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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

Interval Arithmetic

Lambov [Lamb06] defines a set of useful formulas for computing intervals using the IEEE-754
floating-point standard.

The first thing to note is that IEEE floating point defaults to round-to-nearest. However,
Lambov sets the rounding mode to round to −∞. Computing lower bounds directly uses
the hardware floating point operations but computing upper bounds he uses the identity

∆(x) = −∇(−x)

so that the upper bound of the pair of bounds is always negated. That is,

x = [x, x] = ⟨x,−x⟩

Given that convention

• the sum of x and y is evaluated by⟨
∇(x+ y),−∇(−x− y)

⟩
• changing the sign of an interval x is achieved by swapping the two bounds, that is

⟨−x, x⟩

• joining two intervals (that is, finding an interval containing all numbers in both, or
finding the minimum of the lower bounds and the maximum of the higher bounds) is
performed as ⟨

min(x, y),−min((−x), (−y))
⟩

Lambov defines operations which, under the given rounding condition, give the tightest
bounds.

1



2 CHAPTER 1. INTERVAL ARITHMETIC

1.1 Addition

x+ y =
[
x+ y, x+ y

]
⊆
⟨
∇(x+ y)−∇((−x) + (−y))

⟩
The negated sign of the higher bound ensures the proper direction of the rounding.

1.2 Sign Change

−x = [−x,−x] = ⟨−x, x⟩

This is a single swap of the two values. No rounding is performed.

1.3 Subtraction

x− y =
[
x− y, x− y

]
⊆
⟨
∇(x+ (−y)),−∇((−x) + y)

⟩
Subtraction is implemented as x+ (−y).

1.4 Multiplication

xy =
[
min(xy, xy, xy, xy),max(xy, xy, xy, xy)

]
The rounding steps are part of the operation so all 8 multiplications are required. Lambov
notes that since

∆(∇(r) + ϵ) ≥ ∆(r)

for ϵ being the smallest representable positive number, one can do with 4 multiplications at
the expense of some accuracy.

In Lambov’s case he makes the observation that

xy =


[
min(xy, xy),max(xy, xy)

]
, if 0 ≤ x ≤ x[

min(xy, xy),max(xy, xy)
]
, if x < 0 ≤ x[

min(xy, xy),max(xy, xy)
]
, if x ≤ x < 0

from which he derives the formula actually used

xy ⊆ ⟨min(∇(ax),∇(b(−x))),−min(∇(c(−x)),∇(dx))⟩
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where

a =

{
y if 0 ≤ x

−(−y) otherwise

b =

{
−y if (−x) ≤ 0

(−y) otherwise

c =

{
−(−y) if (−x) ≤ 0

y otherwise

d =

{
(−y) if 0 ≤ x
−y otherwise

which computes the rounded results of the original multiplication formula but achieves better
performance.

1.5 Multiplication by a positive number

If one of the numbers is known to be positive (e.g. a constant) then

if x > 0 then xy ≡
[
min(xy, xy),max(xy, xy)

]
This formula is faster than the general multiplication formula.

1.6 Multiplication of Two Positive Numbers

If both multiples are positive simply change the sign of the higher bound on one of the
arguments prior to multiplication. If one of the numbers is a constant this can be arranged
to skip the sign change.

1.7 Division

Division is an expensive operation.

x

y
=

[
min

(
x

y
,
y

y
,
x

y
,
x

y

)
,max

(
x

y
,
x

y
,
x

y
,
x

y

)]
which is undefined if 0 ∈ y. To speed up the computation Lambov uses the identity

x

y
= x

1

y

Lambov does a similar analysis to improve the overall efficiency.

x

y
=


[
min(xy ,

x
y ),max(xy ,

x
y )
]
, if 0 < y ≤ y

exception if y ≤ 0 ≤ y[
min(xy ,

x
y ),max(xy ,

x
y )
]
, if y ≤ y ≤ 0
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The formula he uses is

x

y
⊆
⟨
min

(
∇
(
a

y

)
,∇
(

−a

(−y)

))
,−min

(
∇
(

−b

(−y)

)
,∇
(
b

y

))⟩
where

a =

{
x if (−y) ≤ 0

−(−x) otherwise

b =

{
(−x) if 0 ≤ y
−x otherwise

1.8 Reciprocal

1

x
=

[
1

x
,
1

x

]
⊆
⟨
∇
(

−1

(−x)

)
,∇
(
−1

x

)⟩
which is undefined if 0 ∈ x. Lambov implements this by checking for zero, followed by
division of −1 by the argument and swapping the two components.

1.9 Absolute Value

|x| = [max(x,−x, 0),max(−x, x)] = ⟨max(0, x, (−x)),−min(x, (−x))⟩

1.10 Square

x2 = |x| |x|

using multiplication by positive numbers, mentioned above.

1.11 Square Root

√
x =

[√
x,

√
x
]

which is defined if 0 ≤ x

Lambov notes that this formula has a rounding issue. He notes that since

∆(r) ≤ −∇(−ϵ−∇(r))
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he uses the formula

√
x ⊆


⟨
∇
(√

x
)
,−∇

(√
−(−x)

)⟩
, if ∇

(
∇
(√

−(−x)
))2

= −(−x)⟨
∇
(√

x
)
,∇
(
∇
(
−ϵ−

√
−(−x)

))⟩
, otherwise

where ϵ is the smallest representable positive number.

The first branch of this formula is only satisfied if the result of
√
−(−x) is exactly repre-

sentable, in which case

∇
(√

−(−x)
)
= ∇

(√
−(−x)

)
otherwise the second branch of the formula adjusts the high bound to the next representable
number. If tight bounds are not required the second branch is always sufficient.

If the argument is entirely negative, the implementation will raise an exception. If it contains
a negative part, the implementation will crop it to only its non-negative part to allow that
computations such as

√
0 ca be carried out in exact real arithmetic.
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Chapter 2

Integration

An elementary function[Bro98b] of a variable x is a function that can be obtained from the
rational functions in x by repeatedly adjoining a finite number of nested logarithms, expo-
nentials, and algebraic numbers or functions. Since

√
−1 is elementary, the trigonometric

functions and their inverses are also elementary (when they are rewritten using complex
exponentials and logarithms) as well as all the “usual” functions of calculus. For example,

sin(x+ tan(x3 −
√
x3 − x+ 1)) (2.1)

is elementary when rewritten as

√
−1

2
(et−x

√
−1 − ex

√
−1−t) where t =

1− e2
√
−1(x3−

√
x3−x+1)

1 + e2
√
−1(x3−

√
x3−x+1)

This tutorial describes recent algorithmic solutions to the problem of integration in fi-
nite terms: to decide in a finite number of steps whether a given elementary funcction
has an elementary indefinite integral, and to compute it explicitly if it exists. While
this problem was studied extensively by Abel and Liouville during the last century, the
difficulties posed by algebraic functions caused Hardy (1916) to state that “there is rea-
son to suppose that no such method can be given”. This conjecture was eventually dis-
proved by Risch (1970), who described an algorithm for this problem in a series of reports
[Ostr1845, Risc68, Risc69a, Risc69b, Risc70]. In the past 30 years, this procedure has been
repeatedly improved, extended and refined, yielding practical algorithms that are now be-
coming standard and are implemented in most of the major computer algebra systems. In
this tutorial, we outline the above algorithms for various classes of elementary functions,
starting with rational functions and progressively increasing the class of functions up to
general elementary functions. Proofs of correctness of the algorithms presented here can be
found in several of the references, and are generally too long and too detailed to be described
in this tutorial.

Notations: we write x for the variable of integration, and ′ for the derivation d/dx.
Z,Q,R,and C denote respectively the integers, rational, real and complex numbers. All

7



8 CHAPTER 2. INTEGRATION

fields are commutative and, except when mentioned explicitly otherwise, have characteristic
0. If K is a field, then K denotes its algebraic closure. For a polynomial p, pp(p) denotes
the primitive part of p, i. e. p divided by the gcd of its coefficients.

2.1 Rational Functions

By a rational function, we mean a quotient of polynomials in the integration variable x.
This means that other functions can appear in the integrand, provided they do not involve
x, hence that the coefficients of our polynomials in x lie in an arbitrary field K satisfying:
∀a ∈ K, a′ = 0.

The full partial-fraction algorithm

This method, which dates back to Newton, Leibniz, and Bernoulli, should not be used in
practice, yet it remains the method found in most calculus tests and is often taught. Its
major drawback is the factorization of the denominator of the integrand over the real or
complex numbers. We outline it because it provides the theoretical foundations for all the
subsequent algorithms. Let f ∈ R(x) be our integrand, and write f = P + A/D where
P,A,D ∈ R[x], gcd(A,D) = 1, and deg(A) <deg(D). Let

D = c
n∏

i=1

(x− ai)
ei

m∏
j=1

(x2 + bjx+ cj)
fj

be the irreducible factorization of D over R, where c, the ai’s, bj ’s and cj ’s are in R and the
ei’s and fj ’s are positive integers. Computing the partial fraction decomposition of f , we
get

f = P +

n∑
i=1

ei∑
k=1

Aik

(x− ai)k
+

m∑
j=1

fi∑
k=1

Bjkx+ Cjk

(x2 + bjx+ cj)k

where the Aik’s, Bjk’s, and Cjk’s are in R. Hence,

∫
f =

∫
P +

n∑
i=1

ei∑
k=1

∫
Aik

(x− ai)k
+

m∑
j=1

fi∑
k=1

∫
Bjkx+ Cjk

(x2 + bjx+ cj)k

Computing
∫
P poses no problem (it will for any other class of functions), and for the other

terms we have ∫
Aik

(x− ai)k
=

{
Aik(x− ai)

1−k/(1− k) if k > 1
Ai1 log(x− ai) if k = 1

(2.2)

and, noting that b2j − 4cj < 0 since x2 + bjx+ cj is irreducible in R[x].

∫
Bj1x+ Cj1

(x2 + bjx+ cj)
=

Bj1

2
log(x2 + bjx+ cj) +

2Cj1 − bjBj1√
4cj − b2j

arctan

 2x+ bj√
4cj − b2j
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and for k > 1,∫
Bjkx+ Cjk

(x2 + bjx+ cj)k
=

(2Cjk − bjBjk)x+ bjCjk − 2cjBjk

(k − 1)(4cj − b2j )(x
2 + bjx+ cj)k−1

+

∫
(2k − 3)(2Cjk − bjBjk)

(k − 1)(4cj − b2j )(x
2 + bjx+ cj)k−1

This last formula is then used recursively until k = 1.

An alternative is to factor D linearly over C: D =
∏q

i=1(x−αi)
ei , and then use 2.2 on each

term of

f = P +

q∑
i=1

ei∑
j=1

Aij

(x− αi)j
(2.3)

Note that this alternative is applicable to coefficients in any field K, if we factor D linearly
over its algebraic closure K, and is equivalent to expanding f into its Laurent series at all
its finite poles, since that series at x = αi ∈ K is

f =
Aiei

(x− αi)ei
+ · · ·+ Ai2

(x− αi)2
+

Ai1

(x− αi)
+ · · ·

where the Aij ’s are the same as those in 2.3. Thus, this approach can be seen as expanding
the integrand into series around all the poles (including ∞), then integrating the series
termwise, and then interpolating for the answer, by summing all the polar terms, obtaining
the integral of 2.3. In addition, this alternative shows that any rational function f ∈ K(x)
has an elementary integral of the form∫

f = v + c1 log(u1) + · · ·+ cm log(um) (2.4)

where v, u1, . . . , um ∈ K(x) are the rational functions, and c1, . . . , cm ∈ K are constants.
The original Risch algorithm is essentially a generalization of this approach that searches for
integrals of arbitrary elementary functions in a form similar to 2.4.

The Hermite reduction

The major computational inconvenience of the full partial fraction approach is the need
to factor polynomials over R, C, or K, thereby introducing algebraic numbers even if the
integrand and its integral are both in Q(x). On the other hand, introducing algebraic
numbers may be necessary, for example it is proven in [Risc69a] that any field containing an
integral of 1/(x2+2) must also contain

√
2. Modern research has yielded so-called “rational”

algorithms that

• compute as much of the integral as possible with all calculations being done in K(x),
and

• compute the minimal algebraic extension of K necessary to express the integral
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The first rational algorithms for integration date back to the 19th century, when both Her-
mite [Herm1872] and Ostrogradsky [Ostr1845] invented methods for computing the v of 2.4
entirely within K(x). We describe here only Hermite’s method, since it is the one that has
been generalized to arbitrary elementary functions. The basic idea is that if an irreducible
p ∈ K[x] appears with multiplicity k > 1 in the factorization of the denominator of the
integrand, then 2.2 implies that it appears with multiplicity k− 1 in the denominator of the
integral. Furthermore, it is possible to compute the product of all such irreducibles for each
k without factoring the denominator into irreducibles by computing its squarefree factoriza-
tion, i.e a factorization D = D1D

2
2 · · ·Dm

m, where each Di is squarefree and gcd(Di, Dj) = 1
for i ̸= j. A straightforward way to compute it is as follows: let R = gcd(D,D′), then
R = D2D

3
2 · · ·Dm−1

m , so D/R = D1D2 · · ·Dm and gcd(R,D/R) = D2 · · ·Dm, which implies
finally that

D1 =
D/R

gcd(R,D/R)

Computing recursively a squarefree factorization of R completes the one for D. Note that
[Yun76] presents a more efficient method for this decomposition. Let now f ∈ K(x) be our
integrand, and write f = P +A/D where P,A,D ∈ K[x], gcd(A,D) = 1, and
deg(A) < deg(D). Let D = D1D

2
2 · · ·Dm

m be a squarefree factorization of D and suppose
that m ≥ 2 (otherwise D is already squarefree). Let then V = Dm and U = D/V m. Since
gcd(UV ′, V ) = 1, we can use the extended Euclidean algorithm to find B,C ∈ K[x] such
that

A

1−m
= BUV ′ + CV

and deg(B) < deg(V ). Multiplying both sides by (1−m)/(UV m) gives

A

UV m
=

(1−m)BV ′

V m
+

(1−m)C

UV m−1

so, adding and subtracting B′/V m−1 to the right hand side, we get

A

UV m
=

(
B′

V m−1
− (m− 1)BV ′

V m

)
+

(1−m)C − UB′

UV m−1

and integrating both sides yields∫
A

UV m
=

B

V m−1
+

∫
(1−m)C − UB′

UV m−1

so the integrand is reduced to one with a smaller power of V in the denominator. This process
is repeated until the denominator is squarefree, yielding g, h ∈ K(x) such that f = g′ + h
and h has a squarefree denominator.

The Rothstein-Trager and Lazard-Rioboo-Trager algorithms

Following the Hermite reduction, we only have to integrate fractions of the form f = A/D
with deg(A) < deg(D) and D squarefree. It follows from 2.2 that∫

f =
n∑

i=1

ai log(x− αi)
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where the αi’s are the zeros of D in K, and the ai’s are the residues of f at the αi’s. The
problem is then to compute those residues without splitting D. Rothstein [Roth77] and
Trager [Trag76] independently proved that the αi’s are exactly the zeros of

R = resultantx(D,A− tD′) ∈ K[t] (2.5)

and that the splitting field of R over K is indeed the minimal algebraic extension of K
necessary to express the integral in the form 2.4. The integral is then given by∫

A

D
=

m∑
i=1

∑
a|Ri(a)=0

a log(gcd(D,A− aD′)) (2.6)

where R =
∏m

i=1 R
ei
i is the irreducible factorization of R over K. Note that this algorithm

requires factoring R into irreducibles over K, and computing greatest common divisors in
(K[t]/(Ri))[x], hence computing with algebraic numbers. Trager and Lazard & Rioboo
[Laza90] independently discovered that those computations can be avoided, if one uses the
subresultant PRS algorithm to compute the resultant of 2.5: let (R0, R1, . . . Rk ̸= 0, 0, . . .)
be the subresultant PRS with respect to x of D and A − tD′ and R = Q1Q

2
2 . . . Q

m
m be a

squarefree factorization of their resultant. Then,∑
a|Qi(a)=0

a log(gcd(D,A− aD′)) =


∑

a|Qi(a)=0 a log(D) if i = deg(D)∑
a|Qi(a)=0 a log(ppx(Rki)(a, x)) where deg(Rki) = i, 1 ≤ ki ≤ n

if i < deg(D)

Evaluating ppx(Rki) at t = a where a is a root of Qi is equivalent to reducing each coeffi-
cient with respect to x of ppx(Rki) module Qi, hence computing in the algebraic extension
K[t]/(Qi). Even this step can be avoided: it is in fact sufficient to ensure that Qi and
the leading coefficient with respect to x of Rki do not have a nontrivial common factor,
which implies then that the remainder by Qi is nonzero, see [Muld97] for details and other
alternatives for computing ppx(Rki)(a, x)

2.2 Algebraic Functions

By an algebraic function, we mean an element of a finitely generated algebraic extension
E of the rational function field K(x). This includes nested radicals and implicit algebraic
functions, not all of which can be expressed by radicals. It turns out that the algorithms
we used for rational functions can be extended to algebraic functions, but with several
difficulties, the first one being to define the proper analogues of polynomials, numerators
and denominators. Since E is algebraic over K(x), for any α ∈ E, there exists a polynomial
p ∈ K[x][y] such that p(x, α) = 0. We say that α ∈ E is integral over K[x] if there is a
polynomial p ∈ K[x][y], monic in y, such that p(x, α) = 0. Integral elements are analogous
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to polynomials in that their value is defined for any x ∈ K (unlike non-integral elements,
which must have at least one pole in K). The set

OK[x] = {α ∈ E such that α is integral over K[x]}

is called the integral closure of K[x] in E. It is a ring and a finitely generated K[x]-module.
Let α ∈ E∗ be any element and p =

∑m
i=0 aiy

i ∈ K[x][y] be such that p(x, α) = 0 and am ̸= 0.

Then, q(x, amy) = 0 where q = ym +
∑m−1

i=0 aia
m−i−1
m yi is monic in y, so amy ∈ OK[x]. We

need a canonical representation for algebraic functions similar to quotients of polynomials
for rational functions. Expressions as quotients of integral functions are not unique, for
example,

√
x/x = x/

√
x. However, E is a finite-dimensional vector space over K(x), so let

n = [E : K(x)] and w = (w1, . . . , wn) be any basis for E over K(x). By the above remark,
there are a1, . . . , an ∈ K(x)∗ such that aiwi ∈ OK[x] for each i. Since (a1w1, . . . , anwn) is
also a basis for E over K(x), we can assume without loss of generality that the basis w is
composed of integral elements. Any α ∈ E can be written uniquely as α =

∑n
i=1 fiwi for

f1, . . . , fn ∈ K(x), and putting the fi’s over a monic common denominator D ∈ K[x], we
get an expression

α =
A1w1 + . . .+Anwn

D

where A1, . . . , An ∈ K[x] and gcd(D,A1, . . . , An) = 1. We call
∑n

i=1 Aiwi ∈ OK[x] and
D ∈ K[x] respectively the numerator and denominator of α with respect to w. They are
defined uniquely once the basis w is fixed.

The Hermite reduction

Now that we have numerators and denominators for algebraic functions, we can attempt
to generalize the Hermite reduction of the previous section, so let f ∈ E be our integrand,
w = (w1, . . . , wn) ∈ OK[n]

n be a basis for E over K(x) and let
∑m

i=1 Aiwi ∈ OK[x] and
D ∈ K[x] be the numerator and denominator of f with respect to w, Let D = D1D

2
2 . . . D

m
m

be a squarefree factorization of D and suppose that m ≥ 2. Let then V = Dm and U =
D/V m, and we ask whether we can compute B =

∑n
i=1 Biwi ∈ OK[x] and h ∈ E such that

deg(Bi) < deg(V ) for each i, ∫ ∑n
i=1 Aiwi

UV m
=

B

V m−1
+

∫
h (2.7)

and the denominator of h with respect to w has no factor of order m or higher. This turns
out to reduce to solving the following linear system

f1S1 + . . .+ fnSn = A1w1 + . . .+Anwn (2.8)

for f1, . . . , fn ∈ K(x), where

Si = UV m
( wi

V m−1

)′
for 1 ≤ i ≤ n (2.9)

Indeed, suppose that 2.8 has a solution f1, . . . , fn ∈ K(x), and write fi = Ti/Q, where
Q,T1, . . . , Tn ∈ K[x] and gcd(Q,T1, . . . , Tn) = 1. Suppose further that gcd(Q,V ) = 1. Then,
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we can use the extended Euclidean algorithm to find A,R ∈ K[x] such that AV + RQ = 1,
and Euclidean division to find Qi, Bi ∈ K[x] such that deg(Bi) < deg(V ) when Bi ̸= 0 and
RTi = V Qi +Bi for each i. We then have

h = f −
(∑n

i=1 Biwi

V m−1

)′

=

∑n
i=1 Aiwi

UV m
−
∑n

i=1 B
′
iwi

V m−1
−

n∑
i=1

(RTi − V Qi)
( wi

V m−1

)′

=

∑n
i=1 Aiwi

UV m
−

R
∑n

i=1 TiSi

UV m
+ V

n∑
i=1

Qi

( wi

V m−1

)′
−
∑n

i=1 B
′
iwi

V m−1

=
(1−RQ)

∑n
i=1 Aiwi

UV m
+

∑n
i=1 Qiw

′
i

V m−2
− (m− 1)V ′

∑n
i=1 Qiwi

V m−1
−
∑n

i=1 B
′
iwi

V m−1

=

∑n
i=1 AAiwi

UV m−1
−
∑n

i=1((m− 1)V ′Qi +B′
i)wi

V m−1
+

∑n
i=1 Qiw

′
i

V m−2

Hence, if in addition the denominator of h has no factor of order m or higher, then B =∑n
i=1 Biwi ∈ OK[x] and h solve 2.7 and we have reduced the integrand. Unfortunately, it

can happen that the denominator of h has a factor of order m or higher, or that 2.8 has no
solution in K(x) whose denominator is coprime with V , as the following example shows.

