (1998) M, L 1 s

Columbiformes

Columbidae

Columba livia 355 1 Johnston (1994) L 1 s
Coraciformes

Alcedinidae

Ceryle rudis 83 1 Kasparek (1996) L 3 s

Dacelo novaeguinae 305 1 Ford (1986) L 2 s
Falconiformes

Accipitridae

Accipiter cooperii 439 0 Whaley & White (1994) L 1 m

Accipiter fasciatus 510 1 Ford (1986) and Olsen &
Marples (1993)

EV 1 s

Accipiter gentilis 1025 0 Whaley & White (1994) L 1 s

Accipiter nisus 238 1 Wyllie & Newton (1995) L 1 s
Aquila audax 3500 1 Olsen & Marples (1993) EV 1 s

Buteo polyosoma 950 1 Farquhar (1998) L 1 s

Buteo jamaicensis 1126 0 Fitzpatrick & Dunk (1999) L 1 s

Elanus axillaris 250 1 Olsen & Marples (1993) EV 1 s
Cathartidae

Cathartes aura 1467 1 Kirk & Mossman (1998) L 1 (no nest) m

Falconidae

Falco berigora 550 1 Olsen & Marples (1993) EV 1 s
Falco columbarius 191 0 Temple (1972) L 1 m

Falco longipennis 253 1 Olsen & Marples (1993) EV 1 s

Falco peregrinus 782 1 Olsen & Marples (1993) EV 2 s
Falco sparverius 116 1 Layne & Smith (1992) M 2, 3 m

Falco subniger 786 1 Olsen & Marples (1993) EV 1 m

Pandionidae

Pandion haliaetus 1486 1 Olsen & Marples (1993) EV 1 s
Galliformes

Numididae

Guttera pucherani 1150 0 Crow (1979) L 1 s

Numida meleagris 1300 1 Crow (1979) L 1 s
Phasianidae

Alectoris chukar 500 1 Nisany (1974) and

Yom-Tov et al. (2002)

M, L 1 s

Gruiformes
Gruidae

Grus canadensis 4600 0 Johnson & Stewart (1973) L 1 m
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Table 1 continued

Order,

family and species

Mass

(g) Findings Source

Size

parameter Nest

Migratory

habits

Passeriformes

Alaudidae

Eremophila alpestris 31 0 Niles (1973) M, L 1 s

Galerida cristata 43 0 Yom-Tov (2001) M, L 1 s
Cinclidae

Cinclus cinclus 58 0 Esteban et al. (2000) L 4 s

Cisticolidae
Prinia gracilis 7 1 Yom-Tov (2001) M, L 4 s

Corvidae

Cyanocitta cristata 87 1 James (1970) L 1 s

Pyrrhocorax pyrrhocorax 324 1* Laiolo & Rolando (2001) L 3 s
Pyrrhocorax graculus 224 1* Laiolo & Rolando (2001) L 3 s

Emberizidae

Atlapetes rufinucha 26 0 Remsen (1993) L 1 s

Coereba flaveola 9 1 Diamond (1973) M, L 4 s
Diglossa carbonaria 11 1 Graves (1991) L 1 s

Melospiza melodia 24 1 Smith (1998) M 1 s

Passerculus sandwichensis 23 1 Rising (1988) L 1 m
Zonotrichia capensis 21 1 Handford (1983)

and Lougheed & Handford (1993)

L 1 s

Estrildidae

Taeniopygia guttata 12 1 Clayton et al. (1991) M, L 2, 3, 4 s
Fringillidae

Carduelis chloris 22 1 Merilä (1997) L 1 s

Carduelis flammea 13 0 Troy (1985) L 1 m

Hesperiphona vespertina 59 1 Prescott (1994) L 1 m
Pinicola enucleator 56 0 Adkisson (1977) L 1 s

Hirundinidae

Hirundo rustica 16 1 Möller (1995) L 3 m

Progne subis 49 0 Behle (1968) L 2, 3 m
Icteridae

Agelaius phoeniceus 53 1* Power (1969) and

Mosimann & James (1979)

L 1 s

Amblicercus holosericeus 64 1 Kratter (1993) L 1 s

Sturnella magna 89 0 James (1970) L 4 s

Xanthocephalus xanthocephalus 64 1 Twedt et al. (1994) M, L 1 m

Meliphagidae
Lichenostmus virescens 25 1 Wooler et al. (1985) M 1 s

Mucicapidae

Ficedula hypoleuca 12 0 Järvinen (1994) EV 2 m

Paridae
Parus caeruleus 13 1 Martin (1991) L 2 s

Parus carolinensis 10 1 James (1970) L 2 s

Parulidae
Dendroica coronata 13 1 Hubbard (1970) L 1 m

Dendroica discolor 8 0 Buerkle (2000) L 1 m

Dendroica graciae 8 1 Webster (1961) L 1 m

Dendroica petechia 10 0 Wiedenfeld (1991) L 1 m (north and
central America,

s Caribbean)

Mniotilta varia 11 1 Diamond (1973) L 1 m

Seiurus noveboracensis 18 1 Molina et al. (2000) L 1 m
Passeridae

Passer domesticus 28 1 Johnston & Selander (1973),

Baker (1980), Murphy (1985),

McGillivray & Johnston (1987) and
Yom-Tov (2001)

M, L 1, 2, 3, 4 s

Passer melanurus 25 1 Sloto (1996) M, L 4 s
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latitudinal range was used, and studies of recent populations
were preferred over studies of fossil or sub-fossil ones. The
fallow deer, Dama mesopotamica (Brooke), for which two
sub-fossil data bases (Davis, 1981; Bar-Oz et al., 1999)
yielded contradictory results was omitted from the analysis.

