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Abstract.
We extend to quantum mechanics the technique of stochastic subordination, by

means of which one can express any semi-martingale as a time-changed Brownian
motion. As examples, we considered two versions of the q-deformed Harmonic oscillator
in both ordinary and imaginary time and show how these various cases can be
understood as different patterns of time quantization rules.
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1. Introduction

In a search to unravel the fabric of space at short distances, many authors have

explored variations on ordinary quantum mechanics based on q-deformations of the

canonical commutation relation, q being a parameter in the interval (0, 1) where 1

corresponds to the Bose limit, see for instance [1], [2], [4], [5], [6], [7], [8], [9], [10]. Time

quantization was considered also, see [3], [13]. On an entirely different line of research,

probabilists developed the notion of stochastic time changes (also called stochastic

subordination) as a way of understanding jump processes, see [11], [12], [14]. This work

gave rise to a representation of Levy processes, a family of translation invariant jump

processes, as subordinated Brownian motions whereby the time change is uncorrelated

to the underlying process. More generally, Monroe proved that all semi-martingales

can be represented as time-changed Brownian motions, as long as one allows for the

subordinator to be correlated.

In this paper we bring together ideas from all these lines of research and show that

one can interpret q-deformations in terms of stochastic time changes, albeit of a new

type which is designed in such a way to preserve quantum probability. We find that

these representations provide new insights in the notion of q-deformation and indicate an

alternative, physically intuitive path to understand short-scale deformations of quantum

field theory.
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2. Stochastic Subordination

Stochastic subordination is a procedure to construct a stochastic process from another

by means of a stochastic time change. If Xt is a stochastic process, the subordinated

process X̃t is defined as follows:

X̃t = XTt (1)

where Tt is a monotonously non decreasing process. The process Tt is called Bochner

subordinator in case its increments Tt+∆t − Tt are independent and their distribution

depends only on the time elapsed ∆t but not on t. Such time-homogeneity property

makes Bochner subordinator potentially appealing also for basic quantum physics.

Under such hypothesis, if the process Xt is stationary and Markov and G is its generator,

then also the process X̃t is a stationary Markov process. One can show under mild

conditions that the generator G̃ of X̃t can be expressed as a function G̃ = −φ(−G). It

is useful to sketch a quick proof in order to work out a quantum extension.

Suppose that the generator G admits a complete set of eigenfunctions fn with

eigenvalues λn ≤ 0. (The argument below can readily be extended to the case where G

has also continuous spectrum). We have that

ρt(x) =
∞∑

n=0

ane
λntfn(x) (2)

where ρ0(x) is a fixed initial condition. If one instead evolves the initial state according

to the X̃t dynamics the distribution ρ̃t(x) is given by

ρ̃t(x) =
∞∑

n=0

an

[∫
eλnsµt(ds)

]
fn(x). (3)

Hence, there ought to be a function φ such that∫
eλsµt(ds) = e−tφ(−λ), (4)

an equation that needs to hold true for all times t and all values of λ ≤ 0. This equation

constrains the form of the functions φ as not all functions admit a one-parameter family

of positive measures µt(ds) such as the equation above is satisfied. The measures µt(ds),

if well-defined, are called the renewal measures [11].

Notice that Bochner subordination also applies to general positivity preserving

contraction semigroups Rt, as the subordinated semigroup R̃t can be consistently defined

as follows:

R̃tρ0 =

∫
Rsρ0 µt(ds). (5)

3. Quantum Deformations and Quantum Subordination

In the quantum mechanics case the problem is different as conservation of quantum

probability requires that the dynamics be defined by one-parameter groups of unitary



Time Quantization and q-deformations 3

transformations. If H is a quantum Hamiltonian and Ut = e−itH is the corresponding

dynamics, the subordinated dynamics is defined as follows:

Ũt =

∫
Us χt(ds). (6)

Consistency with quantum probability conservation requires that χt(ds) be a complex

valued measure such that∫
e−iλsχt(ds) = e−itφ(λ) (7)

for some real valued function φ(λ). This condition restricts the form of the measures

χt(ds). As extensions to the renewal measures, we shall call χt(ds) the quantum renewal

measures.