Example 1 Let E = K(x)[y]/(y4 + (x2 + x)y − x2) with basis w = (1, y, y2, y3) over K(x)
and consider the integrand

f =
y3

x2
=

w4

x2
∈ E

We have D = x2, so U = 1, V = x and m = 2. Then, S1 = x2(1/x)′ = −1,

S2 = x2
(y
x

)′
=

24(1− x2)y3 + 32x(1− x)y2 − (9x4 + 45x3 + 209x2 + 63x+ 18)y − 18x(x3 + x2 − x− 1)

27x4 + 108x3 + 418x2 + 108x+ 27

S3 = x2
(

y2

x

)′
=

64x(1− x)y3 + 9(x4 + 2x3 − 2x− 1)y2 + 12x(x3 + x2 − x− 1)y + 48x2(1− x2)

27x4 + 108x3 + 418x2 + 108x+ 27

and

S4 = x2
(

y3

x

)′
=

(27x4 + 81x3 + 209x2 + 27x)y3 + 18x(x3 + x2 − x− 1)y2 + 24x2(x2 − 1)y + 96x3(1− x)

27x4 + 108x3 + 418x2 + 108x+ 27
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so 2.8 becomes

M


f1
f2
f3
f4

 =


0
0
0
1

 (2.10)

where

M =


−1 −18x(x3+x2−x−1)

F
48x2(1−x2)

F
96x3(1−x)

F

0 −(9x4+45x3+209x2+63x+18)
F

12x(x3+x2−x−1)
F

24x2(x2−1)
F

0 32x(1−x)
F

9(x4+2x3−2x−1)
F

18x(x3+x2−x−1)
F

0 24(1−x2)
F

64x(1−x)
F

(27x4+81x3+209x2+27x)
F


and F = 27x4 + 108x3 + 418x2 + 108x + 27. The system 2.10 admits a unique solution
f1 = f2 = 0, f3 = −2 and f4 = (x+ 1)/x, whose denominator is not coprime with V , so the
Hermite reduction is not applicable.

The above problem was first solved by Trager [Trag84], who proved that if w is an integral
basis, i.e. its elements generate OK[x] over K[x], then the system 2.8 always has a unique
solution in K(x) when m > 1, and that solution always has a denominator coprime with V.
Furthermore, the denominator of each w′

i must be squarefree, implying that the denominator
of h is a factor of FUV m−1 where F ∈ K[x] is squarefree and coprime with UV . He also
described an algorithm for computing an integral basis, a necessary preprocessing for his
Hermite reduction. The main problem with that approach is that computing the integral
basis, whether by the method of [Trag84] or the local alternative [Hoei94], can be in general
more expansive than the rest of the reduction process. We describe here the lazy Hermite
reduction [Bron98], which avoids the precomputation of an integral basis. It is based on
the observation that if m > 1 and 2.8 does not have a solution allowing us to perform the
reduction, then either

• the Si’s are linearly dependent over K(x), or

• 2.8 has a unique solution in K(x) whose denominator has a nontrivial common factor
with V , or

• the denominator of some wi is not squarefree

In all of the above cases, we can replace our basis w by a new one, also made up of integral
elements, so that that K[x]-module generated by the new basis strictly contains the one
generated by w:

Theorem 1 ([Bron98]) Suppose that m ≥ 2 and that {S1, . . . , Sn} as given by 2.9
are linearly dependent over K(x), and let T1, . . . , Tn ∈ K[x] be not all 0 and such that∑n

i=1 TiSi = 0. Then,

w0 =
U

V

n∑
i=1

Tiwi ∈ OK[x]

Furthermore, if gcd(T1, . . . , Tn) = 1 then w0 /∈ K[x]w1 + · · ·+K[x]wn.
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Theorem 2 ([Bron98]) Suppose that m ≥ 2 and that {S1, . . . , Sn} as given by 2.9 are
linearly independent over K(x), and let Q,T1, . . . , Tn ∈ K[x] be such that

n∑
i=1

Aiwi =
1

Q

n∑
i=1

TiSi

Then,

w0 =
U(V/ gcd(V,Q))

gcd(V,Q)

n∑
i=1

Tiwi ∈ OK[x]

Furthermore, if gcd(Q,T1, . . . , Tn) = 1 and deg(gcd(V,Q)) ≥ 1, then w0 /∈ K[x]w1 + · · · +
K[x]wn.

Theorem 3 ([Bron98]) Suppose that the denominator F of some wi is not squarefree, and
let F = F1F

2
2 · · ·F k

k be its squarefree factorization. Then,

w0 = F1 · · ·Fkw
′
i ∈ OK[x]\(K[x]w1 + · · ·+K[x]wn).

The lazy Hermite reduction proceeds by solving the system 2.8 in K(x). Either the reduction
will succeed, or one of the above theorems produces an element w0 ∈ OK[x]\(K[x]w1+ · · ·+
K[x]wn). Let then

∑n
i=1 Ciwi and F be the numerator and denominator of w0 with respect

to w. Using Hermitian row reduction, we can zero out the last row of
F

F
. . .

F
C1 C2 · · · Cn


obtaining a matrix of the form

C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

...
Cn,1 Cn,2 · · · Cn,n

0 0 · · · 0


with Cij ∈ K[x]. Let wi = (

∑n
j=1 Cijwj)/F for 1 ≤ i ≤ n. Then, w = (w1, . . . , wn) is a

basis for E over K and

K[x]w1 + · · ·+K[x]wn = K[x]w1 + · · ·+K[x]wn +K[x]w0

is a submodule of OK[x], which strictly contains K[x]w1+ · · ·+K[x]wn, since it contains w0.
Any strictly increasing chain of submodules of OK[x] must stabilize after a finite number of
steps, which means that this process produces a basis for which either the Hermite reduction
can be carried out, or for which f has a squarefree denominator.
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Example 2 Continuing example 1 for which the Hermite reduction failed, Theorem 2 implies
that

w0 =
1

x
(−2xw3 + (x+ 1)w4) = (−2xy2 + (x+ 1)y3)x ∈ OK[x]

Performing a Hermitian row reduction on
x

x
x

x
0 0 −2x x+ 1


yields 

x
x

x
1

0 0 0 0


so the new basis is w = (1, y, y2, y3/x), and the denominator of f with respect to w is x,
which is squarefree.

Simple radical extensions

The integration algorithm becomes easier when E is a simple radical extension of K(x), i.e.
E = K(x)[y]/(yn − a) for some a ∈ K(x). Write a = A/D where A,D ∈ K[x], and let
ADn−1 = A1A

2
2 · · ·Ak

k be a squarefree factorization of ADn−1. Writing i = nqi + ri, for
1 ≤ i ≤ k, where 0 ≤ ri < n, let F = Aq1

1 · · ·Aqk
k , H = Ar1

1 · · ·Ark
k and z = yD/F . Then,

zn =

(
y
D

F

)n

=
ynDn

Fn
=

ADn−1

F
= Ar1

1 · · ·Ark
k = H

Since ri < n for each i, the squarefree factorization of H is of the form H = H1H
2
2 · · ·Hm

m

with m < n. An integral basis is then w = (w1, . . . , wn) where

wi =
zi−1∏m

j=1 H
⌊(i−1)j/n⌋
j

1 ≤ i ≤ n (2.11)

and the Hermite reduction with respect to the above basis is always guaranteed to succeed.
Furthermore, when using that basis, the system 2.8 becomes diagonal and its solution can
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be written explicitly: writing Di =
∏m

j=1 H
⌊ij/n⌋
j we have

Si = UV m
( wi

V m−1

)′
= UV m

(
zi−1

Di−1V m−1

)′

= UV m

(
i− 1

n

H ′

H
− Di−1

′

Di−1
− (m− 1)

V ′

V

)(
zi−1

Di−1V m−1

)

= U

(
V

(
i− 1

n

H ′

H
− Di−1

′

Di−1

)
− (m− 1)V ′

)
wi

so the unique solution of 2.8 in K(x) is

fi =
Ai

U
(
V
(

i−1
n

H′

H − Di−1
′

Di−1

)
− (m− 1)V ′

) for 1 ≤ i ≤ n (2.12)

and it can be shown that the denominator of each fi is coprime with V when m ≥ 2.

Example 3 Consider ∫
(2x8 + 1)

√
(x8 + 1)

x17 + 2x9 + x
dx

The integrand is

f =
(2x8 + 1)y

x17 + 2x9 + x
∈ E = Q(x)[y]/(y2 − x8 − 1)

so H = x8 + 1 which is squarefree, implying that the integral basis 2.11 is (w1, w2) = (1, y).
The squarefree factorization of x17 + 2x9 + x is x(x8 + 1)2 so U = x, V = x8 + 1, m = 2,
and the solution 2.12 of 2.8 is

f1 = 0, f2 =
2x8 + 1

x
(
(x8 + 1) 12

8x7

x8+1 − 8x7
) = − (2x8 + 1)/4

x8

We have Q = x8, so V −Q = 1, A = 1, R = −1 and RQf2 = V/2− 1/4, implying that

B = −y

4
and h = f −

(
B

V

)′

=
y

x(x8 + 1)

solve 2.7, i.e. ∫
(2x8 + 1)

√
(x8 + 1)

x17 + 2x9 + x
dx = −

√
x8 + 1

4(x8 + 1)
+

∫ √
x8 + 1

x(x8 + 1)
dx

and the remaining integrand has a squarefree denominator.
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Liouville’s Theorem

Up to this point, the algorithms we have presented never fail, yet it can happen that an
algebraic function does not have an elementary integral, for example∫

x dx√
1− x3

which is not an elementary function of x. So we need a way to recognize such functions
before completing the integration algorithm. Liouville was the first to state and prove a
precise theorem from Laplace’s observation that we can restrict the elementary integration
problem by allowing only new logarithms to appear linearly in the integral, all the other
terms appearing in the integral being already in the integrand.

Theorem 4 (Liouville [Liou1833a, Liou1833b]) Let E be an algebraic extension of the
rational function field K(x), and f ∈ E. If f has an elementary integral, then there exist
v ∈ E, constants c1, . . . , cn ∈ K and u1, . . . , uk ∈ E(c1, . . . , ck)

∗ such that

f = v′ + c1
u′
1

u1
+ · · ·+ ck

u′
k

uk
(2.13)

The above is a restriction to algebraic functions of the strong Liouville Theorem, whose proof
can be found in [Bron97, Risc69b]. An elegant and elementary algebraic proof of a slightly
weaker version can be found in [Rose72]. As a consequence, we can look for an integral of
the form 2.4, Liouville’s Theorem guaranteeing that there is no elementary integral if we
cannot find one in that form. Note that the above theorem does not say that every integral
must have the above form, and in fact that form is not always the most convenient one, for
example, ∫

dx

1 + x2
= arctan(x) =

√
−1

2
log

(√
−1 + x√
−1− x

)

The integral part

Following the Hermite reduction, we can assume that we have a basis w = (w1, . . . , wn) of E
overK(x) made of integral elements such that our integrand is of the form f =

∑n
i=1 Aiwi/D

where D ∈ K[x] is squarefree. Given Liouville’s Theorem, we now have to solve equation
2.13 for v, u1, . . . , uk and the constants c1, . . . , ck. Since D is squarefree, it can be shown that
v ∈ OK[x] for any solution, and in fact v corresponds to the polynomial part of the integral of
rational functions. It is however more difficult to compute than the integral of polynomials,
so Trager [Trag84] gave a change of variable that guarantees that either v′ = 0 or f has no
elementary integral. In order to describe it, we need to define the analogue for algebraic
functions of having a nontrivial polynomial part: we say that α ∈ E is integral at infinity if
there is a polynomial p =

∑m
i=1 aiy

i ∈ K[x][y] such that p(x, α) = 0 and deg(am) ≥ deg(ai)
for each i. Note that a rational function A/D ∈ K(x) is integral at infinity if and only if
deg(A) ≤ deg(D) since it is a zero of Dy−A. When α−E is not integral at infinity, we say
that it has a pole at infinity. Let

O∞ = {α ∈ E such that α is integral at infinity}
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A set (b1, . . . , bn) ∈ En is called normal at infinity if there are r1, . . . , rn ∈ K(x) such
that every α ∈ O∞ can be written as α =

∑n
i=1 Biribi/C where C,B1, . . . , Bn ∈ K[x]

and deg(C) ≥ deg(Bi) for each i. We say that the differential αdx is integral at infinity
if αx1+1/r ∈ O∞ where r is the smallest ramification index at infinity. Trager [Trag84]
described an algorithm that converts an arbitrary integral basis w1, . . . , wn into one that is
also normal at infinity, so the first part of his integration algorithm is as follows:

1. Pick any basis b = (b1, . . . , bn) of E over K(x) that is composed of integral elements.

2. Pick an integer N ∈ Z that is not zero of the denominator of f with respect to b, nor
of the discriminant of E over K(x), and perform the change of variable x = N + 1/z,
dx = −dz/z2 on the integrand.

3. Compute an integral basis w for E over K(z) and make it normal at infinity

4. Perform the Hermite reduction on f using w, this yields g, h ∈ E such that
∫
f dz =

g +
∫
h dz and h has a squarefree denominator with respect to w.

5. If hz2 has a pole at infinity, then
∫
f dz and

∫
h dz are not elementary functions

6. Otherwise,
∫
h dz is elementary if and only if there are constants c1, . . . , ck ∈ K and

u1, . . . , uk ∈ E(c1, . . . , ck)
∗ such that

h =
c1
u1

du1

dz
+ · · ·+ ck

uk

duk

dz
(2.14)

The condition that N is not a zero of the denominator of f with respect to b implies that the
fdz is integral at infinity after the change of variable, and Trager proved that if hdz is not
integral at infinity after the Hermite reduction, then

∫
h dz and

∫
f dz are not elementary

functions. The condition that N is not a zero of the discriminant of E over K(x) implies
that the ramification indices at infinity are all equal to 1 after the change of variable, hence
that h dz is integral at infinity if and only if hz2 ∈ O∞. That second condition on N can be
disregarded, in which case we must replace hz2 in step 5 by hz1+1/r where r is the smallest
ramification index at infinity. Note that hz2 ∈ O∞ implies that hz1+1/r ∈ O∞, but not
conversely. Finally, we remark that for simple radical extensions, the integral basis 2.11 is
already normal at infinity.

Alternatively, we can use lazy Hermite reduction in the above algorithm: in step 3, we pick
any basis made of integral elements, then perform the lazy Hermite reduction in step 4. If
h ∈ K(z) after the Hermite reduction, then we can complete the integral without computing
an integral basis. Otherwise, we compute an integral basis and make it normal at infinity
between steps 4 and 5. This lazy variant can compute

∫
f dx whenever it is an element of

E without computing an integral basis.

The logarithmic part

Following the previous sections, we are left with solving equation 2.14 for the constants
c1, . . . , ck and for u1, . . . , uk. We must make at this point the following additional assump-
tions:
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• we have an integral primitive element for E over K(z), i.e. y ∈ OK[z] such that
E = K(z)(y),

• [E : K(z)] = [E : K(z)], i.e. the minimal polynomial for y over K[z] is absolutely
reducible, and

• we have an integral basis w = (w1, . . . , wn) for E over K(z), and w is normal at infinity

A primitive element can be computed by considering linear combinations of the generators
of E over K(x) with random coefficients in K(x), and Trager [Trag84] describes an absolute
factorization algorithm, so the above assumptions can be ensured, although those steps can
be computationally very expensive, except in the case of simple radical extensions. Before
describing the second part of Trager’s integration algorithm, we need to define some concepts
from the theory of algebraic curves. Given a finite algebraic extension E = K(z)(y) of K(z),
a place P of E is a proper local subring of E containing K, and a divisor is a formal sum∑

nPP with finite support, where the nP ’s are integers and the P ’s are places. Let P be a
place, then its maximal ideal µP is principal, so let p ∈ E be a generator of µP . The order at
P is the function νP : E∗ → Z which maps f ∈ E∗ to the largest k ∈ Z such that f ∈ pkP .
Given f ∈ E∗, the divisor of f is (f) =

∑
νP (f)P where the sum is taken over all the places.

It has finite support since νP (f) ̸= 0 if and only if P is a pole or zero of f . Finally, we say
that a divisor δ =

∑
nPP is principal if δ = (f) for some f ∈ E∗. Note that if δ is principal,

the
∑

nP = 0, but the converse is not generally true, except if E = K(z). Trager’s algorithm
proceeds essentially by constructing candidate divisors for the ui’s of 2.14:

• Let
∑n

i=1 Aiwi be the numerator of h with respect to w, and D be its (squarefree)
denominator

• Write
∑n

i=1 Aiwi = G/H, where G ∈ K[z, y] and H ∈ K[z]

• Let f ∈ K[z, y] be the (monic) minimum polynomial for y over K(z), t be a new
indeterminante and compute

R(t) = resultantz

(
ppt

(
resultanty

(
G− tH

dD

dz
, F

))
, D

)
∈ K[t]

• Let α1, . . . , αs ∈ K be the distinct nonzero roots of R, (q1, . . . , qk) be a basis for the
vector space that they generate over Q, write αi = ri1q1 + · · ·+ rikqk for each i, where
rij ∈ Q and let m > 0 be a common denominator for all the rij ’s

• For 1 ≤ j ≤ k, let δj =
∑s

i=1 mrij
∑

l rlPl where rl is the ramification index of Pl and
Pl runs over all the places at which h dz has residue riαi

• If there are nonzero integers n1, . . . , nk such that njδj is principal for each j, then let

u = h− 1

m

k∑
j=1

qj
njuj

duj

dz

where uj ∈ E(α1, . . . , αs)
∗ is such that njδj = (uj). If u = 0, then

∫
h dz =∑k

j=1 qj log(uj)/(mnj), otherwise if either u ̸= 0 or there is no such integer nj for
at least one j, then h dz has no elementary integral.
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Note that this algorithm expresses the integral, when it is elementary, with the smallest
possible number of logarithms. Steps 3 to 6 requires computing in the splitting field K0

of R over K, but it can be proven that, as in the case of rational functions, K0 is the
minimal algebraic extension of K necessary to express the integral in the form 2.4. Trager
[Trag84] describes a representation of divisors as fractional ideals and gives algorithms for
the arithmetic of divisors and for testing whether a given divisor is principal. In order to
determine whether there exists an integer N such that Nδ is principal, we need to reduce
the algebraic extension to one over a finite field Fpq for some “good” prime p ∈ Z. Over
Fpq , it is known that for every divisor δ =

∑
nPP such that

∑
nP = 0, Mδ is principal

for some integer 1 ≤ M ≤ (1 +
√
pq)2g, where g is the genus of the curve [Weil71], so we

compute such an M by testing M = 1, 2, 3, . . . until we find it. It can then be shown that
for almost all primes p, if Mδ is not principal in characteristic 0, the Nδ is not principal for
any integer N ̸= 0. Since we can test whether the prime p is “good” by testing whether the
image in Fpq of the discriminant of the discriminant of the minimal polynomial for y over
K[z] is 0, this yields a complete algorithm. In the special case of hyperelliptic extensions, i.e.
simple radical extensions of degree 2, Bertrand [Bert95] describes a simpler representation
of divisors for which the arithmetic and principality tests are more efficient than the general
methods.