Studies with interspecific comparisons (Dunbar, 1990;
Blackburn & Gaston, 1996; Panteleev et al., 1998; and
Canis lupus Linnaeus/C. rufus Audubon and Bachman, in

Rosenzweig, 1968) were not used. Nor did we combine
measurements from different sources so as not to insert
uncontrolled sources of variation into the data, owing to
different measuring techniques and different geographic
variables used. Studies of the genus Homo (Hall & Hall,
1995) were likewise omitted. Body mass, breeding habits
and nest type data were obtained from the literature (see
Appendix 1). As body mass was used by Bergmann (1847) as

Table 1 continued

Order,

family and species

Mass

(g) Findings Source

Size

parameter Nest

Migratory

habits

Pyconotidae

Pycnonotus barbatus 36 1 Crow et al. (1981) M 1 s

Pycnonotus xanthopygos 37 1 Yom-Tov (2001) M,L 1 s

Sittidae
Sitta carolinensis 21 1 James (1970) L 2 s

Sturnidae

Acridotheres tristis 110 1 Baker & Moeed (1979) L 2 s
Sturnus unicolor 91 1 Peris (1992) L 2, 3 s

Sturnus vulgaris 82 0 Blem (1981) M, L 2, 3 s

Sylviidae

Phylloscopus trochylus 9 1 Bensch et al. (1999) M, L 4 m
Sylvia atricapilla 16 0 Tellerı́a & Carbonell (1999) M, L 1 s

Sylvia melanocephala 11 1 Yom-Tov (2001) M, L 1 s

Turdidae

Turdus migratorius 77 1 James (1970) and Aldrich & James (1991) L 1 m
Tyrannidae

Empidonax hammondii 10 0 Johnson (1966) M, L 1 m

Suiriri suiriri 15 0 Hayes (2001) L 1 s
Tyrannus tyrannus 44 0 Van-Wynsberghe et al. (1992) L 1 m

Vireonidae

Cyclarhis gujanensis 29 1 Tubaro & Segura (1995) L 1 s

Vireo olivaceus 17 0 Barlow & Power (1970) L 1 m
Vireo philadelphicus 12 0 Barlow & Power (1970) L 1 m

Pelecaniformes

Phalacrocoracidae

Phalacrocorax atriceps 2000 1 Bost et al. (1992) and Rasmussen (1994) M, L 1 s
Piciformes

Picidae

Picoides borealis 44 1 Mengel & Jackson (1977) L 2 s

Picoides pubescens 27 1 James (1970) L 2 s
Picoides villosus 67 1 James (1970) L 2 s

Procellariiformes

Hydrobatidae
Oceanodroma leucorhoa 36 1 Ainley (1980) L 1 m

Spheniciformes

Sphenicidae

Pygoscelis papua 5950 1 Bost et al. (1992) L 1 s
Strigiformes

Strigidae

Bubo virginianus 1380 1 McGillivray (1989) and Houston et al. (1998) L 1, 2, 3 s

Ninox connivens 462 1 Ford (1986) L 2 s
Tytonidae

Tyto novaehollandiae 609 1 Ford (1986) L 2, 3 s

Body mass is in grams, findings signify whether species comply (�1�) or do not comply (�0�) with the predictions of Bergmann’s rule. Size can be
linear measurements (�L�), body mass (�M�), egg volume (�EV�), or a combination of characters. A bird is designated migratory (�m�) or sedentary

(�s�) in the area in which the research took place. Nest type can be open (1), tree cavity (2), burrow or constructed from mud (3), or a closed

structure made of vegetation (4).
*The geographic variable used for this species was temperature rather than latitude.
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the surrogate for size, we preferred mass over length mea-
surements (which were preferred over dental measurements)
where these different characters yielded different results in
the same study (see, e.g. Yom-Tov, 2001). However, all
characters were used (with their contradicting implications,
if such existed) when seeking differences in the inclinations
of surrogates for size to conform to Bergmann’s rule.

Our data base includes ninety-four species of birds and
149 species of mammals.