In the following we consider several examples using two versions of the q-deformed

harmonic oscillator as example. A first example is provided by the one-mode harmonic

oscillator Hamiltonian

H =
~ω

2
(a†qaq + aqa

†
q) (8)

where the creation and annihilation operators aq and a†q satisfy the following relations

aqa
†
q − qa†qaq = 1. (9)

This deformation scheme was proposed by Arik and Coon in [1] and leads to the energy

spectrum

εq(n) =
~ω

2

1− qn

1− q
. (10)

This means that the q-deformed Hamiltonian operator H̃ can be represented so that

H̃ = φ(H) ≡ 1− qH

1− q
. (11)

In the Euclidean picture, one considers the semigroup e−tH̃, which can be represented

as follows:

e−tH̃ = e−
t

1−q

∞∑
n=0

tn

(1− q)nn!
e−n| ln q|H =

∫
e−sH µt(ds) (12)

where

µt(ds) = e−
t
δt

∞∑
n=0

1

n!

(
t

δt

)n

δ(s− n| ln(1− δt)|)ds. (13)

Notice that µt(ds) is the distribution at time t of a Poisson process of characteristic

time δt.

In the real-time, quantum picture, we have to account for phases required to

maintain quantum probability conservation, namely

e−itH̃ = e−
it

1−q

∞∑
n=0

(it)n

(1− q)nn!
e−n| ln q|H =

∫
e−isH χt(ds) (14)
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where the quantum renewal measure characterizing the quantum subordinator is given

by

χt(ds) =
e−

it
δt

πi

∞∑
n=0

1

n!

(
it

δt

)n
1

s + in| ln(1− δt)|+ i0
ds. (15)

By re-using the terminology in [3], the location of the poles of the quantum renewal

measure will be referred to as “chronons”, or time quanta.

In summary, these expressions show that the Arik-Coon q-deformation scheme for

the harmonic oscillator is equivalent in the Euclidean picture to a time quantization,

whereby imaginary time proceeds according to a Poisson process and has increments

equal to discrete quanta of δt = 1 − q. In the real, quantum-mechanics time picture, a

similar Poisson distribution applies except that additional phases have to be added to

the expansion in such a way to ensure conservation of quantum probability. In the latter

representation, chronons are located at equally spaced intervals along the imaginary axis.

Alternative deformation rules have been proposed by Biedenharn in [2] and

MacFarlane in [4]. According to this scheme q is a parameter which can be not only

real, but can also take values in the unit circle S1 = {eiα, α ∈ [0, 2π)}. According to this

scheme the creation and annihilation operators aq and a†q satisfy the following relations

aqa
†
q − qa†qaq = q−n (16)

and the energy spectrum is

εq(n) =
~ω

2

qn − q−n

q − q−1
. (17)

In the following, we shall indeed assume that q = eiα, so that the q-deformed

Hamiltonian operator H̃ is thus

H̃ = φ(H) ≡ qH − q−H

q − q−1
=

sin αH
sin α

. (18)

The function φ does not correspond to a Bochner subordinator, as there is no

one-parameter family of positive measures such that relation (4) holds . Hence in the

Euclidean picture, one cannot consistently construct a positivity preserving semigroup.

In real-time however, there is not such a restriction on the measure and we find

e−itH̃ =
∞∑

n=0

(
−t

2 sin α

)n n∑
k=0

(−1)k

k!(n− k)!
eiα(n−2k)H =

∫
e−isHχt(ds) (19)

where the measure characterizing the quantum subordinator is given by

χt(ds) =
1

2πi

∞∑
n=0

(
−t

2 sin α

)n n∑
k=0

(−1)k

k!(n− k)!

1

s + (n− 2k)α + i0
ds. (20)

In this case, time is quantized along the real axis and the chronons, or quantized

time values, are poles of the measure χt(ds). The time quanta, or the chronon increment,

is given by α = | ln q|, as in the Arik-Coon q-deformation scheme. It is instructive

to compare both q-deformation schemes and plot the distribution of the respective
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chronons. Figure 1 illustrates furthermore the contour in the lower half plane, used

to integrate the measures χt(ds) in (15) and (20).

(a) Arik-Coon Scheme (b) Biedenharn-Macfarlane Scheme

Figure 1. Quantized Time Representations for Two q-Deformation Schemes

4. Conclusions

Stochastic subordination is one of the most common methodologies to deform stochastic

processes. In this paper, we introduce an analogue concept of quantum subordination

that is appropriate to deform quantum mechanical systems. We show that this notion

is broad enough to capture two examples that received much attention in the literature,

namely two versions of the q-deformed Harmonic oscillator. In these two case, we show

how quantum subordination is defined by means of a quantum renewal function, an

analytic function with poles corresponding to time quanta or, to re-use the terminology

in [3], chronons. These concepts provide a new angle to the notion of q-deformation and

shed light on a physically intuitive route to model short-scale deformations of quantum

field theory.
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