Example 4 Continuing example 3, we were left with the integrand

√
x8 + 1

x(x8 + 1)
=

w2

x(x8 + 1)
∈ E = Q(x)[y]/(y2 − x8 − 1)

where (w1, w2) = (1, y) is an integral basis normal at infinity, and the denominator D =
x(x8 + 1) of the integrand is squarefree. Its numerator is w2 = y, so the resultant of step 3
is

resultantx(ppt(resultanty(y − t(9x8 + 1), y2 − x8 − 1)), x(x8 + 1)) = ct16(t2 − 1)

where c is a large nonzero integer. Its nonzero roots are ±1, and the integrand has residue 1
at the place P corresponding to the point (x, y) = (0, 1) and −1 at the place Q corresponding
to the point (x, y) = (0,−1), so the divisor δ1 of step 5 is δ1 = P −Q. It turns out that δ1,
2δ1, and 3δ1 are not principal, but that

4δ1 =

(
x4

1 + y

)
and

w2

x(x8 + 1)
− 1

4

(x4/(1 + y))′

x4/(1 + y)
= 0

which implies that ∫ √
x8 + 1

x(x8 + 1)
dx =

1

4
log

(
x4

1 +
√
x8 + 1

)

Example 5 Consider ∫
x dx√
1− x3

The integrand is

f =
xy

1− x3
∈ E = Q(x)[y]/(y2 + x3 − 1)
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where (w1, w2) = (1, y) is an integral basis normal at infinity, and the denominaotrD = 1−x3

of the integrand is squarefree. Its numerator is xw2 = xy, so the resultant of step 3 is

resultantx(ppt(resultanty(xy + 3tx2, y2 + x3 − 1)), 1− x3) = 729t6

whose only root is 0. Since f ̸= 0, we conclude from step 6 that
∫
f dx is not an elementary

function.

Example 6 ∫
dx

x
√
1− x3

The integrand is

f =
y

x− x4
∈ E = Q(x)[y]/(y2 + x3 − 1)

where (w1, w2) = (1, y) is an integral basis normal at infinity, and the denominatorD = x−x4

of the integrand is squarefree. Its numerator is w2 = y, so the resultant of step 3 is

resultantx(ppt(resultanty(y + t(4x3 − 1), y2 + x3 − 1)), x− x4) = 729t6(t2 − 1)

Its nonzero roots are ±1, and the integrand has residue 1 at the place P corrseponding to
the point (x, y) = (0, 1) and −1 at the place Q corresponding to the point (x, y) = (0,−1)
so the divisor δ1 of step 5 is δ1 = P −Q. It turns out that δ1 and 2δ1 are not principal, but
that

3δ1 =

(
y − 1

y + 1

)
and

y

x− x4
− 1

3

((y − 1)/(y + 1))′

(y − 1)/(y + 1)
= 0

which implies that ∫
dx

x
√
1− x3

=
1

3
log

(√
1− x3 − 1√
1− x3 + 1

)

2.3 Elementary Functions

Let f be an arbitrary elementary function. In order to generalize the algorithms of the
previous sections, we need to build an algebraic model in which f behaves in some sense like
a rational or algebraic function. For that purpose, we need to formally define differential
fields and elementary functions.

Differential algebra

A differential field (K,′ ) is a field K with a given map a → a′ from K into K, satisfying
(a + b)′ = a′ + b′ and (ab)′ = a′b + ab′. Such a map is called a derivation on K. An
element a ∈ K which satisfies a′ = 0 is called a constant, and the set Const(K)={a ∈
K such that a′ = 0} of all the constants of K is called a subfield of K.

A differential field (E,′ ) is a differential equation of (K,′ ) if K ⊆ E and the derivation
on E extends the one on K. In that case, an element t ∈ E is a monomial over K if t is
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transcendental over K and t′ ∈ K[t], which implies that both K[t] and K(t) are closed under
′. An element t ∈ E is elementary over K if either

• t′ = b′/b for some b ∈ K∗, in which case we say that t is a logarithm over K, and write
t = log(b), or

• t′ = b′t for some b ∈ K∗, in which case we say that t is an exponential over K, and
write t = eb, or

• t is algebraic over K

A differential extension (E,′ ) of (K,′ ) is elementary over K, if there exist t1, . . . , tm in E
such that E = K(t1, . . . , tm) and each ti is elementary over K(t1, . . . , ti−1). We say that
f ∈ K has an elementary integral over K if there exists an elementary extension (F,′ ) of
(K,′ ) and g ∈ F such that g′ = f . An elementary function of the variable x is an element of
an elementary extension of the rational function field (C(x), d/dx), where C = Const(C(x)).

Elementary extensions are useful for modeling any function as a rational or algebraic function
of one main variable over the other terms present in the function: given an elementary
integrand f(x) dx, the integration algorithm first constructs a field C containing all the
constants appearing in f , then the rational function field (C(x), d/dx), then an elementary
tower E = C(x)(t1, . . . , tk) containing f . Note that such a tower is not unique, and in
addition, ajoining a logarithm could in fact adjoin a new constant, and an exponential
could in fact be algebraic, for example Q(x)(log(x), log(2x)) = Q(log(2))(x)(log(x)) and
Q(x)(elog(x)/2) = Q(x)(

√
x). There are however algorithms that detect all such occurences

and modify the tower accordingly [Risc79], so we can assume that all the logarithms and
exponentials appearing in E are monomials, and that Const(E) = C. Let now k0 be the
largest index such that tk0 is transcendental over K = C(x)(t1, . . . , tk0−1) and t = tk0 .
Then E is a finitely generated algebraic extension of K(t), and in the special case k0 = k,
E = K(t). Thus, f ∈ E can be seen as a univariate rational or algebraic function over K, the
major difference with the pure rational or algebraic cases being that K is not constant with
respect to the derivation. It turns out that the algorithms of the previous section can be
generalized to such towers, new methods being required only for the polynomial (or integral)
part. We note that Liouville’s Theorem remains valid when E is an arbitrary differential
field, so the integration algorithms work by attempting to solve equation 2.13 as previously.

Example 7 The function (1) is the element f = (t − t−1)
√
−1/2 of E = K(t) where

K = Q(
√
−1)(x)(t1, t2) with

t1 =
√
x3 − x+ 1, t2 = e2

√
−1(x3−t1), and t = e((1−t2)/(1+t2))−x

√
−1

which is transcendental over K. Alternatively, it can also be written as the element f =
2θ/(1 + θ2) of F = K(θ) where K == Q(x)(θ1, θ2) with

θ1 =
√

x3 − x+ 1, θ2 = tan(x3 − θ1), and θ = tan

(
x+ θ2

2

)
which is a transcendental monomial over K. It turns out that both towers can be used in
order to integrate f .
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The algorithms of the previous sections relied extensively on squarefree factorization and on
the concept of squarefree polynomials. The appropriate analogue in monomial extensions
is the notion of normal polynomials: let t be a monomial over K, we say that p ∈ K[t] is
normal (with respect to ’) if gcd(p, p′) = 1, and that p is special if gcd(p, p′) = p, i.e. p|p′
in K[t]. For p ∈ K[t] squarefree, let ps = gcd(p, p′) and pn = p/ps. Then p = pspn, while
ps is special and pn is normal. Therefore, squarefree factorization can be used to write any
q ∈ K[t] as a product q = qsqn, where gcd(qs, qn) = 1, qs is special and all the squarefree
factors of qn are normal. We call qs the special part of q and qn its normal part.

The Hermite reduction

The Hermite reductions we presented for rational and algebraic functions work in exactly the
same way algebraic extensions of monomial extensions of K, as long as we apply them only
to the normal part of the denominator of the integrand. Thus, if D is the denominator of
the integrand, we let S be the special part of D, D1D

2
2 . . . D

m
m be a squarefree factorization

of the normal part of D, V = Dm, U = D/V m and the rational and algebraic Hermite
reductions proceed normally, eventually yielding an integrand whose denominator has a
squarefree normal part.

Example 8 Consider ∫
x− tan(x)

tan(x)2
dx

The integrand is

f =
x− t

t2
∈ K(t) where K = Q(x) and t′ = t2 + 1

Its denominator is D = t2, and gcd(t, t′) = 1 implying that t is normal, so m = 2, V = t,
U = D/t2 = 1, and the extended Euclidean algorithm yields

A

1−m
= t− x = −x(t2 + 1) + (xt+ 1)t = −xUV ′ + (xt+ 1)V

implying that ∫
x− tan(x)

tan(x)2
dx = − x

tan(x)
−
∫

x dx

and the remaining integrand has a squarefree denominator.

Example 9 Consider∫
log(x)2 + 2x log(x) + x2 + (x+ 1)

√
x+ log(x)

x log(x)2 + 2x2 log(x) + x3
dx

The integrand is

f =
t2 + 2xt+ x2 + (x+ 1)y

xt2 + 2x2t+ x3
∈ E = K(t)[y]/(y2 − x− t)
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where K = Q(x) and t = log(x). The denominator of f with respect to the basis w = (1, y)
is D = xt2 + 2x2t + x3 whose squarefree factorization is x(t + x)2. Both x and t + x are
normal, so m = 2, V = t+ x, U = D/V 2 = x, and the solution 2.12 of 2.8 is

f1 =
t2 + 2xt+ x2

x(−(t′ + 1))
= − t2 + 2xt+ x2

x+ 1
,

f2 =
x+ 1

x
(
(t+ x) 12

t′+1
t+z − (t′ + 1)

) = −2

We have Q = 1, so 0V + 1Q = 1, A = 0, R = 1, RQf1 = f1 = −V 2/(x + 1) and
RQf2 = f2 = 0V − 2, so B = −2y and

h = f −
(
B

V

)′

=
1

x

implying that∫
log(x)2 + 2x log(x) + x2 + (x+ 1)

√
x+ log(x)

x log(x)2 + 2x2 log(x) + x2
dx =

2√
x+ log(x)

+

∫
dx

x

and the remaining integrand has a squarefree denominator.

The polynomial reduction

In the transcendental case E = K(t) and when t is a monomial satisfying degt(t
′) ≥ 2, then

it is possible to reduce the degree of the polynomial part of the integrand until it is smaller
than degt(t

′). In the case when t = tan(b) for some b ∈ K, then it is possible either to prove
that the integral is not elementary, or to reduce the polynomial part of the integrand to be
in K. Let f ∈ K(t) be our integrand and write f = P + A/D, where P,A,D ∈ K[t] and

deg(A) < deg(D). Write P =
∑e

i=1 pit
i and t′ =

∑d
i=0 cit

i where p0, . . . , pe, c0, . . . , cd ∈ K,
d ≥ 2, pe ̸= 0 and cd ̸= 0. It is easy to verify that if e ≥ d, then

P =

(
ae

(e− d+ 1)cd
te−d+1

)′

+ P (2.15)

where P ∈ K[t] is such that P = 0 or degt(P ) < e. Repeating the above transformation
we obtain Q,R ∈ K[t] such that R = 0 or degt(R) < d and P = Q′ + R. Write then

R =
∑d−1

i=0 rit
i where r0, . . . , rd−1 ∈ K. Again, it is easy to verify that for any special

S ∈ K[t] with degt(S) > 0, we have

R =
1

degt(S)

rd−1

cd

S′

S
+R

where R ∈ K[t] is such that R = 0 or degt(R) < e − 1. Furthermore, it can be proven
[Bron97] that if R+A/D has an elementary integral over K(t), then rd−1/cd is a constant,
which implies that ∫

R =
1

degt(S)

rd−1

cd
log(S) +

∫ (
R+

A

D

)
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so we are left with an integrand whose polynomial part has degree at most degt(t
′)− 2. In

this case t = tan(b) for b ∈ K, then t′ = b′t2 + b′, so R ∈ K.

Example 10 Consider ∫
(1 + x tan(x) + tan(x)2) dx

The integrand is

f = 1 + xt+ t2 ∈ K(t) where K = Q(x) and t′ = t2 + 1

Using 2.15, we get P = f − t′ = f − (t2 + 1) = xt so∫
(1 + x tan(x) + tan(x)2) dx = tan(x) +

∫
x tan(x) dx

and since x′ ̸= 0, the above criterion imples that the remaining integral is not an elementary
function.

The residue criterion

Similarly to the Hermite reduction, the Rothstein-Trager and Lazard-Rioboo-Trager algo-
rithms are easy to generalize to the transcendental case E = K(t) for arbitrary monomials
t: let f ∈ K(t) be our integrand and write f = P +A/D+B/S where P,A,D,B, S ∈ K[t],
deg(A) < deg(D), S is special and, following the Hermite reduction, D is normal. Let then
z be a new indeterminate, κ : K[z] → K[z] be give by κ(

∑
i aiz

i) =
∑

i a
′
iz

i,

R = resultantt(D,A− zD′) ∈ K[z]

be the Rothstein-Trager resultant, R = R1R
2
2 . . . R

k
k be its squarefree factorization, Qi =

gcdz(Ri, κ(Ri)) for each i, and

g =
k∑

i=1

∑
a|Qi(a)=0

a log(gcd t(D,A− aD′))

Note that the roots of eachQi must all be constants, and that the arguments of the logarithms
can be obtained directly from the subresultant PRS of D and A − zD′ as in the rational
function case. It can then be proven [Bron97] that

• f − g′ is always “simpler” than f

• the splitting field of Q1 · · ·Qk over K is the minimal algebraic extension of K needed
in order to express

∫
f in the form 2.4

• if f has an elementary integral over K(t), then R|κ(R) in K[z] and the denominator
of f − q′ is special
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Thus, while in the pure rational function case the remaining integrand is a polynomial, in this
case the remaining integrand has a special denominator. In that case we have additionally
that if its integral is elementary, then 2.13 has a solution such that v ∈ K(t) has a special
denominator, and each ui ∈ K(c1, . . . , ck)[t] is special.

Example 11 Consider ∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx

The integrand is

f =
2t2 − t− x2

t2 − xt2
∈ K(t) where K = Q(x) and t = log(x)

Its denominator is D = t3 − x2t, which is normal, and the resultant is

R = resultantt

(
t3 − x2t,

2x− 3z

x
t2 + (2xz − 1)t+ x(z − x)

)

= 4x3(1− x2)

(
z3 − xz2 − 1

4
z +

x

4

)
which is squarefree in K[z]. We have

κ(R) = −x2(4(5x2 + 3)z3 + 8x(3x2 − 2)z2 + (5x2 − 3)z − 2x(3x2 − 2))

so

Q1 = gcd z(R, κR) = x2

(
z2 − 1

4

)
and

gcd t

(
t3 + x2t,

2x− 3a

x
t2 + (2xa− 1)t+ x(a− x)

)
= t+ 2ax

where a2 − 1/4 = 0, whence

g =
∑

a|a2−1/4=0

a log(t+ 2ax) =
1

2
log(t+ x)− 1

2
log(t− x)

Computing f − g′ we find∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx =

1

2
log

(
log(x) + x

log(x)− x

)
+

∫
dx

log(x)

and since degz(Q1) < degz(R), it follows that the remaining integral is not an elementary
function (it is in fact the logarithmic integral Li(x)).

In the most general case, when E = K(t)(y) is algebraic over K(t) and y is integral over K[t],
the criterion part of the above result remains valid: let w = (w1, . . . , wn) be an integral basis
for E over K(t) and write the integrand f ∈ E as f =

∑n
i=1 Aiwi/D +

∑n
i=1 Biwi/S where

S is special and, following the Hermite reduction, D is normal. Write
∑n

i=1 Aiwi = G/H,
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where G ∈ K[t, y] and H ∈ K[t], let F ∈ K[t, y] be the (monic) minimum polynomial for y
over K(t), z be a new indeterminante and compute

R(z) = resultantt(ppz(resultanty(G− tHD′, F )), D) ∈ K[t] (2.16)

It can then be proven [Bron90c] that if f has an elementary integral over E, then R|κ(R) in
K[z].

Example 12 Consider ∫
log(1 + ex)(1/3)

1 + log(1 + ex)
dx (2.17)

The integrand is

f =
y

t+ 1
∈ E = K(t)[y]/(y3 − t)

where K = Q(x)(t1), t1 = ex and t = log(1 + t1). Its denominator with respect to the
integral basis w = (1, y, y2) is D = t+ 1, which is normal, and the resultant is

R = resultantt(ppz(resultanty(y − zt1/(1 + t1), y
3 − t)), t+ 1) = − t31

(1 + t1)3
z3 − 1

We have

κ(R) = − 3t31
(1 + t1)4

z3

which is coprime with R in K[z], implying that the integral 2.17 is not an elementary
function.

The transcendental logarithmic case

Suppose now that t = log(b) for some b ∈ K∗, and that E = K(t). Then, every special
polynomial must be in K, so, following the residue criterion, we must look for a solution
v ∈ K[t], u1, . . . , uk ∈ K(c1, . . . , cn)

∗ of 2.13. Furthermore, the integrand f is also in K[t],

so write f =
∑d

i=0 fit
i where f0, . . . , fd ∈ K and fd ̸= 0. We must have degt(v) ≤ d+ 1, so

writing v =
∑d+1

i=0 vit
i, we get

∫
fdt

d + · · ·+ f1t+ f0 = vd+1t
d+1 + · · ·+ v1t+ v0 +

k∑
i=1

ci log(ui)

If d = 0, then the above is simply an integration problem for f0 ∈ K, which can be solved
recursively. Otherwise, differentiating both sides and equating the coefficients of td, we get
vd+1

′ = 0 and

fd = v′d + (d+ 1)vd+1
b′

b
(2.18)

Since fd ∈ K, we can recursively apply the integration algorithm to fd, either proving that
2.18 has no solution, in which case f has no elementary integral, or obtaining the constant
vd+1, and vd up to an additive constant (in fact, we apply recursively a specialized version
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of the integration algorithm to equations of the form 2.18, see [Bron97] for details). Write
then vd = vd + cd where vd ∈ K is known and cd ∈ Const(K) is undetermined. Equating
the coefficients of td−1 yields

fd−1 − dvd
b′

b
= vd−1

′ + dcd
b′

b

which is an equation of the form 2.18, so we again recursively compute cd and vd−1 up to
an additive constant. We repeat this process until either one of the recursive integrations
fails, in which case f has no elementary integral, or we reduce our integrand to an element
of K, which is then integrated recursively. The algorithm of this section can also be applied
to real arc-tangent extensions, i.e. K(t) where t is a monomial satisfying t′ = b′/(1 + b2) for
some b ∈ K.

The transcendental exponential case

Suppose now that t = eb for some b ∈ K, and that E = K(t). Then, every nonzero special
polynomial must be of the form atm for a ∈ K∗ and m ∈ N. Since

(atm)′

atm
=

a′

a
+m

t′

t
=

a′

a
+mb′

we must then look for a solution v ∈ K[t, t−1], u1, . . . , uk ∈ K(c1, . . . , cn)
∗ of 2.13. Further-

more, the integrand f is also in K[t, t−1], so write f =
∑d

i=e fit
i where fe, . . . , fd ∈ K and

e, d ∈ Z. Since (atm)′ = (a′ +mb′)tm for any m ∈ Z, we must have v = Mb+
∑d

i=e vit
i for

some integer M , hence ∫ d∑
i=e

fit
i = Mb+

d∑
i=e

vit
i +

k∑
i=1

ci log(ui)

Differentiating both sides and equating the coefficients of each power to td, we get

f0 = (v0 +Mb)′ +

k∑
i=1

ci
u′
i

ui

which is simply an integration problem for f0 ∈ K, and

fi = v′i + ib′vi for e ≤ i ≤ d, i ̸= 0

The above problem is called a Risch differential equation over K. Although solving it seems
more complicated than solving g′ = f , it is actually simpler than an integration problem
because we look for the solutions vi in K only rather than in an extension of K. Bronstein
[Bron90c, Bron91a, Bron97] and Risch [Risc68, Risc69a, Risc69b] describe algorithms for
solving this type of equation when K is an elementary extension of the rational function
field.
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The transcendental tangent case

Suppose now that t = tan(b) for some b ∈ K, i.e. t′ = b′(1 + t2), that
√
−1 /∈ K and

that E = K(t). Then, every nonzero special polynomial must be of the form a(t2 + 1)m for
a ∈ K∗ and m ∈ N. Since

(a(t2 + 1)m)′

a(t2 + 1)m
=

a′

a
+m

(t2 + 1)′

t2 + 1
=

a′

a
+ 2mb′t

we must look for v = V/(t2+1)m where V ∈ K[t], m1, . . . ,mk ∈ N, constants c1, . . . , ck ∈ K
and u1, . . . , uk ∈ K(c1, . . . , ck)

∗ such that

f = v′ + 2b′t
k∑

i=1

cimi +
k∑

i=1

ci
u′
i

ui

Furthermore, the integrand f ∈ K(t) following the residue criterion must be of the form
f = A/(t2 + 1)M where A ∈ K[t] and M ≥ 0. If M > 0, it can be shown that m = M and
that (

c′

d′

)
+

(
0 −2mb′

2mb′ 0

)(
c
d

)
=

(
a
b

)
(2.19)

where at + b and ct + d are the remainders module t2 + 1 of A and V respectively. The
above is a coupled differential system, which can be solved by methods similar to the ones
used for Risch differential equations [Bron97]. If it has no solution, then the integral is not
elementary, otherwise we reduce the integrand to h ∈ K[t], at which point the polynomial
reduction either proves that its integral is not elementary, or reduce the integrand to an
element of K, which is integrated recursively.

Example 13 Consider ∫
sin(x)

x
dx

The integrand is

f =
2t/x

t2 + 1
∈ K(t) where K = Q(x) and t = tan

(x
2

)
Its denominator is D = t2 + 1, which is special, and the system 2.19 becomes(

c′

d′

)
+

(
0 −1
1 0

)(
c
d

)
=

(
2/x
0

)
which has no solution in Q(x), implying that the integral is not an elementary function.