We tested whether over 50% of the species studied con-
formed to Bergmann’s rule (see Mayr, 1963). Decreases in
body size with increasing latitude (or decreasing tempera-
tures) and lack of a geographic trend in body size were both
considered evidence against the rule’s validity. This null
hypothesis is a conservative one, as most species with a very
restricted geographic range are unlikely to show any geo-
graphic variation in body size (Ashton et al., 2000), as are
species that were studied in only a small part of their geo-
graphical range. For this reason, however, geographic vari-
ation in body size of these species is unlikely to have been
studied. This lack of analysis should not be of any concern,
because even assuming that selective forces influencing size
are in operation, species with a very limited range are not
exposed to varying selective forces and, therefore, bear no
relevance to the questions reviewed herein. On the other hand,
species with a large geographic range that show no size cline
across their range clearly negate the predictions of Bergmann’s
rule, and should, therefore, be included in the analysis.

We divided the species in the data base into body size
categories in order to test whether Bergmannian size clines
are more likely to occur in large species (which usually have
great geographic distributions; Brown, 1995) or in small
ones (for whom insulation might be of lesser, Steudel et al.,
1994, or greater significance, Paterson, 1990, or which are
likelier to encounter periods of starvation that threaten
survival, Searcy, 1980). The fossil rodent Paraethomys
(Renaud et al., 1999), whose body mass is unknown, was
not included in the analysis. Body mass categories were
chosen so that the lowest size category is below the modal
size, and the second one containing the mode (which has
been considered as optimal body mass; see Brown et al.,
1993; Marquet & Taper, 1998). This resulted in categories
showing a fivefold increase in birds (modal body mass of
about 33 g; Maurer, 1998), the categories being: 7–20 (7 g
being the lowest mass for a bird in our data base), 21–100,
101–500, 501–2500, and over 2500 g. For mammals the
modal mass is �about 100 g� (actually covering a range from
50 to about 250 g; Brown et al., 1993). This resulted in a
tenfold increase in mass, so we partitioned the other mass
categories accordingly: 4–50 (4 g being the lowest mass for a
mammal in our data base), 51–500, 501–5000, 5001–
50,000, > 50,001 g. These differences in modal sizes be-
tween birds and mammals, therefore, caused body size cat-
egories to differ between these two taxa.

Differences were sought between the tendency to comply
with the predictions of Bergmann’s (1847) rule and the
characters used as measures of body size. Measurements
were divided into dental measurements (for mammals),

linear measurements (all other unidimensional measure-
ments), egg volume (for birds), and body mass. Species
whose body size was estimated by more than one character
were included in all relevant categories.

We also tested the relationship between nest type and
the tendency to follow the predictions of Bergmann’s rule,
dividing birds into burrow nesters, cavity nesters, and those
with open or no nests and with dome-shaped nests con-
structed of vegetation. Burrow nesters, and to some extent
cavity nesters, were expected to be the least exposed, and
therefore birds using these nests the least inclined to follow
Bergmann’s rule, a similar prediction to Mayr’s (1956)
concerning burrowing mammals.

We divided birds according to the migratory habits of the
various species. We used populations instead of species for
Dendroica petechia (Wiedenfeld, 1991), where the body size
clines were different for migratory and non-migratory pop-
ulations (with only sedentary populations conforming to the
rule).

Tests for goodness of fit (G statistic, applying William’s
correction; Sokal & Rohlf, 1995) were conducted to test the
validity of Bergmann’s rule. The expected frequencies were
calculated as 50% (Mayr, 1963).

Comparisons between the different variables analysed
(body size, migratory habits, nest type, morphological char-
acter studied) were likewise based on the G statistic (tests of
independence). When a significant result occurred in an
R * C test (Sokal & Rohlf, 1995, p. 739), further analysis
followed a method for partitioning the degrees of freedom
outlined by Siegel & Castellan (1988), using the v2 statistic.

RESULTS

Birds

Of the ninety-four bird species for which statistical analyses
were carried out (Table 1), sixty-eight (72.34%) follow
Bergmann’s rule. Bergmann’s rule is, thus, supported
for birds based on this sample (corrected G ¼ 19.39,
P < 0.001).

In twelve of fourteen orders, more species followed the
rule than did not. However, in only three of the orders
(Passeriformes, Charadriiformes, and Falconiformes) were
there sample sizes of over five. In thirty-two of forty-two
families, 50% or more of the species adhered to Bergmann’s
rule. Only one of the families for which the rule is unsup-
ported (Fringillidae) has more than three species sampled.
Bergmann’s rule is, thus, supported also at the ordinal and
family levels (order: corrected G ¼ 7.79, P < 0.01; family:
corrected G ¼ 12.05, P < 0.001).

Non-passerines show a higher percentage of species con-
forming to Bergmann’s rule (81%, thirty-four of forty-two
species) than do passerines (65%, thirty-four of fifty-two
species), but the difference is not significant (corrected
G ¼ 2.82, P > 0.05).

We found no relationship between nest type and the ten-
dency to adhere to Bergmann’s rule (Table 2) (corrected
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G ¼ 3.36, P > 0.25), and no relationship between body
mass category and the tendency to follow Bergmann’s rule
(Table 3) (corrected G ¼ 4.69, P > 0.25). We also found no
significant relationship between the character chosen to
represent body size and the tendency to follow Bergmann’s
rule (Table 4) (corrected G ¼ 2.76, P > 0.25).