The algebraic logarithmic case

The transcendental logarithmic case method also generalizes to the case when E = K(t)(y)
is algebraic over K(t), t = log(b) for b ∈ K∗ and y is integral over K[t]: following the residue
criterion, we can assume that R|κ(R) where R is given by 2.16, hence that all its roots in
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K are constants. The polynomial part of the integrand is replace by a family of at most
[E : K(t)] Puiseux expansions at infinity, each of the form

a−mθ−m + · · ·+ a−1θ
−1 +

∑
i≥0

aiθ
i (2.20)

where θr = t−1 for some positive integer r. Applying the integration algorithm recursively
to ar ∈ K, we can test whether there exist ρ ∈ Const(K) and v ∈ K such that

ar = v′ + ρ
b′

b

If there are no such v and c for at least one of the series, then the integral is not elementary,
otherwise ρ is uniquely determined by ar, so let ρ1, . . . , ρq where q ≤ [E : K(t)] be the distinct
constants we obtain, α1, . . . , αs ∈ K be the distinct nonzero roots of R, and (q1, . . . , qk) be a
basis for the vector space generated by the ρi’s and αi’s over Q. Write αi = ri1q1+ · · ·+rikqk
and ρi = si1q1 + · · · + sikqk for each i, where rij , sij ∈ Q and let m > 0 be a common
denominator for all the rij ’s and sij ’s. For 1 ≤ j ≤ k, let

δj =

s∑
i=1

mrij
∑
l

rlPl −
q∑

i=1

msij
∑
l

slQl

where rl is the ramification index of Pl, sl is the ramification index of Ql, Pl runs over all
the finite places at which h dz has residue rlαi and Ql runs over all the infinite places at
which ρ = ρi. As in the pure algebraic case, if there is a j for which Nδj is not principal
for any nonzero integer N , then the integral is not elementary, otherwise, let n1, . . . , nk be
nonzero integers such that njδj is principal for each j, and

h = f − 1

m

k∑
j=1

qj
nj

u′
j

uj

where f is the integrand and uj ∈ E(α1, . . . , αs, ρ1, . . . , ρq)
∗ is such that njδj = (uj). If the

integral of h is elementary, then 2.13 must have a solution with v ∈ OK[x] and u1, . . . , uk ∈ K
so we must solve

h =

∑n
i=1 Aiwi

D
=

n∑
i=1

v′iwi +

n∑
i=1

viw
′
i +

k∑
i=1

ci
u′
i

ui
(2.21)

for v1, . . . , vn ∈ K[t], constants c1, . . . , cn ∈ K and u1, . . . , uk ∈ K
∗
where w = (w1, . . . , wn)

is an integral basis for E over K(t).

If E is a simple radical extension of K(t), and we use the basis 2.11 and the notation of that
section, then w1 = 1 and

w′
i =

(
i− 1

n

H ′

H
−

D′
i−1

Di−1

)
wi for 1 ≤ i ≤ n (2.22)

This implies that 2.21 becomes

A1

D
= v′1 +

k∑
i=1

ci
u′
i

ui
(2.23)
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which is simply an integration problem for A1/D ∈ K(t), and

Ai

D
= v′i +

(
i− 1

n

H ′

H
−

D′
i−1

Di−1

)
vi for 1 < i ≤ n (2.24)

which are Risch differential equations over K(t)

Example 14 Consider∫
(x2 + 2x+ 1)

√
x+ log(x) + (3x+ 1) log(x) + 3x2 + x

(x log(x) + x2)
√
x+ log(x) + x2 log(x) + x3

dx

The integrand is

f =
((3x+ 1)t− x3 + x2)y − (2x2 − x− 1)t− 2x3 + x2 + x

xt2 − (x3 − 2x2)t− x4 + x3
∈ E = K(t)[y]/(F )

where F = y2−x− t, K = Q(x) and t = log(x). Its denominator with respect to the integral
basis w = (1, y) is D = xt2 − (x3 − 2x2)t− x4 + x3, which is normal, and the resultant is

R = resultantt(ppz(resultanty(((3x+ 1)t− x3 + x2)y

− (2x2 − x− 1)t− 2x3 + x2 + x− zD′, F )), D)

= x12(2x+ 1)2(x+ 1)2(x− 1)2z3(z − 2)

We have

κ(R) =
36x3 + 16x2 − 28x− 12

x(2x+ 1)(x+ 1)(x− 1)
R

so R|κ(R) in K[z]. Its only nonzero root is 2, and the integrand has residue 2 at the place
P corresponding to the point (t, y) = (x2 − x,−x). There is only one place Q at infinity of
ramification index 2, and the coefficient of t−1 in the Puiseux expansion of f at Q is

a2 = 1− 2x+
1

x
= (x− x2)′ +

x′

x

which implies that the corresponding ρ is 1. Therefore, the divisor for the logand is δ =
2P − 2Q. It turns out that δ = (u) where u = (x+ y)2 ∈ E∗, so the new integrand is

h = f − u′

u
= f − 2

(x+ y)′

x+ y
=

(x+ 1)y

xt+ x2

We have y2 = t+ x, which is squarefree, so 2.23 becomes

0 = v′1 +

k∑
i=1

ci
u′
i

ui

whose solution is v1 = k = 0 and 2.24 becomes

x+ 1

xt+ x2
= v′2 +

x+ 1

2xt+ 2x2
v2
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whose solution is v2 = 2, implying that h = 2y′, hence that∫
(x2 + 2x+ 1)

√
x+ log(x) + (3x+ 1) log(x) + 3x2 + x

(x log(x) + x2)
√
x+ log(x) + x2 log(x) + x3

dx =

2
√

x+ log(x) + 2 log
(
x+

√
x+ log(x)

)
In the general case when E is not a radical extension of K(t), 2.21 is solved by bounding
degt(vi) and comparing the Puiseux expansions at infinity of

∑n
i=1 viwi with those of the

form 2.20 of h, see [Bron90c, Risc68] for details.

The algebraic exponential case

The transcendental exponential case method also generalizes to the case when E = K(t)(y)
is algebraic over K(t), t = eb for b ∈ K and y is integral over K[t]: following the residue
criterion, we can assume that R|κ(R) where R is given by 2.16, hence that all its roots in
K are constants. The denominator of the integrand must be of the form D = tmU where
gcd(U, t) = 1, U is squarefree and m ≥ 0.

If m > 0, E is a simple radical extension of K(t), and we use the basis 2.11, then it is possible
to reduce the power of t appearing inD by a process similar to the Hermite reduction: writing
the integrand f =

∑n
i=1 Aiwi/(t

mU), we ask whether we can compute b1, . . . , bn ∈ K and
C1, . . . , Cn ∈ K[t] such that∫ ∑n

i=1 Aiwi

tmU
=

∑n
i=1 biwi

tm
+

∫ ∑n
i=1 Ciwi

tm−1U

Differentiating both sides and multiplying through by tm we get∑n
i=1 Aiwi

U
=

n∑
i=1

b′iwi +
n∑

i=1

biw
′
i −mb′

n∑
i=1

biwi +
t
∑n

i=1 Ciwi

U

Using 2.22 and equating the coefficients of wi on both sides, we get

Ai

U
= b′i + (ωi −mb′)bi +

tCi

U
for 1 ≤ i ≤ n (2.25)

where

ωi =
i− 1

n

H ′

H
−

D′
i−1

Di−1
∈ K(t)

Since t′/t = b′ ∈ K, it follows that the denominator of ωi is not divisible by t in K[t], hence,
evaluating 2.25 at t = 0, we get

Ai(0)

U(0)
= b′i + (ωi(0)−mb′)bi for 1 ≤ i ≤ n (2.26)

which are Risch differential equations over K(t). If any of them has no solution in K(t),
then the integral is not elementary, otherwise we repeat this process until the denominator
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of the integrand is normal. We then perform the change of variable t = t−1, which is also
exponential over K since t

′
= −b′t, and repeat the above process in order to eliminate the

power of t from the denominator of the integrand. It can be shown that after this process,
any solution of 2.13 must have v ∈ K.

Example 15 Consider ∫
3(x+ ex)(1/3) + (2x2 + 3x)ex + 5x2

x(x+ ex)(1/3)
dx

The integrand is

f =
((2x2 + 3x)t+ 5x2)y2 + 3t+ 3x

xt+ x2
∈ E = K(t)[y]/(y3 − t− x)

where K = Q(x) and t = ex. Its denominator with respect to the integral basis w = (1, y, y2)
is D = xt+ x2, which is normal, and the resultant is

R = resultantt(ppz(resultanty(((2x
2 + 3x)t+ 5x2)y2 + 3t+ 3x− zD′,

y3 − t− x)), D) = x8(1− x)3z3

We have

κ(R) =
11x− 8

x(x− 1)
R

so R|κ(R) in K[z], its only root being 0. Since D is not divisible by t, let t = t−1 and z = ty.

We have t
′
= −t and z3 − t

2 − xt
3
= 0, so the integral basis 2.11 is

w = (w1, w2, w3) =

(
1, z,

z2

t

)
Writing f in terms of that basis gives

f =
3xt

2
+ 3t+ (5x2t+ 2x2 + 3x)w3

x2t
2
+ xt

whose denominator D = t(x+x2t) is divisible by t. We have H = t
2
(1+xt) so D0 = D1 = 1

and D2 = t, implying that

ω1 = 0, ω2 =
(1− 3x)t− 2

3xt+ 3
, and ω3 =

(2− 3x)t− 1

3xt+ 3

Therefore the equations 2.26 become

0 = b′1 + b1, 0 = b′2 +
1

3
b2, and 2x+ 3 = b′3 +

2

3
b3

whose solutions are b1 = b2 = 0 and b3 = 3x, implying that the new integrand is

h = f −
(
3xw3

t

)′

=
3

x
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hence that∫
3(x+ ex)(1/3) + (2x2 + 3x)ex + 5x2

x(x+ ex)(1/3)
dx = 3x(x+ ex)(2/3) + 3

∫
dx

x

In the general case when E is not a radical extension ofK(t), following the Hermite reduction,
any solution of 2.13 must have v =

∑n
i=1 viwi/t

m where v1, . . . , vm ∈ K[t]. We can compute
v by bounding degt(vi) and comparing the Puiseux expansions at t = 0 and at infinity of∑n

i=1 viwi/t
m with those of the form 2.20 of the integrand, see [Bron90c, Risc68] for details.

Once we are reduced to solving 2.13 for v ∈ K, constants c1, . . . , ck ∈ K and u1, . . . , uk ∈
E(c1, . . . , ck)

∗, constants ρ1, . . . , ρs ∈ K can be determined at all the places above t = 0 and
at infinity in a manner similar to the algebraic logarithmic case, at which point the algorithm
proceeds by constructing the divisors δj and the uj ’s as in that case. Again, the details are
quite technical and can be found in [Bron90c, Risc68, Risc69a].
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Chapter 3

Singular Value Decomposition

3.1 Singular Value Decomposition Tutorial

When you browse standard web sources like Wikipedia to learn about Singular Value Decom-
position [Puff09] or SVD you find many equations, but not an intuitive explanation of what
it is or how it works. SVD is a way of factoring matrices into a series of linear approximations
that expose the underlying structure of the matrix. Two important properties are that the
linear factoring is exact and optimal. Exact means that the series of linear factors, added
together, exactly equal the original matrix. Optimal means that, for the standard means of
measuring matrix similarity (the Frobenius norm), these factors give the best possible linear
approximation at each step in the series.

SVD is extraordinarily useful and has many applications such as data analysis, signal pro-
cessing, pattern recognition, image compression, weather prediction, and Latent Sematic
Analysis or LSA (also referred to as Latent Semantic Indexing). Why is SVD so useful and
how does it work?

As a simple example, let’s look at golf scores. Suppose Phil, Tiger, and Vijay play together
for 9 holes and they each make par on every hole. Their scorecard, which can also be viewed
as a (hole x player) matrix might look like this.

Hole Par Phil Tiger Vijay
1 4 4 4 4
2 5 5 5 5
3 3 3 3 3
4 4 4 4 4
5 4 4 4 4
6 4 4 4 4
7 4 4 4 4
8 3 3 3 3
9 5 5 5 5

Let’s look at the problem of trying to predict what score each player will make on a given

37
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hole. One idea is give each hole a HoleDifficulty factor, and each player a PlayerAbility
factor. The actual score is predicted by multiplying these two factors together.

PredictedScore = HoleDifficulty * PlayerAbility

For the first attempt, let’s make the HoleDifficulty be the par score for the hole, and let’s
make the player ability equal to 1. So on the first hole, which is par 4, we would expect a
player of ability 1 to get a score of 4.

PredictedScore = HoleDifficulty * PlayerAbility = 4 * 1 = 4

For our entire scorecard or matrix, all we have to do is multiply the PlayerAbility (assumed
to be 1 for all players) by the HoleDifficulty (ranges from par 3 to par 5) and we can exactly
predict all the scores in our example.

In fact, this is the one dimensional (1-D) SVD factorization of the scorecard. We can
represent our scorecard or matrix as the product of two vectors, the HoleDifficulty vector and
the PlayerAbility vector. To predict any score, simply multiply the appropriate HoleDifficulty
factor by the appropriate PlayerAbility factor. Following normal vector multiplication rules,
we can

generate the matrix of scores by multiplying the HoleDifficulty vector by the PlayerAbility
vector, according to the following equation.

Phil Tiger Vijay
4 4 4
5 5 5
3 3 3
4 4 4
4 4 4
4 4 4
4 4 4
3 3 3
5 5 5

=

4
5
3
4
4
4
4
3
5

*
Phil Tiger Vijay
1 1 1

which is HoleDifficulty * PlayerAbility

Mathematicians like to keep everything orderly, so the convention is that all vectors should
be scaled so they have length 1. For example, the PlayerAbility vector is modified so that
the sum of the squares of its elements add to 1, instead of the current 12 + 12 + 12 = 3. To
do this, we have to divide each element by the square root of 3, so that when we square it,
it becomes and the three elements add to 1. Similarly, we have to divide each HoleDifficulty
element by the square root of 148. The square root of 3 times the square root of 148 is our
scaling factor 21.07. The complete 1-D SVD factorization (to 2 decimal places) is:
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Phil Tiger Vijay
4 4 4
5 5 5
3 3 3
4 4 4
4 4 4
4 4 4
4 4 4
3 3 3
5 5 5

=

0.33
0.41
0.25
0.33
0.33
0.33
0.33
0.25
0.41

* 21.07 *
Phil Tiger Vijay
0.58 0.58 0.58

which is HoleDifficulty * ScaleFactor * PlayerAbility

Our HoleDifficulty vector, that starts with 0.33, is called the Left Singular Vector. The
ScaleFactor is the Singular Value, and our PlayerAbility vector, that starts with 0.58 is the
Right Singular Vector. If we represent these 3 parts exactly, and multiply them together,
we get the exact original scores. This means our matrix is a rank 1 matrix, another way of
saying it has a simple and predictable pattern.

More complicated matrices cannot be completely predicted just by using one set of factors
as we have done. In that case, we have to introduce a second set of factors to refine our
predictions. To do that, we subtract our predicted scores from the actual scores, getting the
residual scores. Then we find a second set of HoleDifficulty2 and PlayerAbility2 numbers
that best predict the residual scores.

Rather than guessing HoleDifficulty and PlayerAbility factors and subtracting predicted
scores, there exist powerful algorithms than can calculate SVD factorizations for you. Let’s
look at the actual scores from the first 9 holes of the 2007 Players Championship as played
by Phil, Tiger, and Vijay.

Hole Par Phil Tiger Vijay
1 4 4 4 5
2 5 4 5 5
3 3 3 3 2
4 4 4 5 4
5 4 4 4 4
6 4 3 5 4
7 4 4 4 3
8 3 2 4 4
9 5 5 5 5

The 1-D SVD factorization of the scores is shown below. To make this example easier to
understand, I have incorporated the ScaleFactor into the PlayerAbility and HoleDifficulty
vectors so we can ignore the ScaleFactor for this example.
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Phil Tiger Vijay
3.95 4.64 4.34
4.27 5.02 4.69
2.42 2.85 2.66
3.97 4.67 4.36
3.64 4.28 4.00
3.69 4.33 4.05
3.33 3.92 3.66
3.08 3.63 3.39
4.55 5.35 5.00

=

4.34
4.69
2.66
4.36
4.00
4.05
3.66
3.39
5.00

*
Phil Tiger Vijay
0.91 1.07 1.00

which is HoleDifficulty * PlayerAbility

Notice that the HoleDifficulty factor is almost the average of that hole for the 3 players. For
example hole 5, where everyone scored 4, does have a factor of 4.00. However hole 6, where
the average score is also 4, has a factor of 4.05 instead of 4.00. Similarly, the PlayerAbility
is almost the percentage of par that the player achieved, For example Tiger shot 39 with
par being 36, and 39/36 = 1.08 which is almost his PlayerAbility factor (for these 9 holes)
of 1.07.

Why don’t the hole averages and par percentages exactly match the 1-D SVD factors? The
answer is that SVD further refines those numbers in a cycle. For example, we can start by
assuming HoleDifficulty is the hole average and then ask what PlayerAbility best matches
the scores, given those HoleDifficulty numbers? Once we have that answer we can go back
and ask what HoleDifficulty best matches the scores given those PlayerAbility numbers? We
keep iterating this way until we converge to a set of factors that best predict the score. SVD
shortcuts this process and immediately give us the factors that we would have converged to
if we carried out the process.

One very useful property of SVD is that it always finds the optimal set of factors that
best predict the scores, according to the standard matrix similarity measure (the Frobenius
norm). That is, if we use SVD to find the factors of a matrix, those are the best factors that
can be found. This optimality property means that we don’t have to wonder if a different
set of numbers might predict scores better.

Now let’s look at the difference between the actual scores and our 1-D approximation. A plus
difference means that the actual score is higher than the predicted score, a minus difference
means the actual score is lower than the prediction. For example, on the first hole Tiger got
a 4 and the predicted score was 4.64 so we get 4 − 4.64 = −0.64. In other words, we must
add -0.64 to our prediction to get the actual score.

Once these differences have been found, we can do the same thing again and predict these
differences using the formula HoleDifficulty2 * PlayerAbility2. Since these factors are trying
to predict the differences, they are the 2-D factors and we have put a 2 after their names
(ex. HoleDifficulty2) to show they are the second set of factors.
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Phil Tiger Vijay
0.05 -0.64 0.66
-0.28 -0.02 0.31
0.58 0.15 -0.66
0.03 0.33 -0.36
0.36 -0.28 0.00
-0.69 0.67 -0.05
0.67 0.08 -0.66
-1.08 0.37 0.61
0.45 -0.35 0.00

=

-0.18
-0.38
0.80
0.15
0.35
-0.67
0.89
-1.29
0.44

*
Phil Tiger Vijay
0.82 -0.20 -0.53

which is HoleDifficulty(2) * PlayerAbility(2)

There are some interesting observations we can make about these factors. Notice that hole
8 has the most significant HoleDifficulty2 factor (1.29). That means that it is the hard-
est hole to predict. Indeed, it was the only hole on which none of the 3 players made
par. It was especially hard to predict because it was the most difficult hole relative to par
(HoleDifficulty − par) = (3.39− 3) = 0.39, and yet Phil birdied it making his score more
than a stroke below his predicted score (he scored 2 versus his predicted score of 3.08). Other
holes that were hard to predict were holes 3 (0.80) and 7 (0.89) because Vijay beat Phil on
those holes even though, in general, Phil was playing better.

The full SVD for this example matrix (9 holes by 3 players) has 3 sets of factors. In general,
a m x n matrix where m ¿= n can have at most n factors, so our 9x3 matrix cannot have
more than 3 sets of factors. Here is the full SVD factorization (to two decimal places).

Phil Tiger Vijay
4 4 5
4 5 5
3 3 2
4 5 4
4 4 4
3 5 4
4 4 3
2 4 4
5 5 5

=

4.34 -0.18 -0.90
4.69 -0.38 -0.15
2.66 0.80 0.40
4.36 0.15 0.47
4.00 0.35 -0.29
4.05 -0.67 0.68
3.66 0.89 0.33
3.39 -1.29 0.14
5.00 0.44 -0.36

*

Phil Tiger Vijay
0.91 1.07 1.00
0.82 -0.20 -0.53
-0.21 0.76 -0.62

which is HoleDifficulty(1-3) * PlayerAbility(1-3)

By SVD convention, the HoleDifficulty and PlayerAbility vectors should all have length 1,
so the conventional SVD factorization is:
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Phil Tiger Vijay
4 4 5
4 5 5
3 3 2
4 5 4
4 4 4
3 5 4
4 4 3
2 4 4
5 5 5

=

0.35 0.09 -0.64
0.38 0.19 -0.10
0.22 -0.40 0.28
0.36 -0.08 0.33
0.33 -0.18 -0.20
0.33 0.33 0.48
0.30 -0.44 0.23
0.28 0.64 0.10
0.41 -0.22 -0.25

*
21.07 0 0
0 2.01 0
0 0 1.42

*

Phil Tiger Vijay
0.53 0.62 0.58
-0.82 0.20 0.53
-0.21 0.76 -0.62

which is HoleDifficulty(1-3)* ScaleFactor(1-3) * PlayerAbility(1-3)

We hope that you have some idea of what SVD is and how it can be used. The next
section covers applying SVD to Latent Sematic Analysis or LSA. Although the domain is
different, the concepts are the same. We are trying to predict patterns of how words occur
in documents instead of trying to predict patterns of how players score on holes.



Chapter 4

Quaternions

from [Altm05]:

Quaternions are inextricably linked to rotations. Rotations, however, are
an accident of three-dimensional space. In spaces of any other dimensions, the
fundamental operations are reflections (mirrors). The quaternion algebra is, in
fact, merely a sub-algebra of the Clifford algebra of order three. If the quaternion
algebra might be labelled the algebra of rotations, then the Clifford algebra is
the algebra of mirrors and it is thus vastly more general than quaternion algebra.

Peter Guthrie Tait, Robert S. Sutor, Timothy Daly

Preface

The Theory of Quaternions is due to Sir William Rowan Hamilton, Royal Astronomer of
Ireland, who presented his first paper on the subject to the Royal Irish Academy in 1843.
His Lectures on Quaternions were published in 1853, and his Elements, in 1866, shortly after
his death. The Elements of Quaternions by Tait [Tait1890] is the accepted text-book for
advanced students.

Large portions of this file are derived from a public domain version of Tait’s book combined
with the algebra available in Axiom. The purpose is to develop a tutorial introduction to
the Axiom domain and its uses.

43
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4.1 Quaternions

4.2 Vectors, and their Composition

1. For at least two centuries the geometrical representation of the negative and imaginary
algebraic quantities, −1 and

√
−1 has been a favourite subject of speculation with mathe-

maticians. The essence of almost all of the proposed processes consists in employing such
expressions to indicate the DIRECTION, not the length, of lines.

2. Thus it was long ago seen that if positive quantities were measured off in one direction
along a fixed line, a useful and lawful convention enabled us to express negative quantities
of the same kind by simply laying them off on the same line in the opposite direction.
This convention is an essential part of the Cartesian method, and is constantly employed in
Analytical Geometry and Applied Mathematics.

3. Wallis, towards the end of the seventeenth century, proposed to represent the impossible
roots of a quadratic equation by going out of the line on which, if real, they would have been
laid off. This construction is equivalent to the consideration of

√
−1 as a directed unit-line

perpendicular to that on which real quantities are measured.

4. In the usual notation of Analytical Geometry of two dimensions, when rectangular axes
are employed, this amounts to reckoning each unit of length along Oy as +

√
−1, and on Oy′

as −
√
−1 ; while on Ox each unit is +1, and on Ox it is −1.

If we look at these four lines in circular order, i.e. in the order of positive rotation (that of
the northern hemisphere of the earth about its axis, or opposite to that of the hands of a
watch), they give

1,
√
−1,−1,−

√
−1

In Axiom the same elements would be written as complex numbers which are
constructed using the function complex:

complex(1,0)

1

Type: Complex Integer

complex(0,1)

%i

Type: Complex Integer
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complex(-1,0)

−1

Type: Complex Integer

complex(0,-1)

−i

Type: Complex Integer

Note that %i is of type Complex(Integer), that is, the imaginary part of a
complex number. The apparently equivalent expression

sqrt(-1)

√
−1

Type: AlgebraicNumber

has the type AlgebraicNumber which means that it is the root of a polyno-
mial with rational coefficients.

In this series each expression is derived from that which precedes it by multiplication by the
factor

√
−1. Hence we may consider

√
−1 as an operator, analogous to a handle perpendicu-

lar to the plane of xy, whose effect on any line in that plane is to make it rotate (positively)
about the origin through an angle of 90◦.

In Axiom

%i*%i

−1

Type: Complex Integer

5. In such a system, (which seems to have been first developed, in 1805, by Buée) a point in
the plane of reference is defined by a single imaginary expression. Thus a + b

√
−1 may be

considered as a single quantity, denoting the point, P , whose coordinates are a and b. Or,
it may be used as an expression for the line OP joining that point with the origin. In the
latter sense, the expression a+ b

√
−1 implicitly contains the direction, as well as the length,

of this line ; since, as we see at once, the direction is inclined at an angle tan−1(b/a) to the
axis of x, and the length is

√
a2 + b2. Thus, say we have

OP = a+ b
√
−1
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the line OP considered as that by which we pass from one extremity, O, to the other, P . In
this sense it is called a VECTOR. Considering, in the plane, any other vector,

OQ = a′ + b′
√
−1

In order to created superscripted variables we use the superscript function
from the SYMBOL domain. So we can create a′ as “ap” (that is, “a-prime”)
and b′ as “bp” (“b-prime”) thus (also note that the underscore character
is Axiom’s escape character which removes any special meaning of the next
character, in this case, the quote character):

ap:=superscript(a,[ ’])

a′

Type: Symbol

bp:=superscript(b,[ ’])

b′

Type: Symbol

at this point we can type

ap+bp*%i

a′ + b′ %i

Type: Complex Polynomial Integer

the addition of these two lines obviously gives

OR = a+ a′ + (b+ b′)
√
−1

In Axiom the computation looks like:

op:=complex(a,b)

a+ b %i

Type: Complex Polynomial Integer
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oq:=complex(ap,bp)

a′ + b′ %i

Type: Complex Polynomial Integer

op + oq

a+ a′ + (b+ b′)%i

Type: Complex Polynomial Integer

and we see that the sum is the diagonal of the parallelogram on OP , OQ. This is the law of
the composition of simultaneous velocities; and it contains, of course, the law of subtraction
of one directed line from another.

6. Operating on the first of these symbols by the factor
√
−1, it becomes −b+ a

√
−1; and

now, of course, denotes the point whose x and y coordinates are −b and a; or the line joining
this point with the origin. The length is still

√
a2 + b2, but the angle the line makes with

the axis of x is tan−1(−a/b); which is evidently greater by π/2 than before the operation.

op*complex(0,1)

−b+ a i

Type: Complex Polynomial Integer

7. De Moivre’s Theorem tends to lead us still further in the same direction. In fact, it is
easy to see that if we use, instead of

√
−1, the more general factor cosα +

√
−1 sinα, its

effect on any line is to turn it through the (positive) angle α. in the plane of x, y. [Of course
the former factor,

√
−1, is merely the particular case of this, when α = π

2 ].

Thus
(cosα+

√
−1 sinα)(a+ b

√
−1)

= a cosα− b sinα+
√
−1(a sinα+ b cosα)

by direct multiplication. The reader will at once see that the new form indicates that a
rotation through an angle α has taken place, if he compares it with the common formulae
for turning the coordinate axes through a given angle. Or, in a less simple manner, thus

Length =
√

(a cosα− b sinα)2 + (a sinα+ b cosα)2

=
√
a2 + b2

as before.
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Inclination to axis of x
= tan−1 a sinα+b cosα

a cosα−b sinα

= tan−1 tanα+ b
a

1− b
a tanα

= α+ tan−1 b
a

8. We see now, as it were, why it happens that

(cosα+
√
−1 sinα)m = cosmα+

√
−1 sinmα

In fact, the first operator produces m successive rotations in the same direction, each through
the angle α ; the second, a single rotation through the angle mα.

9. It may be interesting, at this stage, to anticipate so far as to remark that in the theory
of Quaternions the analogue of

cos θ +
√
−1 sin θ

is cos θ + ω sin θ
where ω2 = −1

Here, however, ω is not the algebraic
√
−1, but is any directed unit-line whatever in space.

10. In the present century Argand, Warren, Mourey, and others, extended the results
of Wallis and Buée. They attempted to express as a line the product of two lines each
represented by a symbol such a + b

√
−1. To a certain extent they succeeded, but all their

results remained confined to two dimensions.

The product,
∏
, of two such lines was defined as the fourth proportional to unity and the

two lines, thus

1 : a+ b
√
−1 :: a′ + b′

√
−1 :

∏
or

∏
= (aa′ − bb′) + (a′b+ b′a)

√
−1

The length of
∏

is obviously the product of the lengths of the factor lines; and its direction
makes an angle with the axis of x which is the sum of those made by the factor lines. From
this result the quotient of two such lines follows immediately.

11. A very curious speculation, due to Servois and published in 1813 in Gergonne’s Annales,
is one of the very few, so far as has been discovered, in which a well-founded guess at a
possible mode of extension to three dimensions is contained. Endeavouring to extend to
space the form a + b

√
−1 for the plane, he is guided by analogy to write for a directed

unit-line in space the form

p cosα+ q cosβ + r cos γ

where α, β, γ are its inclinations to the three axes. He perceives easily that p, q, r must
be non-reals: but, he asks, “seraient-elles imaginaires réductibles à la forme générale A +
B
√
−1?” The i,j, k of the Quaternion Calculus furnish an answer to this question. (See
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Chap. II.) But it may be remarked that, in applying the idea to lines in a plane, a vector
OP will no longer be represented (as in §5) by

OP = a+ b
√
−1

but by OP = pa+ qb
And if, similarly, OQ = pa′ + qb′

the addition of these two lines gives for OR (which retains its previous signification)

OR = p(a+ a′ + q(b+ b′)

12. Beyond this, few attempts were made, or at least recorded, in earlier times, to extend the
principle to space of three dimensions; and, though many such had been made before 1843,
none, with the single exception of Hamilton’s, have resulted in simple, practical methods;
all, however ingenious, seeming to lead almost at once to processes and results of fearful
complexity.

For a lucid, complete, and most impartial statement of the claims of his predecessors in this
field we refer to the Preface to Hamilton’s Lectures on Quaternions. He there shows how his
long protracted investigations of Sets culminated in this unique system of tridimensional-
space geometry.

13. It was reserved for Hamilton to discover the use and properties of a class of symbols
which, though all in a certain sense square roots of -1, may be considered as real unit lines,
tied down to no particular direction in space ; the expression for a vector is, or may be taken
to be,

ρ = ix+ jy + kz

but such vector is considered in connection with an extraspatial magnitude w, and we have
thus the notion of a QUATERNION

w + ρ

This is the fundamental notion in the singularly elegant, and enormously powerful, Calculus
of Quaternions.

While the schemes for using the algebraic
√
−1 to indicate direction make one direction in

space expressible by real numbers, the remainder being imaginaries of some kind, and thus
lead to expressions which are heterogeneous ; Hamilton s system makes all directions in
space equally imaginary, or rather equally real, thereby ensuring to his Calculus the power
of dealing with space indifferently in all directions.

In fact, as we shall see, the Quaternion method is independent of axes or any supposed
directions in space, and takes its reference lines solely from the problem it is applied to.

14. But, for the purpose of elementary exposition, it is best to begin by assimilating it as
closely as we can to the ordinary Cartesian methods of Geometry of Three Dimensions, with
which the student is supposed to be, to some extent at least, acquainted. Such assistance, it
will be found, can (as a rule) soon be dispensed with; and Hamilton regarded any apparent
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necessity for an oc casional recurrence to it, in higher applications, as an indication of
imperfect development in the proper methods of the new Calculus.

We commence, therefore, with some very elementary geometrical ideas, relating to the theory
of vectors in space. It will subsequently appear how we are thus led to the notion of a
Quaternion.

15. Suppose we have two points A and B in space, and suppose A given, on how many
numbers does B’s relative position depend ?

If we refer to Cartesian coordinates (rectangular or not) we find that the data required are
the excesses of B’s three coordinates over those of A. Hence three numbers are required.

Or we may take polar coordinates. To define the moon’s position with respect to the earth
we must have its Geocentric Latitude and Longitude, or its Right Ascension and Declination,
and, in addition, its distance or radius-vector. Three again.

16. Here it is to be carefully noticed that nothing has been said of the actual coordinates
of either A or B, or of the earth and moon, in space; it is only the relative coordinates that
are contemplated.

Hence any expression, as AB, denoting a line considered with reference to direction and
currency as well as length, (whatever may be its actual position in space) contains implicitly
three numbers, and all lines parallel and equal to AB, and concurrent with it, depend in the
same way upon the same three. Hence, all lines which are equal, parallel, and concurrent,
may be represented by a common symbol, and that symbol contains three distinct numbers.
In this sense a line is called a VECTOR, since by it we pass from the one extremity, A, to
the other, B, and it may thus be considered as an instrument which carries A to B: so that
a vector may be employed to indicate a definite translation in space.

[The term ” currency ” has been suggested by Cayley for use instead of the somewhat vague
suggestion sometimes taken to be involved in the word ”direction.” Thus parallel lines have
the same direction, though they may have similar or opposite currencies. The definition of
a vector essentially includes its currency.]

17. We may here remark, once for all, that in establishing a new Calculus, we are at liberty
to give any definitions whatever of our symbols, provided that no two of these interfere with,
or contradict, each other, and in doing so in Quaternions sl simplicity and (so to speak)
naturalness were the inventor’s aim.

18. Let AB be represented by α, we know that α involves three separate numbers, and that
these depend solely upon the position of B relatively to A. Now if CD be equal in length to
AB and if these lines be parallel, and have the same currency, we may evidently write

CD = AB = α

where it will be seen that the sign of equality between vectors contains implicitly equality
in length, parallelism in direction, and concurrency. So far we have extended the meaning
of an algebraical symbol. And it is to be noticed that an equation between vectors, as

α = β

contains three distinct equations between mere numbers.
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19. We must now define + (and the meaning of − will follow) in the new Calculus. Let A,
B, C be any three points, and (with the above meaning of = ) let

AB = α,BC = β,AC = γ

If we define + (in accordance with the idea (§16) that a vector represents a translation) by
the equation

α+ β = γ

or AB +BC = AC

we contradict nothing that precedes, but we at once introduce the idea that vectors are to
be compounded, in direction and magnitude, like simultaneous velocities. A reason for this
may be seen in another way if we remember that by adding the (algebraic) differences of the
Cartesian coordinates of B and A, to those of the coordinates of C and B, we get those of
the coordinates of C and A. Hence these coordinates enter linearly into the expression for a
vector. (See, again, §5.)
20. But we also see that if C and A coincide (and C may be any point)

AC = 0

for no vector is then required to carry A to C. Hence the above relation may be written, in
this case,

AB +BA = 0

or, introducing, and by the same act defining, the symbol −,

AB = −BA

Hence, the symbol −, applied to a vector, simply shows that its currency is to be reversed.
And this is consistent with all that precedes; for instance,

AB +BC = AC
and AB = AC − BC
or = AC + CB

are evidently but different expressions of the same truth.

21. In any triangle, ABC, we have, of course,

AB +BC + CA = 0

and, in any closed polygon, whether plane or gauche,

AB +BC + . . .+ Y Z + ZA = 0

In the case of the polygon we have also

AB +BC + . . .+ Y Z = AZ
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These are the well-known propositions regarding composition of velocities, which, by New-
ton’s second law of motion, give us the geometrical laws of composition of forces acting at
one point.

22. If we compound any number of parallel vectors, the result is obviously a numerical
multiple of any one of them. Thus, if A, B, C are in one straight line,

BC = xAB

where x is a number, positive when B lies between A and C, otherwise negative; but such
that its numerical value, independent of sign, is the ratio of the length of BC to that of
AB. This is at once evident if AB and BC be commensurable; and is easily extended to
incommensurables by the usual reductio ad absurdum.

23. An important, but almost obvious, proposition is that any vector may be resolved, and
in one way only, into three components parallel respectively to any three given vectors, no
two of which are parallel, and which are not parallel to one plane.

Let OA, OB, OC be the three fixed vectors, OP any other vector. From P draw PQ
parallel to CO, meeting the plane BOA in Q. [There must be a definite point Q, else PQ,
and therefore CO, would be parallel to BOA, a case specially excepted.] From Q draw QR
parallel to BO, meeting OA in R.

Then we have OP = OR+RQ+QP (§21), and these components are respectively parallel
to the three given vectors. By §22 we may express OR as a numerical multiple of OA, RQ
of OB, and QP of OC. Hence we have, generally, for any vector in terms of three fixed
non-coplanar vectors, α, β, γ

OP = ρ = xα+ yβ + zγ

which exhibits, in one form, the three numbers on which a vector depends (§16). Here x, y,
z are perfectly definite, and can have but single values.
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24. Similarly any vector, as OQ, in the same plane with OA and OB, can be resolved (in
one way only) into components OR, RQ, parallel respectively to OA and OB; so long, at
least, as these two vectors are not parallel to each other.

25. There is particular advantage, in certain cases, in employing a series of three mutually
perpendicular unit-vectors as lines of reference. This system Hamilton denotes by i,j, k.

Any other vector is then expressible as

ρ = xi+ yj + zk

Since i, j, k are unit-vectors, x, y, z are here the lengths of conterminous edges of a rect-
angular parallelepiped of which ρ is the vector-diagonal; so that the length of ρ is, in this
case, √

x2 + y2 + z2

Let ω = ξi+ ηj + ζk
be any other vector, then (by the proposition of §23) the vector

equation ρ = ω

obviously involves the following three equations among numbers,

x = ξ, y = η, z = ζ

Suppose i to be drawn eastwards, j northwards, and k upwards, this is equivalent merely to
saying that if two points coincide, they are equally to the east (or west) of any third point,
equally to the north (or south) of it, and equally elevated above (or depressed below) its
level.

26. It is to be carefully noticed that it is only when α, β, γ are not coplanar that a vector
equation such as

ρ = ω

or xα+ yβ + zγ = ξα+ ηβ + ζγ
necessitates the three numerical equations

x = ξ, y = η, z = ζ

For, if α, β, γ be coplanar (§24), a condition of the following form must hold

γ = aα+ bβ

Hence, ρ = (x+ za)α+ (y + zb)β
ω = (ξ + ζa)α+ (η + ζb)β

and the equation ρ = ω
now requires only the two numerical conditions

x+ za = ξ + ζa y + zb = η + ζb

27. The Commutative and Associative Laws hold in the combination of vectors by the signs
+ and −. It is obvious that, if we prove this for the sign +, it will be equally proved for
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−, because − before a vector (§20) merely indicates that it is to be reversed before being
considered positive.

Let A, B, C, D be, in order, the corners of a parallelogram ; we have, obviously,

AB = DC AD = BC

And AB +BC = AC = AD +DC = BC +AB

Hence the commutative law is true for the addition of any two vectors, and is therefore
generally true.

Again, whatever four points are represented by A, B, C, D, we

AD = AB +BD = AC + CD

or substituting their values for AD, BD, AC respectively, in these three expressions,

AB +BC + CD = AB + (BC + CD) = (AB +BC) + CD

And thus the truth of the associative law is evident.

28. The equation
ρ = xβ

where ρ is the vector connecting a variable point with the origin, β a definite vector, and x
an indefinite number, represents the straight line drawn from the origin parallel to β (§22).
The straight line drawn from A, where OA = α, and parallel to β, has the equation

ρ = α+ xβ (4.1)

In words, we may pass directly from O to P by the vector OP or ρ; or we may pass first to
A, by means of OA or α, and then to P along a vector parallel to β (§16).
Equation 4.1 is one of the many useful forms into which Quaternions enable us to throw
the general equation of a straight line in space. As we have seen (§25) it is equivalent to
three numerical equations; but, as these involve the indefinite quantity x, they are virtually
equivalent to but two, as in ordinary Geometry of Three Dimensions.

29. A good illustration of this remark is furnished by the fact that the equation

ρ = yα+ xβ

which contains two indefinite quantities, is virtually equivalent to only one numerical equa-
tion. And it is easy to see that it represents the plane in which the lines α and β lie; or the
surface which is formed by drawing, through every point of OA, a line parallel to OB. In
fact, the equation, as written, is simply §24 in symbols.

And it is evident that the equation

ρ = γ + yα+ xβ

is the equation of the plane passing through the extremity of γ, and parallel to α and β.
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It will now be obvious to the reader that the equation

ρ = p1α1 + p2α2 + . . . =
∑

pα

where α1, α2 , &c. are given vectors, and p1, p2, &c. numerical quantities, represents a
straight line if p1, p2, &c. be linear functions of one indeterminate number; and a plane,
if they be linear expressions containing two indeterminate numbers. Later (§31 (l)), this
theorem will be much extended.

Again, the equation
ρ = xα+ yβ + zγ

refers to any point whatever in space, provided α, β, γ are not coplanar. (Ante, §23)
30. The equation of the line joining any two points A and B, where OA = α and OB = β,
is obviously

ρ = α+ x(β − α)

or ρ = β + y(α− β)
These equations are of course identical, as may be seen by putting 1− y for x.

The first may be written
ρ+ (x− 1)α− xβ = 0

or pρ+ qα+ rβ = 0
subject to the condition p+ q + r = 0 identically. That is – A homogeneous linear function
of three vectors, equated to zero, expresses that the extremities of these vectors are in one
straight line, if the sum of the coefficients be identically zero.