Sedentary birds tend to follow Bergmann’s rule more
than do migratory birds (Table 5) (corrected G ¼ 6.66,
P < 0.01).

Mammals

Of the 149 mammal species for which statistical analyses
were carried out (Table 6), ninety-seven (65.10%) follow

Bergmann’s rule. Bergmann’s rule is, thus, supported for
mammals based on this sample (corrected G ¼ 13.81,
P < 0.001).

Twelve of fourteen mammalian orders comprised more
species that followed Bergmann’s rule than species that did
not. However, only in three orders (Chiroptera, Carnivora,
and Rodentia) were over ten species studied. The Peremele-
morphia (n ¼ 1 species) and Rodentia were the only orders
that failed to comply with Bergmann’s rule. In twenty-six of
thirty-two families, 50% or more species followed the rule.
In only in two families (Heteromyidae and Mustelidae), in
which fewer than 50% of species conformed to the rule,
were over four species studied. The rule is, thus, suppor-
ted both at the ordinal and family levels (order: correc-
ted G ¼ 7.79, P < 0.01; family: corrected G ¼ 13.37,
P < 0.001).

The tendency to follow Bergmann’s rule changes with
body mass (Table 7) (corrected G ¼ 19.69, P < 0.001).
Partitioning the degrees of freedom revealed no differences
among the three highest size categories (two highest cate-
gories: v2 ¼ 0.001, P > 0.9; between the two highest com-
bined and the 501–5000 g category: v2 ¼ 2.07, P > 0.10),
and between the two lowest size categories (v2 ¼ 0.01,
P > 0.95). However, a significant difference in the tendency
to follow Bergmann’s rule was detected between the
two lowest size categories (up to 500 g) and the three
highest ones (501 g and above: v2 ¼ 15.51, P < 0.001). The
tendency of small (4–500 g) mammals to conform to Berg-
mann’s rule does not differ significantly from 50% (cor-
rected G ¼ 0.01, P > 0.95).

Studies using body mass tend to conform to Bergmann’s
rule more than those using other characters (Table 8,
corrected G ¼ 6.33, P < 0.05).

DISCUSSION

Bergmann’s rule appears to be a valid generalization for both
birds and mammals. In both classes, the majority of species,
orders, and families comply with the rule. The percentage of
birds conforming to the rule is similar to the lower value
(75%) put forward by Mayr (1970), rather than to the
results published by Zink & Remsen (1986) (42–54%). For
mammals the percentage of species conforming to the rule is
similar to the lower value suggested by Mayr (1970) (65%),
and slightly lower than those derived from the analyses of
Ashton et al. (2000) (70.9% for all data, 75% for statisti-
cally significant correlations). Among mammals, studies of
clines of body mass show the results most consistent with the
rule, suggesting that this is indeed the character upon which
natural selection operates, whatever the precise mechan-
ism(s) involved (Bergmann, 1847; Rosenzweig, 1968; Ken-
deigh, 1969; James, 1970; Boyce, 1978; Kolb, 1978; Searcy,
1980; Blackburn et al., 1999).

When carrying out an analysis of this type, one must bear
in mind potential biases inherent in the set of studies ana-
lysed. One such potential bias may be in the choice of species
studied, namely, a tendency to study species for which there is
some prior indication for a Bergmannian size cline. Another

Table 5 The tendency of migrant and sedentary birds to comply

with Bergmann’s rule

Life history

Bergmannian

gradient

No Bergmannian

gradient

Percentage

adherence

Migrant 17 14 54.84

Sedentary 51 12 80.95

Table 3 Body mass categories and adherence to Bergmann’s rule in

birds

Mass (g)
Bergmannian
gradient

No Bergmannian
gradient

Percentage
adherence

7–20 13 9 59.09

21–100 25 10 71.43

101–500 14 2 87.50
501–2500 13 3 81.25

> 2500 3 2 60.00

Table 4 The relationship between morphological character studied

and adherence to Bergmann’s rule in birds

Character

studied

Bergmannian

gradient

No Bergmannian

gradient

Percentage

adherence

Length 53 25 67.95

Mass 17 5 77.27

Egg volume 9 1 90

Table 2 The relationship between nest type and the adherence to

Bergmann’s rule in birds

Nest type
Bergmannian
gradient

No Bergmannian
gradient

Percentage
adherence

Open or no nest 44 21 67.69

Tree cavity 16 3 84.21

Burrow 12 2 85.71
Dome 6 2 75.00
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Table 6 Mammalian database

Order,

family and species Mass (g) Findings Source

Size

parameter

Artiodactyla

Bovidae

Bos primigenius 800,000 1 Davis (1981) D, L

Capra aegagros 60,000 1 Davis (1981) D, L
Gazella gazella 21,500 1 Davis (1981) D, L

Cervidae

Alces alces 512,000 1 Sand et al. (1995) M
Cervus elaphus 207,000 1 Langvatn & Albon (1986) and Post et al. (1997) M