Similarly, the equation of the plane containing the extremities A, B, C of the three non-
coplanar vectors α, β, γ is

ρ = α+ x(β − α) + y(γ − β)

where x and y are each indeterminate.

This may be written
pρ+ qα+ rβ + sγ = 0

with the identical relation
p+ q + r + x = 0

which is one form of the condition that four points may lie in one plane.

31. We have already the means of proving, in a very simple manner, numerous classes of
propositions in plane and solid geometry. A very few examples, however, must suffice at this
stage; since we have hardly, as yet, crossed the threshold of the subject, and are dealing with
mere linear equations connecting two or more vectors, and even with them we are restricted
as yet to operations of mere addition. We will give these examples with a painful minuteness
of detail, which the reader will soon find to be necessary only for a short time, if at all.

(a) The diagonals of a parallelogram bisect each other.

Let ABCD be the parallelogram, O the point of intersection of its diagonals. Then

AO +OB = AB = DC = DO +OC



56 CHAPTER 4. QUATERNIONS

which gives AO −OC = DO −OB
The two vectors here equated are parallel to the diagonals respectively. Such an equation is,
of course, absurd unless

1. The diagonals are parallel, in which case the figure is not a parallelogram;

2. AO = OC, and DO = OB, the proposition.

(b) To shew that a triangle can be constructed, whose sides are parallel, and equal, to the
bisectors of the sides of any triangle.

Let ABC be any triangle, Aa, Bb, Cc the bisectors of the sides.

Then
Aa = AB +Ba = AB + 1

2BC

Bb . . . = BC + 1
2CA

Cc . . . = CA+ 1
2AB

Hence Aa+Bb+ Cc = 3
2 (AB +BC + CA) = 0

which (§21) proves the proposition.

Also
Aa = AB + 1

2BC
= AB − 1

2 (CA+AB)
= 1

2 (AB − CA)
= 1

2 (AB +AC)

results which are sometimes useful. They may be easily verified by producing Aa to twice
its length and joining the extremity with B.

(b′) The bisectors of the sides of a triangle meet in a point, which trisects each of them.

Taking A as origin, and putting α, β, γ for vectors parallel, and equal, to the sides taken in
order BC, CA, AB; the equation of Bb is (§28 (1))

ρ = γ + x(γ +
β

2
) = (1 + x)γ +

x

2
β

That of Cc is, in the same way,

ρ = −(1 + y)β − y

2
γ

At the point O, where Bb and Cc intersect,

ρ = (1 + x)γ +
x

2
β = −(1 + y)β − y

2
γ

Since γ and β are not parallel, this equation gives

1 + x = −y

2
and

x

2
= −(1 + y)

From these x = y = − 2
3
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Hence AO = 1
3 (γ − β) = 2

3Aa (See Ex. (b))

This equation shows, being a vector one, that Aa passes through O, and that AO : Oa ::
2:1.

(c) If
OA = α

OB = β

OC = lα+mβ

be three given co-planar vectors, c the intersection of AB, OC, and if the lines indicated in the

figure be drawn, the points a1,b1,c1 lie in a straight line.

We see at once, by the process indicated in §30, that

Oc =
lα+mβ

l +m
, Ob =

lα

1−m
, Oa =

mβ

1− l

Hence we easily find

Oa1 = − mβ

1− l − 2m
, Ob1 = − lα

1− 2l −m
, Oc1 =

−lα+mβ

m− l

These give
−(1− l − 2m)Oa1 + (1− 2l −m)Ob1 − (m− l)Oc1 = 0

But −(1− l − 2m) + (1− 2l −m)− (m− l) = 0 identically.

This, by §30, proves the proposition.

(d) Let OA = α, OB = β, be any two vectors. If MP be a given line parallel to OB; and
OQ, BQ, be drawn parallel to AP , OP respectively ; the locus of Q is a straight line parallel
to OA.
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Let OM = eα
Then AP = e− 1α+ xβ

Hence the equation of OQ is
ρ = y(e− 1α+ xβ)

and that of BQ is ρ = β + z(eα+ xβ)
At Q we have, therefore,

xy = 1 + zx
y(e− 1) = ze

}
These give xy = e, and the equation of the locus of Q is

ρ = eβ + y′α

i.e. a straight line parallel to OA, drawn through N in OB produced, so that

ON : OB :: OM : OA

COR. If BQ meet MP in q, Pq = β; and if AP meet NQ in p, Qp = α.

Also, for the point R we have pR = AP , QR = Bq.

Further, the locus of R is a hyperbola, of which MP and NQ are the asymptotes. See, in
this connection, §31 (k) below.

Hence, if from any two points, A and B, lines be drawn intercepting a given length Pq on a
given line Mq ; and if, from R their point of intersection, Rp be laid off = PA, and RQ = qB
; Q and p lie on a fixed straight line, and the length of Qp is constant.

(e) To find the centre of inertia of any system of masses.

If OA = α, OB = α1, be the vector sides of any triangle, the vector from the vertex dividing
the base AB in C so that

BC : CA :: m : m1

is mα+m1α1

m+m1
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For AB is α1 − α, and therefore AC is

m1

m+m1
(α1 − α)

Hence OC = OA+AC

= α+
m1

m+m1
(α1 − α)

=
mα+m1α1

m+m1

This expression shows how to find the centre of inertia of two masses ; m at the extremity
of α, m1 at that of α1. Introduce m2 at the extremity of a2, then the vector of the centre of
inertia of the three is, by a second application of the formula,

(m+m1)(
mα+m1α1

m+m1
) +m2α2

(m+m1) +m2
=

mα+m1α1 +m2α2

m+m1 +m2

From this it is clear that, for any number of masses, expressed generally bym at the extremity
of the vector α, the vector of the centre of inertia is

β =

∑
(mα)∑
(m)

This may be written
∑

m(α− β) = 0
Now a α1 − β is the vector of m1 with respect to the centre of inertia. Hence the theorem,
If the vector of each element of a mass, drawn from the centre of inertia, be increased in
length in proportion to the mass of the element, the sum of all these vectors is zero.

(f) We see at once that the equation
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ρ = αt+
βt2

2

where t is an indeterminate number, and α, β given vectors, represents a parabola. The
origin, O, is a point on the curve, β is parallel to the axis, i.e. is the diameter OB drawn
from the origin, and α is OA the tangent at the origin. In the figure

QP = αt, OQ =
βt2

2

The secant joining the points where t has the values t and t′ is represented by the equation

ρ = αt+ βt2

2 + x
(
αt′ + βt

′2

2 − αt− βt2

2

)
(§30)

= αt+ βt2

2 + x(t′ − t)
{
α+ β t′−t

2

}
Write x for x(t′ − t) [which may have any value], then put t′ = t, and the equation of the
tangent at the point (t) is

ρ = αt+
βt2

2
+ x(α+ βt)

In this put x = −t, and we have

ρ = −βt2

2

or the intercept of the tangent on the diameter is equal in length to the abscissa of the point
of contact, but has the opposite currency.

Otherwise: the tangent is parallel to the vector α + βt or αt + βt2 or βt2

2 + αt + βt2

2 or

OQ+OP . But TP = TO +OP , hence TO = OQ.

(g) Since the equation of any tangent to the parabola is

ρ = αt+
βt2

2
+ x(α+ βt)

let us find the tangents which can be drawn from a given point. Let the vector of the point
be

ρ = pα+ qβ (§24)

Since the tangent is to pass through this point, we have, as con ditions to determine t and
x,

t+ x = p

t2

2
+ xt = q

by equating respectively the coefficients of α and β.

Hence t = p±
√
p2 − 2q

Thus, in general, two tangents can be drawn from a given point. These coincide if

p2 = 2q
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that is, if the vector of the point from which they are to be drawn is

ρ = pα+ qβ = pα+
p2

2
β

i.e. if the point lies on the parabola. They are imaginary if 2q > p2, that is, if the point be

ρ = pα+

(
p2

2
+ r

)
β

r being positive. Such a point is evidently within the curve, as at R, where OQ = p2

2 β,

QP = pα, PR = rβ.

(h) Calling the values of t for the two tangents found in (g) t1 and t2 respectively, it is
obvious that the vector joining the points of contact is

αt1 +
βt21
2

− αt2 −
βt22
2

which is parallel to α+ β t1+t2
2 or, by the values of t1 and t2 in (g),

α+ pβ

Its direction, therefore, does not depend on q. In words, If pairs of tangents be drawn to
a parabola from points of a diameter produced, the chords of contact are parallel to the
tangent at the vertex of the diameter. This is also proved by a former result, for we must
have OT for each tangent equal to QO.

(i) The equation of the chord of contact, for the point whose vector is

ρ = pα+ qβ

is thus ρ = αt1 +
βt21
2 + y(α+ pβ)

Suppose this to pass always through the point whose vector is

ρ = aα+ bβ

Then we must have
t1 + y = a

t21
2 + py = b

}
or t1 = p±

√
p2 − 2pα+ 2β

Comparing this with the expression in (g), we have

q = pa− b

that is, the point from which the tangents are drawn has the vector a straight line (§28 (1)).

The mere form of this expression contains the proof of the usual properties of the pole and
polar in the parabola ; but, for the sake of the beginner, we adopt a simpler, though equally
general, process.
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Suppose α = 0. This merely restricts the pole to the particular diameter to which we have
referred the parabola. Then the pole is Q, where

ρ = bβ

and the polar is the line TU , for which

ρ = −bβ + pα

Hence the polar of any point is parallel to the tangent at the extremity of the diameter on
which the point lies, and its intersection with that diameter is as far beyond the vertex as
the pole is within, and vice versa.

(j) As another example let us prove the following theorem. If a triangle be inscribed in
a parabola, the three points in which the sides are met by tangents at the angles lie in a
straight line.

Since O is any point of the curve, we may take it as one corner of the triangle. Let t and t1
determine the others. Then, if ω1,ω2,ω3 represent the vectors of the points of intersection of
the tangents with the sides, we easily find

ω1 =
t21

2t1−t

(
α+ t

2β
)

ω2 = t2

2t−t1

(
α+ t1

2 β
)

ω3 = tt1
t1+tα

These values give
2t1 − t

t1
ω1 −

2t− t1
t

ω2 −
t21 − t2

tt1
ω3 = 0

Also
2t1 − t

t1
− 2t− t1

t
− t21 − t2

tt1
= 0

identically.

Hence, by §30, the proposition is proved.

(k) Other interesting examples of this method of treating curves will, of course, suggest
themselves to the student. Thus

ρ = α cos t+ β sin t

or
ρ = αx+ β

√
1− x2

represents an ellipse, of which the given vectors α and β are semiconjugate diameters. If t
represent time, the radius-vector of this ellipse traces out equal areas in equal times. [We
may anticipate so far as to write the following :

2Area = T

∫
V ρdρ = TV αβ.

∫
dt
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which will be easily understood later.]

Again,

ρ = αt+
β

t
or ρ = α tanx+ β cotx

evidently represents a hyperbola referred to its asymptotes. [If t represent time, the sectorial
area traced out is proportional to log t, taken between proper limits.] Thus, also, the equation

ρ = α(t+ sin t) + β cos t

in which α and β are of equal lengths, and at right angles to one another, represents a
cycloid. The origin is at the middle point of the axis (2β) of the curve. [It may be added
that, if t represent time, this equation shows the motion of the tracing point, provided the
generating circle rolls uniformly, revolving at the rate of a radian per second.]

When the lengths of α, β are not equal, this equation gives the cycloid distorted by elongation
of its ordinates or abscissae : not a trochoid. The equation of a trochoid may be written

ρ = α(et+ sin t) + β cos t

e being greater or less than 1 as the curve is prolate or curtate. The lengths of α and β are
still taken as equal.

But, so far as we have yet gone with the explanation of the calculus, as we are not prepared
to determine the lengths or inclinations of vectors, we can investigate only a very limited
class of the properties of curves, represented by such equations as those above written.

(l) We may now, in extension of the statement in §29, make the obvious remark that

ρ =
∑

pα

(where, as in §23, the number of vectors, α, can always be reduced to three, at most) is the
equation of a curve in space, if the numbers p1, p2, &c. are functions of one indeterminate.
In such a case the equation is sometimes written

ρ = ϕ(t)

But, if p1, p2, &c. be functions of two indeterminates, the locus of the extremity of ρ is a
surface; whose equation is sometimes written

ρ = ϕ(t, u)

[It may not be superfluous to call the reader’s attention to the fact that, in these equations,
ϕ(t) or ϕ(t, u) is necessarily a vector expression, since it is equated to a vector, ρ.]

(m) Thus the equation
ρ = α cos t+ β sin t+ γt (4.2)

belongs to a helix,
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In Axiom we can draw this with the commands:

draw(a*cos(t)+b*sin(t)+c*u,[t=0..1,u=0..1]

tpdhere

while
ρ = α cos t+ β sin t+ γu (4.3)

represents a cylinder whose generating lines are parallel to γ,

draw(a*cos(t)+b*sin(t)+c*u,[t=0..1,u=0..1]

tpdhere

and whose base is the ellipse
ρ = α cos t+ β sin t

The helix above lies wholly on this cylinder.

draw(a*cos(t)+b*sin(t)+c*u,[t=0..1,u=0..1]

tpdhere

Contrast with (2) the equation

ρ = u(α cos t+ β sin t+ γ) (3)

which represents a cone of the second degree

draw(a*cos(t)+b*sin(t)+c*u,[t=0..1,u=0..1]

tpdhere

made up, in fact, of all lines drawn from the origin to the ellipse

ρ = α cos t+ β sin t+ γ

draw(a*cos(t)+b*sin(t)+c*u,[t=0..1,u=0..1]

tpdhere

If, however, we write
ρ = u(α cos t+ β sin t+ γt)

we form the equation of the transcendental cone whose vertex is at the origin, and on which
lies the helix (1).
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draw(a*cos(t)+b*sin(t)+c*u,[t=0..1,u=0..1]

tpdhere

In general
ρ = uϕ(t)

is the cone whose vertex is the origin, and on which lies the curve

ρ = ϕ(t)

while ρ = ϕ(t) + uα
is a cylinder, with generating lines parallel to α, standing on the same curve as base.

Again, ρ = pα+ qβ + rγ
with a condition of the form

ap2 + bq2 + cr2 = 1

belongs to a central surface of the second order, of which α, β, γ are the directions of
conjugate diameters. If a, b, c be all positive, the surface is an ellipsoid.

32. In Example (f) above we performed an operation equivalent to the differentiation of a
vector with reference to a single numerical variable of which it was given as an explicit func-
tion. As this process is of very great use, especially in quaternion investigations connected
with the motion of a particle or point; and as it will afford us an opportunity of making a
preliminary step towards overcoming the novel difficulties which arise in quaternion differen-
tiation; we will devote a few sections to a more careful, though very elementary, exposition
of it.

33. It is a striking circumstance, when we consider the way in which Newton’s original
methods in the Differential Calculus have been decried, to find that Hamilton was obliged
to employ them, and not the more modern forms, in order to overcome the characteristic
difficulties of quaternion differentiation. Such a thing as a differential coefficient has ab-
solutely no meaning in quaternions, except in those special cases in which we are dealing
with degraded quaternions, such as numbers, Cartesian coordinates, &c. But a quaternion
expression has always a differential, which is, simply, what Newton called a fluxion.

As with the Laws of Motion, the basis of Dynamics, so with the foundations of the Differential
Calculus ; we are gradually coming to the conclusion that Newton s system is the best after
all.

34. Suppose ρ to be the vector of a curve in space. Then, generally, ρ may be expressed as
the sum of a number of terms, each of which is a multiple of a constant vector by a function
of some one indeterminate; or, as in §31 (l), if P be a point on the curve,

OP = ρ = ϕ(t)

And, similarly, if Q be any other point on the curve,

OQ = ρ1 = ρ+ δρ = ϕ(t1) = ϕ(t+ δt)

where δt is any number whatever.
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The vector-chord PQ is therefore, rigorously,

δp = ρ1 − ρ = ϕ(t+ δt)− ϕt

35. It is obvious that, in the present case, because the vectors involved in ϕ are constant,
and their numerical multipliers alone vary, the expression ϕ(t+ δt) is, by Taylor’s Theorem,
equivalent to

ϕ(t) +
dϕ(t)

dt
δt+

d2ϕ(t)

dt2
(δt)2

1 . 2
+ . . .

Hence,

δρ =
dϕ(t)

dt
δt+

d2ϕ(t)

dt2
(δt)2

1 . 2
+ &c.

And we are thus entitled to write, when δt has been made indefinitely small,

Limit

(
δp
δt

)
δt=0

=
dρ

dt
=

dϕ(t)

dt
= ϕ′(t)

In such a case as this, then, we are permitted to differentiate, or to form the differential
coefficient of, a vector, according to the ordinary rules of the Differential Calculus. But
great additional insight into the process is gained by applying Newton’s method.

36. Let OP be
ρ = ϕ(t)

and overlineOQ1

ρ1 = ϕ(t+ dt)

where dt is any number whatever.

The number t may here be taken as representing time, i.e. we may suppose a point to move
along the curve in such a way that the value of t for the vector of the point P of the curve
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denotes the interval which has elapsed (since a fixed epoch) when the moving point has
reached the extremity of that vector. If, then, dt represent any interval, finite or not, we see
that

OQ1 = ϕ(t+ dt)

will be the vector of the point after the additional interval dt.

But this, in general, gives us little or no information as to the velocity of the point at
P . We shall get a better approximation by halving the interval dt, and finding Q2 , where
OQ2 = ϕ(t+ 1

2dt), as the position of the moving point at that time. Here the vector virtually

described in 1
2dt is PQ2 . To find, on this supposition, the vector described in dt, we must

double PQ2 , and we find, as a second approximation to the vector which the moving point
would have described in time dt, if it had moved for that period in the direction and with
the velocity it had at P ,

Pq2 = 2PQ2 = 2(OQ2 −OP )
= 2{ϕ(t+ 1

2dt)− ϕ(t)}

The next approximation gives

Pq3 = 3PQ3 = 3(OQ3 −OP )
= 3{ϕ(t+ 1

3dt)− ϕ(t)}

And so on, each step evidently leading us nearer the sought truth. Hence, to find the vector
which would have been described in time dt had the circumstances of the motion at P
remained undisturbed, we must find the value of

dρ = Pq = Lx=∞x

{
ϕ

(
t+

1

x
dt

)
− ϕ(t)

}
We have seen that in this particular case we may use Taylor’s Theorem. We have, therefore,

dρ = Lx=∞x
{
ϕ′(t) 1xdt+ ϕ′′(t) 1

x2

(dt)2

1 . 2 +&c
}

= ϕ′(t)dt

And, if we choose, we may now write

dρ

dt
= ϕ′(t)

37. But it is to be most particularly remarked that in the whole of this investigation no
regard whatever has been paid to the magnitude of dt. The question which we have now
answered may be put in the form – A point describes a given curve in a given manner. At any
point of its path its motion suddenly ceases to be accelerated. What space will it describe
in a definite interval? As Hamilton well observes, this is, for a planet or comet, the case of
a ’celestial Atwood’s machine’.
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38. If we suppose the variable, in terms of which ρ is expressed, to be the arc, s, of the curve
measured from some fixed point, we find as before

dρ = ϕ′(x)ds

From the very nature of the question it is obvious that the length of dp must in this case be
ds, so that ϕ′(s) is necessarily a unit-vector. This remark is of importance, as we shall see
later; and it may therefore be useful to obtain afresh the above result without any reference
to time or velocity.

39. Following strictly the process of Newton s VIIth Lemma, let us describe on Pq2 an arc
similar to PQ2, and so on. Then obviously, as the subdivision of ds is carried farther, the
new arc (whose length is always ds) more and more nearly (and without limit) coincides
with the line which expresses the corresponding approximation to dp.

40. As additional examples let us take some well-known plane curves; and first the hyperbola
(§31 (k))

ρ = αt+
β

t

Here

dρ =

(
α− β

t2

)
dt

This shows that the tangent is parallel to the vector

αt− β

t

In words, if the vector (from the centre) of a point in a hyperbola be one diagonal of
a parallelogram, two of whose sides coincide with the asymptotes, the other diagonal is
parallel to the tangent at the point, and cuts off a constant area from the space between the
asymptotes. (For the sides of this triangular area are t times the length of α, and 1/t times
the length of β, respectively; the angle between them being constant.)

Next, take the cycloid, as in §31 (k),

ρ = α(t+ sin t) + β cos t

We have
dρ = {α(1 + cos t)− β sin t}dt

At the vertex
t = 0, cos t = 1, sin t = 0, and dρ = 2αdt

At a cusp
t = π, cos t = −1, sin t = 0, and dρ = 0

This indicates that, at the cusp, the tracing point is ( instantaneously) at rest. To find the
direction of the tangent, and the form of the curve in the vicinity of the cusp, put t = π+ τ ,
where powers of τ above the second are omitted. We have

dρ = βτdt+
ατ2

2
dt
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so that, at the cusp, the tangent is parallel to β. By making the same substitution in the
expression for ρ, we find that the part of the curve near the cusp is a semicubical parabola,

ρ = α(π + τ3/6)− β(1− τ2/2)

or, if the origin be shifted to the cusp (ρ = πα− β),

ρ = ατ3/6 + βτ2/2

41. Let us reverse the first of these questions, and seek the envelope of a line which cuts off
from two fixed axes a triangle of constant area.