Odocoileus virginanus 116,000 1 Rees (1969), Koch (1986) and Purdue (1989) D, L

Suidae

Sus scrofa 81,000 1 Davis (1981) and Weaver & Ingram (1969) D, M, L
Carnivora

Canidae

Canis aureus 8800 0 Dayan et al. (1992) L

Canis latrans 10,500 0 Rosenzweig (1968) and Thurber & Peterson (1991) M, L
Canis lupus 34,000 1 Davis (1981) and Mendelssohn & Yom-Tov (1999) D, L

Canis mesomelas 8500 1 Klein (1986) D

Lycaon pictus 27,500 1 Klein (1986) D
Pseudoalopex culpaeus 15,850 1 Fuentes & Jaksic (1979) and Jimenez et al. (1995) L

Pseudoalopex griseus 8300 1 Fuentes & Jaksic (1979) and Jimenez et al. (1995) L

Urocyon cinereoargenteus 3800 1 Rosenzweig (1968) L

Vulpes cana 1100 1 Geffen et al. (1992) M, L
Vulpes chama 4070 1 Klein (1986) D

Vulpes rueppelli 1900 1 Dayan et al. (1992) L

Vulpes velox 2400 0 Rosenzweig (1968) L

Vulpes vulpes 3400 1 Rosenzweig (1968), Davis (1977, 1981),
Cavallini (1995), Dayan et al. (1989b, 1992),

Frafjord & Stevy (1998), Kolb (1978)

and Macdonald et al. (1999)

D, M, L

Felidae
Acinonyx jubatus 46,500 1 Klein (1986) D

Caracal caracal 16,000 1 Klein (1986) D

Felis silvestris (libyca) 6000 1 Klein (1986) D
Leptailurus serval 16,000 1 Klein (1986) D

Lynx rufus 10,500 1 Wigginton & Dobson (1999) L

Panthera leo 162,000 1 Klein (1986) D

Panthera onca 83,000 1 Iriarte et al. (1990) L
Panthera pardus 54,000 0 Klein (1986) D

Puma concolor 55,000 1 Kurtén (1973), Iriarte et al. (1990) and

Gay & Best (1996)

D, M, L

Herpestidae
Atilax paludinosus 2500 1 Klein (1986) D

Herpestes ichneumon 2570 1 Klein (1986) D

Herpestes pulverulensus 600 1 Klein (1986) D
Hyaenidae

Crocuta crocuta 59,000 1 Klein (1986) and Klein & Scott (1989) D

Hyaena brunnea 48,000 1 Klein (1986) D

Mustelidae
Aonyx capensis 16,600 1 Klein (1986) D

Ictonyx striatus 1700 0 Klein (1986) D

Martes americana 930 1 Hagmeier (1961) and Rosenzweig (1968) L

Martes foina 1100 0 Dayan et al. (1989a) and Reig (1992) D, L
Martes martes 1300 0 Reig (1992) L

Martes pennanti 3400 0 Rosenzweig (1968) L

Meles meles 11,500 1 Dayan et al. (1989a) D

Melivora capensis 7800 0 Klein (1986) D
Mephitis mephitis 2090 1 Koch (1986) D
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Table 6 continued

Order,

family and species Mass (g) Findings Source

Size

parameter

Mustela erminea 90 1 Rosenzweig (1968), Ralls & Harvey (1985),

Erlinge (1987) and Eger (1990)

M, L

Mustela frenata 150 0 Rosenzweig (1968) and Ralls & Harvey (1985) L

Mustela nivalis 48 0 Rosenzweig (1968) and Ralls & Harvey (1985) L
Taxidea taxus 7250 1 Rosenzweig (1968) L

Procyonidae

Procyon lotor 6300 1 Kennedy & Lindsay (1984), Ritke (1990) and
Mugaas & Seidensticker (1993)

M, L

Ursidae

Ursus arctos 245,000 0 Kojola & Laitala (2001) M

Ursus maritimus 340,000 1 Kurtén (1964) L
Cetacea

Delphinidae

Stenella coeruleoalba 82,000 1 Di-Meglio et al. (1996) M, L

Chiroptera
Megadermatidae

Macroderma gigas 150 1 Hand & York (1990) D, L

Phyllostomidae
Anoura cultrata 18 0 Nagorsen & Tamsit (1981) D, L

Carolia brevicauda 15 0 McLellan (1984) and Owen et al. (1984) L

Carollia castanea 15 1 McLellan (1984) L

Carollia perspicillata 20 1 McLellan (1984) and Owen et al. (1984) L
Carollia subrufa 16 1 McLellan (1984) and Owen et al. (1984) L

Pteropodidae

Cynopterus sphinx 37 1 Storz et al. (2001) M, L

Vespertilionidae
Eptesicus fuscus 17 1 Burnett (1983) L

Minipterus schreibersii 11 1 Cardinal & Christidis (2000) D, L

Myotis californicus 4 0 Bogan (1975) L

Myotis daubentoni 7 1 Bogdanowicz (1990) L
Myotis fortidens 7 1 Findley & Jones (1967) L

Myotis lucifugus 9 1 Findley & Jones (1967) and Fujita (1986) M, L

Pipistrellus hespervus 4 1 Findley & Traut (1970) L
Pipistrellus pipistrellus 4 1 Stebbings (1973) L

Scotorepens balstoni 13 0 Kitchener & Caputi (1985) D, L

Scotorepens greyii 10 1 Kitchener & Caputi (1985) D, L

Scotorepens orion 11 1 Kitchener & Caputi (1985) D, L
Scotorepens sanborni 7 0 Kitchener & Caputi (1985) D, L

Didelphimorphia

Didelphidae

Didelphis virginanus 2700 1 Koch (1986) D
Diprotodontia

Macropodidae

Macropus fuliginousus 54,000 1 Yom-Tov & Nix (1986) L
Macropus giganteus 34,000 1 Yom-Tov & Nix (1986) L

Macropus rufus 41,000 1 Yom-Tov & Nix (1986) L

Petauridae

Petaurus breviceps 120 1 Quin et al. (1996) L
Petaurus norfolcensis 230 1 Quin et al. (1996) L

Phalangeridae

Trichosurus vulpecula 2650 1 Yom-Tov & Nix (1986) and

Yom-Tov et al. (1986)

M, L

Hyracoidea

Procaviidae

Procavia capensis 2500 1 Yom-Tov (1993a) L
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Table 6 continued

Order,

family and species Mass (g) Findings Source

Size

parameter

Insectivora

Soricidae

Blarina brevicauda 18 0 Braun & Kennedy (1983) L

Blarina carolinensis 9 1 Braun & Kennedy (1983) L
Sorex cinereus 4 0 Huggins & Kennedy (1989) L

Sorex fumeus 8 1 Huggins & Kennedy (1989) L

Talpidae
Mogera minor 60 0 Abe (1996) L

Scalopus aquaticus 69 1 Koch (1986) D

Talpa romana 85 1 Loy et al. (1996) L

Lagomorpha
Leporidae

Lepus americanus 1500 1 Nagorsen (1985) L

Lepus capensis 2150 1 Mendelssohn & Yom-Tov (1999) L

Oryctolagus cuniculus 1110 1 Gibb & Williams (1990) and
Sharples et al. (1996)

L

Sylvilagus floridanus 1080 1 Olcott & Barry (2000) D, L

Monotremata
Tachyglossidae

Tachyglossus aculeatus 4500 1 Yom-Tov & Nix (1986) M, L

Peremelemorphia

Peramelidae
Isoodon obesulus 1050 0 Cooper (1998) M, L

Primates

Cercopithecidae

Macaca fuscata 13,600 1 Paterson (1996) M
Macaca mulata 4700 1 Clarke & O’Neil (1999) M, L

Macaca nemestrina 6150 1 Albrecht (1980) L

Presbitis entellus 17,000 1 Gelvin and Albercht (1996) L

Lorisidae
Nycticebus coucang 700 1 Ravosa (1998) L

Nycticebus pygmaeus 480 0 Ravosa (1998) L

Proboscidea
Mammutidae

Mammut americanum 5,000,000 1 King & Saunders (1984) D

Rodentia

Geomyidae
Thomomys talpoides 139 1 Hadly (1997) and Hadly et al. (1998) L

Heteromyidae

Chaetodipus goldmani 23 0 Straney & Patton (1980) L

Chaetodipus penicillatus 15 0 Hoffmeister & Lee (1967) L
Dipodomys californicus 73 0 Baumgardner & Kennedy (1993) D, L

Dipodomys compactus 49 0 Baumgardner & Kennedy (1993) D, L

Dipodomys deserti 105 0 Baumgardner & Kennedy (1993) D, L
Dipodomys gravipes 80 0 Best (1983) L

Dipodomys merriami 38 0 Baumgardner & Kennedy (1993) D, L

Dipodomys microps 56 0 Baumgardner & Kennedy (1993) D, L

Dipodomys nelsoni 89 0 Baumgardner & Kennedy (1993) D, L
Dipodomys nitratoides 42 0 Baumgardner & Kennedy (1993) D, L

Dipodomys ordii 58 1 Kennedy & Schnell (1978)

and Baumgardner & Kennedy (1993)

L

Dipodomys panamintinus 75 0 Baumgardner & Kennedy (1993) D, L
Dipodomys phillipsii 41 0 Baumgardner & Kennedy (1993) D, L

Dipodomys simulans 58 0 Baumgardner & Kennedy (1993) and

Sullivan & Best (1997)

D, L

Dipodomys spectabilis 125 0 Baumgardner & Kennedy (1993) D, L
Dipodomys venustus 83 0 Baumgardner & Kennedy (1993) D, L

Heteromys gaumeri 57 0 Engstrom et al. (1987) L
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may be a publication bias; it has been suggested previously
that ecologists may tend to publish �positive� results; that is,
results that support a prior hypothesis, and neglect �negative�
results (Simberloff & Boecklen, 1981; Möller & Jennions,
2001). Certainly, the publication of no geographical trend is

an unattractive prospect. Moreover, journal editors and
reviewers may facilitate the publication of �positive� results.
These possible sources of bias, unfortunately, cannot be
readily factored out. Nevertheless, and despite using a con-
servative approach (species showing no variation in size
counting as evidence against the rule), based on published
data, Bergmann’s rule is indeed a valid generalization.