If the axes be in the directions of α and β, the intercepts may evidently be written αt and
β
t . Hence the equation of the line is (§30)

ρ = αt+ x

(
β

t
− αt

)
The condition of envelopment is, obviously, (see Chap. IX.)

dρ = 0

This gives 0 =
{
α− x

(
β
t2 + α

)}
dt+

(
β
t − αt

)
dx 2

Hence (1− x)dt− tdx = 0

and − x
t2 dt+

dx
t = 0

From these, at once, x = 1
2 , since dx and dt are indeterminate. Thus the equation of the

envelope is

ρ = αt+ 1
2

(
β
t − αt

)
= 1

2

(
αt+ β

t

)
the hyperbola as before; α, β being portions of its asymptotes.

42. It may assist the student to a thorough comprehension of the above process, if we put
it in a slightly different form. Thus the equation of the enveloping line may be written

ρ = αt(1− x) + β
x

t

which gives

dρ = 0 = αd{t(1− x)}+ βd
(x
t

)
2 Here we have opportunity for a remark (very simple indeed, but) of the utmost importance. We are not

to equate separately to zero the coefficients of dt and dx; for we must remember that this equation is of the
form

0 = pα+ qβ

where p and q are numbers; and that, so long as α and β are actual and non-parallel vectors, the existence
of such an equation requires (§24)



70 CHAPTER 4. QUATERNIONS

Hence, as α is not parallel to β, we must have

d{t(1− x)} = 0, d
(x
t

)
= 0

and these are, when expanded, the equations we obtained in the preceding section.

43. For farther illustration we give a solution not directly employing the differential calculus.
The equations of any two of the enveloping lines are

ρ = αt+ x

(
β

t
− αt

)

ρ = αt1 + x1

(
β

t1
− αt1

)
t and t1 being given, while x and x1 are indeterminate.

At the point of intersection of these lines we have (§26),

t(1− x) = t1(1− x1)
x
t = x1

t1

}
These give, by eliminating x1

t(1− x) = t1

(
1− t1

t
x

)

or x = t
t1+t

Hence the vector of the point of intersection is

ρ =
αtt1 + β

t1 + t

and thus, for the ultimate intersections, where L t1
t = 1,

ρ =
1

2

(
αt+

β

t

)
as before

COR. If. instead of the ultimate intersections, we consider the intersections of pairs of these
lines related by some law, we obtain useful results. Thus let

tt1 = 1

ρ =
α+ β

t+ 1
t

or the intersection lies in the diagonal of the parallelogram on α, β.

If t1 = mt, where m is constant,

ρ =
mtα+ β

t

m+ 1
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But we have also x = 1
m+1

Hence the locus of a point which divides in a given ratio a line cutting off a given area from
two fixed axes, is a hyperbola of which these axes are the asymptotes.

If we take either

tt1(t+ t1) = constant, or
t2t21
t+ t1

= constant

the locus is a parabola; and so on.

It will be excellent practice for the student, at this stage, to work out in detail a number
of similar questions relating to the envelope of, or the locus of the intersection of selected
pairs from, a series of lines drawn according to a given law. And the process may easily be
extended to planes. Thus, for instance, we may form the general equation of planes which
cut off constant tetrahedra from the axes of coordinates. Their envelope is a surface of the
third degree whose equation may be written

ρ = xα+ yβ + zγ

where xyz = α3

Again, find the locus of the point of intersection of three of this group of planes, such that
the first intercepts on β and γ, the second on γ and α, the third on α and β, lengths all
equal to one another, &c. But we must not loiter with such simple matters as these.

44. The reader who is fond of Anharmonic Ratios and Trans versals will find in the early
chapters of Hamilton’s Elements of Quaternions an admirable application of the composition
of vectors to these subjects. The Theory of Geometrical Nets, in a plane, and in space,
is there very fully developed; and the method is shown to include, as particular cases,
the corresponding processes of Grassmann’s Ausdehnungslehre and Möbius’ Barycentrische
Calcul. Some very curious investigations connected with curves and surfaces of the second
and third degrees are also there founded upon the composition of vectors.

4.3 Examples To Chapter 1.

1. The lines which join, towards the same parts, the extremities of two equal and parallel
lines are themselves equal and parallel. (Euclid, I. xxxiii.)

2. Find the vector of the middle point of the line which joins the middle points of the
diagonals of any quadrilateral, plane or gauche, the vectors of the corners being given; and
so prove that this point is the mean point of the quadrilateral.

If two opposite sides be divided proportionally, and two new quadrilaterals be formed by
joining the points of division, the mean points of the three quadrilaterals lie in a straight
line.

Show that the mean point may also be found by bisecting the line joining the middle points
of a pair of opposite sides.



72 CHAPTER 4. QUATERNIONS

3. Verify that the property of the coefficients of three vectors whose extremities are in a line
(§30) is not interfered with by altering the origin.

4. If two triangles ABC, abc, be so situated in space that Aa, Bb, Cc meet in a point, the
intersections of AB, ab, of BC, bc, and of CA, ca, lie in a straight line.

5. Prove the converse of 4, i.e. if lines be drawn, one in each of two planes, from any three
points in the straight line in which these planes meet, the two triangles thus formed are
sections of a common pyramid.

6. If five quadrilaterals be formed by omitting in succession each of the sides of any pentagon,
the lines bisecting the diagonals of these quadrilaterals meet in a point. (H. Fox Talbot.)

7. Assuming, as in §7, that the operator

cos θ +
√
−1 sin θ

turns any radius of a given circle through an angle θ in the positive direction of rotation,
without altering its length, deduce the ordinary formulae for cos(A+B), cos(A−B), sin(A+
B), and sin(A−B), in terms of sines and cosines of A and B.

8. If two tangents be drawn to a hyperbola, the line joining the centre with their point of
intersection bisects the lines join ing the points where the tangents meet the asymptotes :
and the secant through the points of contact bisects the intercepts on the asymptotes.

9. Any two tangents, limited by the asymptotes, divide each other proportionally.

10. If a chord of a hyperbola be one diagonal of a parallelogram whose sides are parallel to
the asymptotes, the other diagonal passes through the centre.

11. Given two points A and B, and a plane, C. Find the locus of P , such that if AP cut C
in Q, and BP cut C in R, QR may be a given vector.

12. Show that ρ = x2α+ y2β + (x+ y)2γ
is the equation of a cone of the second degree, and that its section by the plane

ρ =
pα+ qβ + rγ

p+ q + r

is an ellipse which touches, at their middle points, the sides of the triangle of whose corners
α, β, γ are the vectors. (Hamilton, Elements, p. 96.)

13. The lines which divide, proportionally, the pairs of opposite sides of a gauche quadrilat-
eral, are the generating lines of a hyperbolic paraboloid. (Ibid. p. 97.)

14. Show that ρ = x3α+ y3β + z3γ
where x+ y + z = 0
represents a cone of the third order, and that its section by the plane

ρ =
pα+ qβ + rγ

p+ q + r

is a cubic curve, of which the lines

ρ =
pα+ qβ

p+ q
, &c
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are the asymptotes and the three (real) tangents of inflection. Also that the mean point of
the triangle formed by these lines is a conjugate point of the curve. Hence that the vector
α+ β + γ is a conjugate ray of the cone. (Ibid. p. 96.)

4.4 Products And Quotients of Vectors

45. We now come to the consideration of questions in which the Calculus of Quaternions
differs entirely from any previous mathematical method; and here we shall get an idea of
what a Quaternion is, and whence it derives its name. These questions are fundamentally
involved in the novel use of the symbols of multiplication and division. And the simplest
introduction to the subject seems to be the consideration of the quotient, or ratio, of two
vectors.

46. If the given vectors be parallel to each other, we have already seen (§22) that either may
be expressed as a numerical multiple of the other; the multiplier being simply the ratio of
their lengths, taken positively if they have similar currency, negatively if they run opposite
ways.

47. If they be not parallel, let OA and OB be drawn parallel and equal to them from any
point O; and the question is reduced to finding the value of the ratio of two vectors drawn
from the same point. Let us first find upon how many distinct numbers this ratio depends.

We may suppose OA to be changed into OB by the following successive processes.

1st. Increase or diminish the length of OA till it becomes equal to that of OB. For this
only one number is required, viz. the ratio of the lengths of the two vectors. As Hamilton
remarks, this is a positive, or rather a signless, number.

2nd. Turn OA about O, in the common plane of the two vectors, until its direction coincides
with that of OB, and (remembering the effect of the first operation) we see that the two
vectors now coincide or become identical. To specify this operation three numbers are
required, viz. two angles (such as node and inclination in the case of a planet’s orbit) to fix
the plane in which the rotation takes place, and one angle for the amount of this rotation.

Thus it appears that the ratio of two vectors, or the multiplier required to change one vector
into another, in general depends upon four distinct numbers, whence the name QUATER-
NION.

A quaternion q is thus defined as expressing a relation

β = qα

between two vectors α, β. By what precedes, the vectors α, β, which serve for the definition
of a given quaternion, must be in a given plane, at a given inclination to each other, and
with their lengths in a given ratio ; but it is to be noticed that they may be any two such
vectors. [Inclination is understood to include sense, or currency, of rotation from α to β.]

The particular case of perpendicularity of the two vectors, where their quotient is a vector
perpendicular to their plane, is fully considered below; §§64, 65, 72, &c.

48. It is obvious that the operations just described may be performed, with the same result,
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in the opposite order, being perfectly independent of each other. Thus it appears that a
quaternion, considered as the factor or agent which changes one definite vector into another,
may itself be decomposed into two factors of which the order is immaterial.

The stretching factor, or that which performs the first operation in §47, is called the TEN-
SOR, and is denoted by prefixing T to the quaternion considered.

The turning factor, or that corresponding to the second operation in §47, is called the
VERSOR, and is denoted by the letter U prefixed to the quaternion.

49. Thus, if OA = α, OB = β, and if q be the quaternion which changes α to β, we have

β = qα

which we may write in the form

β

α
= q, or βα−1 = q

if we agree to define that
β

α
α = βα−1α = β

Here it is to be particularly noticed that we write q before α to signify that α is multiplied
by (or operated on by) q, not q multiplied by α.

This remark is of extreme importance in quaternions, for, as we shall soon see, the Commu-
tative Law does not generally apply to the factors of a product.

We have also, by §§47, 48,
q = TqUq = UqTq

where, as before, Tq depends merely on the relative lengths of α and β, and Uq depends
solely on their directions.

Thus, if α1 and β1 be vectors of unit length parallel to α and β respectively,

T
β1

α1
= Tβ1/Tα1 = 1, U

β1

α1
= Uβ1/Uα1 = U

β

α

As will soon be shown, when α is perpendicular to β, i.e. when the versor of the quotient is
quadrantal, it is a unit-vector.

50. We must now carefully notice that the quaternion which is the quotient when β is
divided by α in no way depends upon the absolute lengths, or directions, of these vectors.
Its value will remain unchanged if we substitute for them any other pair of vectors which

(1) have their lengths in the same ratio,

(2) have their common plane the same or parallel,

and (3) make the same angle with each other.

Thus in the annexed figure
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O1B1

O1A1
=

OB

OA

if, and only if,

(1) O1B1

O1A1
= OB

OA

(2) plane AOB parallel to plane A1O1B1

(3) ∠AOB = ∠A1O1B1

[Equality of angles is understood to include concurrency of rotation. Thus in the annexed
figure the rotation about an axis drawn upwards from the plane is negative (or clock- wise)
from OA to OB, and also from O1A1 to O1B1.]

It thus appears that if
β = qα, δ = qγ

the vectors α, β, γ, δ are parallel to one plane, and may be repre sented (in a highly extended
sense) as proportional to one another, thus: –

β : α = δ : γ

And it is clear from the previous part of this section that this may be written not only in
the form

α : β = γ : δ

but also in either of the following forms: –

γ : α = δ : β

α : γ = β : δ
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While these proportions are true as equalities of ratios, they do not usually imply equalities
of products.

Thus, as the first of these was equivalent to the equation

β

α
=

δ

γ
= q, or βα−1 = δγ−1 = q

the following three imply separately, (see next section)

α

β
=

γ

δ
= q−1,

γ

α
=

δ

β
= r,

α

γ
=

β

δ
= r−1

or, if we please,

αβ−1 = γδ−1 = q−1, γα−1 = δβ−1 = r, αγ−1 = βδ−1 = r−1

where r is a new quaternion, which has not necessarily anything (except its plane), in common
with q.

But here great caution is requisite, for we are not entitled to conclude from these that

αδ = βγ, &c.

This point will be fully discussed at a later stage. Meanwhile we may merely state that from

α

β
=

γ

δ
, or

β

α
=

δ

γ

we are entitled to deduce a number of equivalents such as

αβ−1δ = γ, or α = γδ−1β, or β−1δ = α−1γ, &c

51. The Reciprocal of a quaternion q is defined by the equation

1

q
q = q−1 = 1 = q

1

q
= qqe−1

Hence if
β

α
= q, or

β = qα

we must have
α

β
=

1

q
= q−1

For this gives
α

β
β = q−1qα

and each member of the equation is evidently equal to α. Or thus: –

β = qα
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Operate by q−1

q−1β = α

Operate on β−1

q−1 = αβ−1 =
α

β

Or, we may reason thus: – since q changes OA to OA, q−1 must change OB to OA, and is
therefore expressed by α

β (§49).
The tensor of the reciprocal of a quaternion is therefore the reciprocal of the tensor; and
the versor differs merely by the reversal of its representative angle. The versor, it must
be remembered, gives the plane and angle of the turning – it has nothing to do with the
extension.

[Remark. In §§49–51, above, we had such expressions as β
α = βα−1. We have also met

with α−1β. Cayley suggests that this also may be written in the ordinary fractional form by
employing the following distinctive notation: –

β

α
= βα−1 =

β|
|α

, α−1β =
|β
α|

(It might, perhaps, be even simpler to use the solidus as recommended by Stokes, along with
an obviously correlative type:– thus,

β

α
= βα−1 = β/α, α−1β = αβ

I have found such notations occasionally convenient for private work, but I hesitate to in-
troduce changes unless they are abso lutely required. See remarks on this point towards the
end of the Preface to the Second Edition reprinted above.]

52. The Conjugate of a quaternion q, written Kq, has the same tensor, plane, and angle,
only the angle is taken the reverse way; or the versor of the conjugate is the reciprocal of
the versor of the quaternion, or (what comes to the same thing) the versor of the reciprocal.

Thus, if OA, OB, OA′ , lie in one plane, and if OA′ = OA, and ∠A′OB = ∠BOA, we have

OB

OA
= q
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, and
OB

OA′
= congugate of q = Kq

By last section we see that
Kq = (Tq)2q−1

Hence qKq = Kqq = (Tq)2

This proposition is obvious, if we recollect that the tensors of q and Kq are equal, and
that the versors are such that either annuls the effect of the other; while the order of their
application is indifferent. The joint effect of these factors is therefore merely to multiply
twice over by the common tensor.

53. It is evident from the results of §50 that, if α and β be of equal length, they may be
treated as of unit-length so far as their quaternion quotient is concerned. This quotient is
therefore a versor (the tensor being unity) and may be represented indifferently by any one
of an infinite number of concurrent arcs of given length lying on the circumference of a circle,
of which the two vectors are radii. This is of considerable importance in the proofs which
follow.

Thus the versor
OB

OA
may be represented in magnitude, plane, and currency of rotation (§50)

by the arc AB, which may in this extended sense be written
⌢

AB.

And, similarly, the versor
OB1

OA1

may be represented by
⌢

A1B1 which is equal to (and concur-

rent with)
⌢

AB if
∠A1OB1 = ∠AOB

i.e. if the versors are equal, in the quaternion meaning of the word.

54. By the aid of this process, when a versor is represented as an arc of a great circle on the
unit-sphere, we can easily prove that quaternion multiplication is not generally commutative.
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Thus let q be the versor
⌢

AB or
OB

OA
, where O is the centre of the sphere.

Take
⌢

BC =
⌢

AB, (which, it must be remembered, makes the points A, B, C, lie in one great

circle), then q may also be represented by
OC

OB
.

In the same way any other versor r may be represented by
⌢

DB or
⌢

BE and by
OB

OD
or

OE

OB
.

[The line OB in the figure is definite, and is given by the intersection of the planes of the
two versors.]

Now rOD = OB, and qOB = OC.

Hence qrOD = OC,

or qr =
OC

OD
, and may therefore be represented by the arc

⌢

DC of a great circle.

But rq is easily seen to be represented by the arc
⌢

AE.

For qOA = OB, and rOB = OE,

whence rqOA = OE. and rq =
OE

OA
.

Thus the versors rq and qr, though represented by arcs of equal length, are not generally in
the same plane and are therefore unequal: unless the planes of q and r coincide.

Remark. We see that we have assumed, or defined, in the above proof, that q.rα = qr.α.
and r.qα = rq.α in the special case when qα, rα, q.rα and r.qα are all vectors.

55. Obviously
⌢

CB is Kq,
⌢

BD is Kr, and
⌢

CD is K(qr). But
⌢

CD =
⌢

BD.
⌢

CB as we see by
applying both to OC. This gives us the very important theorem

K(qr) = Kr.Kq

i.e. the conjugate of the product of two versors is the product of their conjugates in inverted
order. This will, of course, be extended to any number of factors as soon as we have proved
the associative property of multiplication. (§58 below.)
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56. The propositions just proved are, of course, true of quater nions as well as of versors;
for the former involve only an additional numerical factor which has reference to the length
merely, and not the direction, of a vector (§48), and is therefore commutative with all other
factors.

57. Seeing thus that the commutative law does not in general hold in the multiplication of
quaternions, let us enquire whether the Associative Law holds generally. That is if p, q, r
be three quaternions, have we

p.qr = pq.r?

This is, of course, obviously true if p, q, r be numerical quantities, or even any of the
imaginaries of algebra. But it cannot be con sidered as a truism for symbols which do not
in general give

pq = qp

We have assumed it, in definition, for the special case when r, qr, and pqr are all vectors.
(§54.) But we are not entitled to assume any more than is absolutely required to make our
definitions complete.

58. In the first place we remark that p, q, and r may be considered as versors only, and there-
fore represented by arcs of great circles on the unit sphere, for their tensors may obviously
(§48) be divided out from both sides, being commutative with the versors.

Let
⌢

AB = p,
⌢

ED =
⌢

CA = q, and
⌢

FE = r.

Join BC and produce the great circle till it meets EF in H, and make
⌢

KH =
⌢

FE = r, and
⌢

HG =
⌢

CB = pq (§54).

Join GK. Then
⌢

KG =
⌢

HG.
⌢

KH = pq.r.

Join FD and produce it to meet AB in M . Make

⌢

LM =
⌢

FD, and
⌢

MN =
⌢

AB
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and join NL. Then
⌢

LN =
⌢

MN.
⌢

LM = p.qr

.

Hence to show that p.qr = pq.r

all that is requisite is to prove that LN , and KG, described as above, are equal arcs of
the same great circle, since, by the figure, they have evidently similar currency. This is
perhaps most easily effected by the help of the fundamental properties of the curves known
as Spherical Conics. As they are not usually familiar to students, we make a slight digression
for the purpose of proving these fundamental properties ; after Chasles, by whom and Magnus
they were discovered. An independent proof of the associative principle will presently be
indicated, and in Chapter VIII. we shall employ quaternions to give an independent proof
of the theorems now to be established.

59.* DEF. A spherical conic is the curve of intersection of a cone of the second degree with
a sphere, the vertex of the cone being the centre of the sphere.

LEMMA. If a cone have one series of circular sections, it has another series, and any two
circles belonging to different series lie on a sphere. This is easily proved as follows.

Describe a sphere, A, cutting the cone in one circular section, C, and in any other point
whatever, and let the side OpP of the cone meet A in p, P ; P being a point in C. Then
PO.Op is constant, and, therefore, since P lies in a plane, p lies on a sphere, a, passing
through 0. Hence the locus, c, of p is a circle, being the intersection of the two spheres A
and a.

Let OqQ be any other side of the cone, q and Q being points in c, C respectively. Then the
quadrilateral qQPp is inscribed in a circle (that in which its plane cuts the sphere A) and
the exterior

angle at p is equal to the interior angle at Q. If OL, OM be the lines in which the plane
POQ cuts the cyclic planes (planes through O parallel to the two series of circular sections)
they are obviously parallel to pq, QP , respectively; and therefore
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∠LOp = ∠Opq = ∠OQP = ∠MOQ

Let any third side, OrR, of the cone be drawn, and let the plane OPR cut the cyclic planes
in 0l, Om respectively. Then, evidently,

∠lOL = ∠qpr

∠MOm = ∠QPR

and these angles are independent of the position of the points p and P , if Q and R be fixed
points.