Table 6 continued

Order,

family and species Mass (g) Findings Source

Size

parameter

Perognathus fasciatus 11 1 Williams & Genoways (1979) D, L

Muridae

Acomys cahirinus 41 1 Nevo (1989) M

Acomys russatus 53 1 Nevo (1989) M
Apodemus flavicollis 26 1 Tchernov (1979) D

Apodemus mystacinus 35 1 Tchernov (1979) D

Apodemus sylvaticus 20 0 Tchernov (1979) and Alcantara (1991) D, M, L
Arvicanthis niloticus 81 1 Fadda & Corti (1998) L

Arvicanthis testicularis 115 0 Fadda & Corti (1998) L

Lophuromys flavopunctatus 55 0 Afework & Corti (1994) L

Meriones tristrami 70 0 Chetboun & Tchernov (1983) L
Microtus agrestis 24 1 Hansson & Jaarola (1989) M

Microtus longicaudus 37 0 Findley & Jones (1962) L

Microtus mexicanus 35 0 Findley & Jones (1962) L

Microtus montanus 33 0 Findley & Jones (1962) L
Microtus oeconomus 30 1 Ims (1997) M

Microtus pennsylvanicus 33 0 Snell & Cunnison (1983) L

Nannospalax ehrenbergi 174 1 Nevo et al. (1986) M
Neotoma albigula 164 1 Smith et al. (1998) M

Neotoma cinerea 300 1 Brown & Lee (1969) and

Smith et al. (1995)

L

Neotoma floridana 248 1 Hayes & Richmond (1993) L
Neotoma magister 350 1 Hayes & Richmond (1993) L

Ondatra zibethicus 1000 1 Boyce (1978) M, L

Paraethomys sp. No data 1 Renaud et al. (1999) D

Peromyscus leucopus 21 1 Owen (1989) L
Peromyscus maniculatus 19 0 Wasserman & Nash (1979) L

Rhabdomys pumilio 37 0 Yom-Tov (1993b) L

Saccostomus campestris 49 0 Ellison et al. (1993) L

Sigmodon hispidus 104 1 Cameron & McClure (1988) M, L
Synaptomys cooperi 29 0 Wilson & Choate (1997) D, L

Sciuridae

Sciurus carolinensis 536 1 Barnett (1977) and Koch (1986) D, L
Spermophilus columbianus 584 0 Zammuto & Millar (1985) M

Tamiasciurus douglasii 227 0 Lindsay (1986) D, L

Tamiasciurus hudsonicus 207 1 Lindsay (1987) D, L

Body mass is in grams, findings signify whether species comply (�1�) or do not comply (�0�) with the predictions of Bergmann’s rule. Size can be

linear measurements (�L�), body mass (�M�), dental measurements (�D�), or a combination of characters.

Table 8 The relationship between morphological character studied
and adherence to Bergmann’s rule in mammals

Character

studied

Bergmannian

gradient

No Bergmannian

gradient

Percentage

adherence

Length 66 49 57.39

Dental 38 22 63.33
Body mass 23 5 82.14

Table 7 Body mass categories and adherence to Bergmann’s rule in
mammals

Mass (g)

Bergmannian

gradient

No Bergmannian

gradient

Percentage

adherence

4–50 22 23 48.89

51–500 17 17 50.00
501–5000 22 7 75.86

5001–50,000 21 3 86.96

> 50,001 14 2 87.50
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While bird size has no significant affect on the tendency to
conform to Bergmann’s rule, among mammals we found a
significantly lower tendency to conform to Bergmann’s rule
within the 4–50 and 51–500 g body mass categories. In fact,
for this size group and for the largest mammalian order,
Rodentia, Bergmann’s rule cannot be considered valid at this
point. Various hypotheses could account for this pattern, or
lack thereof. For one, many species in this size category
burrow and thus effectively are found in a favourable
microclimate for most of the time. It should be noted, that in
the similar-sized but non-fossorial Chiroptera, fourteen out
of nineteen species conform to the rule. On the other
hand, four of the five fully fossorial species in our data base
[Scalopus aquaticus, Talpa romana Thomas, Thomomys
talpoides (Richardson), Nannospalax ehrenbergi (Nehring),
but not Mogera minor Kuroda] tend to follow Bergmann’s
rule. Many of the species in this size category are heteromyid
rodents; of the seventeen heteromyid species studied, only
two conform to Bergmann’s rule. However, Dayan &
Simberloff (1994) demonstrated the occurrence of character
displacement in trophic apparati among heteromyid rodents,
which may also indirectly affect body size, and obscure
Bergmannian gradients (see also Dayan et al., 1991).
Moreover, many heteromyid species go into torpor or even
hibernate during some of the winter months, thus avoiding
extremely cold ambient temperatures. This could account, in
part, for the apparent lack of conformity. In addition, body
sizes of heteromyid rodents may be more closely related to
productivity in deserts of south-western North America than
to the characters for which it was tested (J.H. Brown, pers.
comm.). That being the case, perhaps Bergmann’s rule
within James’s (1970) reformulation (using both tempera-
ture and humidity) or Rosenzweig’s (1968) suggestion of
actual AE, is more relevant to this group of desert species.

Ashton et al. (2000) carried out an analysis in which they
used exclusively species that were sampled over a wide
geographic range. This analysis revealed no relationship
between the tendency to conform to Bergmann’s rule and
body mass. However, small mammals are often restricted in
their range (Brown, 1995), and therefore cannot comply
with this criterion set by Ashton et al. (2000). It is logical to
expect that mammal species with large geographic ranges
will be more likely to show geographic size clines than those
with a more restricted range. For example, the only species
of Dipodomys that conforms to Bergmann’s rule (D. ordii
Woodhouse) has by far the largest geographic range of the
genus (Wilson & Ruff, 1999). However, clinal variation can
also occur on fairly limited geographical scales (James, 1982;
Nevo, 1989; Mendelssohn & Yom-Tov, 1999). Moreover,
ignoring the other species in the genus because they have
more restricted geographic ranges might obscure some of the
observed patterns, such as the dependence of Bergmann’s
rule on mammalian body size.

Be that as it may, the lower body mass range is the modal
range for mammals, whether bats and marine mammals are
included, as in our analysis (Gardezi & da Silva, 1999; 25 g),
or not (Brown et al., 1993). If Bergmann’s rule is invalid in
this size range, the implication may be that the rule is less

common than our results so far imply. If we assume that the
percentage compliance with the rule in the sample is repre-
sentative for each order, and take only orders for which we
have a minimum of four or five species in the data base (these
orders represent 92.8% and 91% of mammalian species,
respectively; Wilson & Reeder, 1993), we find that 59.57%
and 58.80% (respectively) of mammals comply with Berg-
mann’s rule.

In birds, a significantly greater number of sedentary spe-
cies conform to Bergmann’s rule than do migratory species.
This supports our prior hypothesis that species that are
subject to natural selection during all seasons will tend to be
more affected by climatic factors than species that evade the
cold of winter by being elsewhere. Interestingly, some studies
[e.g. Castro et al., 1992, who studied geographic variation in
Calidris alba (Pallas)], found that geographic variation in
size, in accordance with Bergmann’s rule, occurred in the
overwintering range. It might be logical to expect that birds
encountering a broad range of climatic condition in the
overwintering range will show patterns in accord with
Bergmann’s rule in winter, while not showing such a pattern
in their breeding ranges.

The significantly lower tendency of migratory species to
conform to Bergmann’s rule brings into question the climatic
variables used in various studies. The fact that relatively few
migratory species comply with Bergmann’s rule suggests that
extreme winter temperatures exert high selective pressures
on bird body size (Root, 1988), and thus have the greater
influence on the evolution of body size in birds, and are
hence the climatic variable suitable for their study. It is a
tenable hypothesis that in warm desert conditions extreme
summer temperatures may be those that govern the evolu-
tion of body size in homeotherms (Yom-Tov, 1993a; Smith
& Charnov, 2001).

The tendency for egg size to comply with Bergmann’s rule
did not differ from that of adult bird mass, nor could we
detect a significant difference in the tendency to follow
Bergmann’s rule between birds with different nest types. It
could be argued that the overall intraspecific relationship
between bird size and egg size is likely to override other
affects, or that birds incubate their clutches in constant
enough temperatures that we should not expect ambient
temperatures to be a significant selective force. Be that as it
may, our results should not come as a surprise. Most bird
species reproduce during spring, when ambient temperatures
are mild (Gill, 1995). Therefore, if extreme ambient tem-
peratures are the selective mechanism influencing body size
(Brown & Brown, 1998; see also Root, 1988), and thus
drive Bergmannian size clines, eggs are usually not exposed
to this driving mechanism. The lower tendency of migratory
species to conform to Bergmann’s rule is in line with this
result.

In sum, our results suggest that Bergmann’s rule is a valid
ecological generalization for birds and mammals at the class,
order, and family levels. However, insectivores and, in par-
ticular, rodents appear to deviate from this generalization.
Interestingly, another order of small mammals, the Chirop-
tera, shows virtually an identical percentage of species
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conforming to Bergmann’s rule as do birds. The currently
published studies do not enable the finer resolution of dri-
ving climatic factors (wet- vs. dry-bulb temperatures and
various climatic correlates), and this should remain as an
agenda for future research. Sedentary birds conform to the
rule more than do migratory ones, suggesting that extreme
overwintering conditions are the major driving microevolu-
tionary force, where this pattern occurs.
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