In the annexed section of the above space-diagram by a sphere whose centre is O, lL, Mm
are the great circles which represent the cyclic planes, PQR is the spherical conic which
represents the cone. The point P represents the line OpP , and so with the others. The
propositions above may now be stated thus,

Arc PL = arc MQ

and, if Q and R be fixed, Mm and lL are constant arcs whatever be the position of P .

60. The application to §58 is now obvious. In the figure of that article we have

⌢

FE =
⌢

KH,
⌢

ED =
⌢

CA,
⌢

HG =
⌢

CB,
⌢

LM =
⌢

FD

Hence L, C, G, D are points of a spherical conic whose cyclic planes are those of AB, FE.

Hence also KG passes through L, and with LM intercepts on AB an arc equal to
⌢

AB. That
is, it passes through N , or KG and LN are arcs of the same great circle : and they are
equal, for G and L are points in the spherical conic.

Also, the associative principle holds for any number of quaternion factors. For, obviously,

qr.st = qrs.t = &c., &c.,
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since we may consider qr as a single quaternion, and the above proof applies directly.

61. That quaternion addition, and therefore also subtraction, is commutative, it is easy to
show.

For if the planes of two quaternions, q and r, intersect in the line OA, we may take any
vector OA in that line, and at once find two others, OB and OC, such that

OB = qOA

and CO = rOA

And (q + r)OAOB +OC = OC +OB = (r + q)OA

since vector addition is commutative (§27).
Here it is obvious that (q + r)OA, being the diagonal of the parallelogram on OB, OC,
divides the angle between OB and OC in a ratio depending solely on the ratio of the lengths
of these lines, i.e. on the ratio of the tensors of q and r. This will be useful to us in the
proof of the distributive law, to which we proceed.

62. Quaternion multiplication, and therefore division, is distributive. One simple proof of
this depends on the possibility, shortly to be proved, of representing any quaternion as a
linear function of three given rectangular unit- vectors. And when the proposition is thus
established, the associative principle may readily be deduced from it.

[But Hamilton seems not to have noticed that we may employ for its proof the properties of
Spherical Conies already employed
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in demonstrating the truth of the associative principle. ”For continuity we give an outline
of the proof by this process.

Let
⌢

BA,
⌢

CA represent the versors of q and r, and be the great circle whose plane is that of
p.

Then, if we take as operand the vector OA, it is obvious that U(q + r) will be represented

by some such arc as
⌢

DA where B, D, C are in one great circle; for (q+ r)OA is in the same
plane as qOA and rOA, and the relative magnitude of the arcs BD and DC depends solely
on the tensors of q and r. Produce BA, DA, CA to meet be in b, d, c respectively, and make

⌢

Eb =
⌢

BA,
⌢

Fd =
⌢

DA,
⌢

Gc =
⌢

CA

Also make
⌢

bβ =
⌢

dδ =
⌢
cγ = p. Then E, F , G, A lie on a spherical conic of which BC and

bc are the cyclic arcs. And, because
⌢

bβ =
⌢

dδ =
⌢
cγ,

⌢

βE,
⌢

δF ,
⌢

γG, when produced, meet in
a point H which is also on the spherical conic (§59*). Let these arcs meet BC in J , L, K
respectively. Then we have

⌢

JH =
⌢

Eβ = pUq
⌢

LH =
⌢

Fδ = pU(q + r)
⌢

KH =
⌢

Gγ = pUr

Also
⌢

LJ =
⌢

DB

and
⌢

KL =
⌢

CD

And, on comparing the portions of the figure bounded respectively by HKJ and by ACB
we see that (when considered with reference to their effects as factors multiplying OH and
OA respectively)

pU(q4 + r) bears the same relation to pUq and pUr
that U(q + r) bears to Uq and Ur.
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But T (q + r)U(q + r) = q + r = TqUq + TrUr.
Hence T (q + r).pU(q + r) = Tq.pUq + Tr.pUr;
or, since the tensors are mere numbers and commutative with all other factors,

p(q + r) = pq + pr

In a similar manner it may be proved that

(q+)p = qp+ rp

And then it follows at once that

(p+ q)(r + s) = pr + ps+ qr + qs

where, by §61, the order of the partial products is immaterial.]

63. By similar processes to those of §53 we see that versors, and therefore also quaternions,
are subject to the index-law

qm.qn = qm+n

at least so long as m and n are positive integers.

The extension of this property to negative and fractional exponents must be deferred until
we have defined a negative or fractional power of a quaternion.

64. We now proceed to the special case of quadrantal versors, from whose properties it
is easy to deduce all the foregoing results of this chapter. It was, in fact, these properties
whose invention by Hamilton in 1843 led almost intuitively to the establishment of the
Quaternion Calculus. We shall content ourselves at present with an assumption, which will
be shown to lead to consistent results ; but at the end of the chapter we shall show that no
other assumption is possible, following for this purpose a very curious quasi-metaphysical
speculation of Hamilton.

65. Suppose we have a system of three mutually perpendicular unit-vectors, drawn from
one point, which we may call for shortness i, j, k. Suppose also that these are so situated
that a positive (i.e. left-handed) rotation through a right angle about i as an axis brings j
to coincide with k. Then it is obvious that positive quadrantal rotation about j will make k
coincide with i; and, about k, will make i coincide with j.

For defniteness we may suppose i to be drawn eastwards, j northwards, and k upwards.
Then it is obvious that a positive (left-handed) rotation about the eastward line (i) brings
the northward line (j) into a vertically upward position (k) ; and so of the others.

66. Now the operator which turns j into k is a quadrantal versor (§53) ; and, as its axis is
the vector i, we may call it i.

Thus
k

j
= i, or k = ij (1)

Similary we may put
i

k
= j, or i = jk (2)
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and
j

i
= k, or j = ki (3)

[It may be here noticed, merely to show the symmetry of the system we arc explaining, that
if the three mutually perpendicular vectors i, j, k be made to revolve about a line equally
inclined to all, so that i is brought to coincide with j, j will then coincide with k, and k with
i: and the above equations will still hold good, only (1) will become (2), (2) will become (3),
and (3) will become (1).]

67. By the results of §50 we see that
−j

k
=

k

j

i.e. a southward unit- vector bears the same ratio to an upward unit-vector that the latter
does to a northward one; and therefore we have

Thus
−j

k
= i, or − j = ik (4)

Similary t
−k

i
= j, or − k = ji (5)

and
−i

j
= k, or − i = kj (6)

68. By (4) and (1) we have

−j = ik = i(ij) (by the assumption in §54) = i2j

Hence
i2 = −1 (7)

Arid in the same way, (5) and (2) give

j2 = −1 (8)

and (6) and (3)
k2 = −1 (9)

Thus, as the directions of i, j, k are perfectly arbitrary, we see that the square of every
quadrantal versor is negative unity.

[Though the following proof is in principle exactly the same as the foregoing, it may perhaps
be of use to the student, in showing him precisely the nature as well as the simplicity of the
step we have taken.
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Let ABA′ be a semicircle, whose centre is 0, and let OB be perpendicular to AOA′.

Then
OB

OA′
= q suppose, is a quadrantal versor, and is evidently equal to

OA′

OB
;

§§50, 53. Hence

q2 =
OA′

OB
.
OB

OA
=

OA′

OA
= −1]

69. Having thus found that the squares of i, j, k are each equal to negative unity ; it only
remains that we find the values of their products two and two. For, as we shall see, the result
is such as to show that the value of any other combination whatever of i,j, k (as factors of a
product) may be deduced from the values of these squares and products.

Now it is obvious that
k

−i
=

i

k
= j

(i.e. the versor which turns a westward unit-vector into an upward one will turn the upward
into an eastward unit) ; or

k = j(−i) = −ji (10)

Now let us operate on the two equal vectors in (10) by the same versor, i, and we have

ik = i(−ji) = −ji

But by (4) and (3)
ik = −j = −ki

Comparing these equations, we have

−iji = −ki

or, §54 (end), ij = k
and symmetry gives jk = i

ki = j

 (11)

The meaning of these important equations is very simple ; and is, in fact, obvious from our
construction in §54 for the multiplication of versors ; as we see by the annexed figure, where
we must remember that i, j, k are quadrantal versors whose planes are at right angles, so
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that the figure represents a hemisphere divided into quadrantal triangles. [The arrow-heads
indicate the direction of each vector arc.]

Thus, to show that ij = k, we have, O being the centre of the sphere, N , E, S, W the north,
east, south, and west, and Z the zenith (as in §65) ;

jOW = OZ

whence ijOW = iOZ = OS = kOW

* The negative sign, being a mere numerical factor, is evidently commutative with j indeed
we may, if necessary, easily assure ourselves of the fact that to turn the negative (or reverse)
of a vector through a right (or indeed any) angle, is the same thing as to turn the vector
through that angle and then reverse it.

70. But, by the same figure,
iON = OZ

whence jiON = jOZ = OE = −OW = −kON .

71. From this it appears that
ji = −k
kj = −i
ik = −j

 (12)

and thus, by comparing (11),
ij = −ji = k
jk = −kj = i
ki = −ik = j

 (11), (12)

These equations, along with
i2 = j2 = k2 = −1 ((7), (8), (9))

contain essentially the whole of Quaternions. But it is easy to see that, for the first group,
we may substitute the single equation

ijk = −1 (13)
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since from it, by the help of the values of the squares of i, j, k, all the other expressions
may be deduced. We may consider it proved in this way, or deduce it afresh from the figure
above, thus

kON = OW

jkON = jOW = OZ

ijkON = ijOW = iOZ = OS = −ON

72. One most important step remains to be made, to wit the assumption referred to in §64.
We have treated i, j, k simply as quadrantal versors ; and i, j, k as unit-vectors at right
angles to each other, and coinciding with the axes of rotation of these versors. But if we
collate and compare the equations just proved we have

{ i2 = −1 (7)
i2 = −1 (§9)

{ ij = k (11)
ij = k (1)

{ ji = −k (11)
ji = −k (1)

with the other similar groups symmetrically derived from them.

Now the meanings we have assigned to i, j, k are quite independent of, and not inconsistent
with, those assigned to i, j, k. And it is superfluous to use two sets of characters when
one will suffice. Hence it appears that i, j, k may be substituted for i, j, k; in other words,
a unit-vector when employed as a factor may be considered as a quadrantal versor whose
plane is perpendicular to the vector. (Of course it follows that every vector can be treated
as the product of a number and a quadrantal versor.) This is one of the main elements of
the singular simplicity of the quaternion calculus.

73. Thus the product, and therefore the quotient, of two perpendicular vectors is a third
vector perpendicular to both.

Hence the reciprocal (§51) of a vector is a vector which has the opposite direction to that of
the vector, arid its length is the reciprocal of the length of the vector.

The conjugate (§52) of a vector is simply the vector reversed.

Hence, by §52, if α be a vector

(Ta)2 = αKα = α(−α) = −α2

74. We may now see that every versor may be represented by a power of a unit-vector.

For, if α be any vector perpendicular to i (which is any definite unit-vector), iα = β is a
vector equal in length to α, but perpendicular to both i and α

i2α = −α
ı3α = −iα = −β
ı4α = −iβ = −i2α = α

Thus, by successive applications of i, α. is turned round i as an axis through successive right
angles. Hence it is natural to define im as a versor which turns any vector perpendicular to
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i through m right angles in the positive direction of rotation about i as an axis. Here m may
have any real value whatever, whole or fractional, for it is easily seen that analogy leads us
to interpret a negative value of m as corresponding to rotation in the negative direction.

75. From this again it follows that any quaternion may be expressed as a power of a vector.
For the tensor and versor elements of the vector may be so chosen that, when raised to the
same power, the one may be the tensor and the other the versor of the given quaternion.
The vector must be, of course, perpen dicular to the plane of the quaternion.

76. And we now see, as an immediate result of the last two sections, that the index-law
holds with regard to powers of a quaternion (§63).
77. So far as we have yet considered it, a quaternion has been regarded as the product of a
tensor and a versor: we are now to consider it as a sum. The easiest method of so analysing
it seems to be the following.

Let
OB

OA
represent any quaternion. Draw BC perpendicular to OA, produced if necessary.

Then, §19, OB = OC + CB

But, §22, OC = xOA
where x is a number, whose sign is the same as that of the cosine of ∠AOB.

Also, §73, since CB is perpendicular to OA,

CB = γOA

where γ is a vector perpendicular to OA and CB, i.e. to the plane of the quaternion; and,
as the figure is drawn, directed towards the reader.

Hence
OB

OA
=

xOA+ γOA

OA
= x+ γ

Thus a quaternion, in general, may be decomposed into the sum of two parts, one numerical,
the other a vector. Hamilton calls them the SCALAR, and the VECTOR, and denotes them
respectively by the letters S and V prefixed to the expression for the quaternion.
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78. Hence q = Sq + V q, and if in the above example

OB

OA
= q

then
OB = OC + CB = Sq.OA+ V q.OA2

The equation above gives
OC = Sq.OA

CB = V q.OA

79. If, in the last figure, we produce BC to D, so as to double its length, and join OD, we
have, by §52,

OD

OA
= Kq = SKq + V Kq

so that OD = OC + CD = SKq.OA+ V Kq.OA
Hence OC = SKq.OA
and CD = V Kq.OA
Comparing this value of OC with that in last section, we find

SKq = Sq (1)

or the scalar of the conjugate of a quaternion is equal to the scalar of the quaternion.

Again, CD = −CB by the figure, and the substitution of their values gives

V Kq = −V q (2)

or the vector of the conjugate of a quaternion is the vector of the quaternion reversed.

We may remark that the results of this section are simple con sequences of the fact that the
symbols S, V , K are commutative 2.

Thus SKq = KSq = Sq,
since the conjugate of a number is the number itself; and

V Kq = KV q = −V q(§73)

Again, it is obvious that, ∑
Sq = S

∑
q,

∑
V q = V

∑
q

and thence
∑

Kq = K
∑

q

2 The points are inserted to show that S and V apply only to q, and not to qOA.
2 It is curious to compare the properties of these quaternion symbols with those of the Elective Symbols

of Logic, as given in BOOLE’S wonderful treatise on the Laws of Thought; and to think that the same
grand science of mathematical analysis, by processes remarkably similar to each other, reveals to us truths
in the science of position far beyond the powers of the geometer, and truths of deductive reasoning to which
unaided thought could never have led the logician.
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80. Since any vector whatever may be represented by

xi+ yj + zk

where x, y, z are numbers (or Scalars), and i, j, k may be any three non-coplanar vectors,
§§23, 25 though they are usually understood as representing a rectangular system of unit-
vectors and since any scalar may be denoted by w; we may write, for any quaternion q, the
expression

q = w + xi+ yj + zk(§78)

Here we have the essential dependence on four distinct numbers, from which the quaternion
derives its name, exhibited in the most simple form.

And now we see at once that an equation such as

q′ = q

where q′ = w′ + x′i+ y′j + z′k
involves, of course, the four equations

w′ = w, x′ = x, y′ = y, z′ = z

81. We proceed to indicate another mode of proof of the distributive law of multiplication.

We have already defined, or assumed (§61), that

β

α
+

γ

α
=

β + γ

α

or βα−1 + γα−1 = (β + γ)α−1

and have thus been able to understand what is meant by adding two quaternions.

But, writing α for α−1, we see that this involves the equality

(β + γ)α = βα+ γα

from which, by taking the conjugates of both sides, we derive

α′(β′ + γ′) = α′β′ + α′γ′(§55)

And a combination of these results (putting β + γ for α′ in the latter, for instance) gives

(β + γ)(β′ + γ′) = (β + γ)β′ + (β + γ)γ′

= ββ′ + γβ′ + βγ′ + γγ′

by the former.

Hence the distributive principle is true in the multiplication of vectors.

It only remains to show that it is true as to the scalar and vector parts of a quaternion, and
then we shall easily attain the general proof.



4.4. PRODUCTS AND QUOTIENTS OF VECTORS 93

Now, if a be any scalar, α any vector, and q any quaternion,

(a+ α)q = aq + αq

For, if β be the vector in which the plane of q is intersected by a plane perpendicular to α,
we can find other two vectors, γ and δ one in each of these planes such that

α =
γ

β
, q =

β

δ

And, of course, a may be written
aβ

β
; so that

(a+ α)q = aβ+γ
β .βδ = aβ+γ

δ

= aβ
δ + γ

δ = aβ
δ + γ

β .
β
δ

= aq + αq

And the conjugate may be written

q′(a′ + α′) = q′a′ + q′α′(§55)

Hence, generally,
(a+ α)(b+ β) = ab+ aβ + bα+ αβ

or, breaking up a and b each into the sum of two scalars, and α, β each into the sum of two
vectors,
(a1 + a2 + α1 + α2)(b1 + b2 + β1 + β2)

= (a1 + a2)(b1 + b2) + (a1 + a2)(β1 + β2) + (b1 + b2)(α1 + α2) + (α1 + α2)(β1 + β2)

(by what precedes, all the factors on the right are distributive, so that we may easily put it
in the form)

= (a1 + α1)(b1 + β1) + (a1 + α1)(b2 + β2) + (a2 + α2)(b1 + β1) + (a2 + α2)(b2 + β2)

Putting a1 + α1 = p, a2 + α2 = q, b1 + β1 = r, b2 + β2 = s,
we have (p+ q)(r + s) = pr + ps+ qr + qs

82. Cayley suggests that the laws of quaternion multiplication may be derived more directly
from those of vector multiplication, supposed to be already established. Thus, let α be the
unit vector perpendicular to the vector parts of q and of q′. Then let

ρ = q.α, σ = −α.q′

as is evidently permissible, and we have

pα = q.αα = −q; ασ = −αα.q′ = q′
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so that −q.q′ = ρα.ασ = −ρ.σ

The student may easily extend this process.

For variety, we shall now for a time forsake the geometrical mode of proof we have hitherto
adopted, and deduce some of our next steps from the analytical expression for a quaternion
given in §80, and the properties of a rectangular system of unit-vectors as in §71.
We will commence by proving the result of §77 anew.

83. Let
α = xi+ yj + zk

β = x′i+ y′j + z′k

Then, because by §71 every product or quotient of i, j, k is reducible to one of them or to a
number, we are entitled to assume

q =
β

α
= ω + ξi+ ηj + ζk

where ω, ξ, η, ζ are numbers. This is the proposition of §80.
[Of course, with this expression for a quaternion, there is no necessity for a formal proof of
such equations as

p+ (q + r) = (p+ q) + r

where the various sums are to be interpreted as in §61.
All such things become obvious in view of the properties of i, j ,k.]

84. But it may be interesting to find ω, ξ, η, ζ in terms of x, y, z, x′, y′ , z′ .

We have
β = qα

or
x′i+ y′j + z′k = (ω + ξi+ ηj + ζk)(xi+ yj + zk)

= −(ξx+ ηy + ζz) + (ωx+ ηz − ζy)i+ (ωy + ζx− ξz)j + (ωz + ξy − ηx)k

as we easily see by the expressions for the powers and products of i, j, k given in §71. But
the student must pay particular attention to the order of the factors, else he is certain to
make mistakes.

This (§80) resolves itself into the four equations

0 = ξx + ηy + ζz
x′ = ωx + ηz − ζy
y′ = ωy − ξz + ζx
z′ = ωz + ξy − ηx

The three last equations give

xx′ + yy′ + zz′ = ω(x2 + y2 + z2)

which determines ω.
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Also we have, from the same three, by the help of the first,

ξx′ + ηy′ + ζz′ = 0

which, combined with the first, gives

ξ

yz′ − zy′
=

η

zx′ − xz′
=

ζ

xy′ − yx′

and the common value of these three fractions is then easily seen to be

1

x2 + y2 + z2

It is easy enough to interpret these expressions by means of ordinary coordinate geometry :
but a much simpler process will be furnished by quaternions themselves in the next chapter,
and, in giving it, we shall refer back to this section.

85. The associative law of multiplication is now to be proved by means of the distributive
(§81). We leave the proof to the student. He has merely to multiply together the factors

w + xi+ yj + zk, w + x′i+ y′j + z′k, and w′′ + x′′i+ y′′j + z′′k

as follows :

First, multiply the third factor by the second, and then multiply the product by the first;
next, multiply the second factor by the first and employ the product to multiply the third:
always remembering that the multiplier in any product is placed before the multiplicand.
He will find the scalar parts and the coefficients of i, j, k, in these products, respectively
equal, each to each.

86. With the same expressions for α, β, as in section 83, we have

αβ = (xi+ yj + zk)(x′i+ y′j + z′k)

= −(xx′ + yy′ + zz′) + (yz′ − zy′)i+ (zx′ − xz′)j + (xy′ − yx′)k

But we have also

βα = −(xx′ + yy′ + zz′)− (yz′ − zy′)i− (zx′ − xz′)j − (xy′ − yx′)k

The only difference is in the sign of the vector parts. Hence

Sαβ = Sβα (1)

V αβ = −V βα (2)

αβ + βα = 2Sαβ (3)

αβ − βα = 2V αβ (4)

αβ = K.βα (5)
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87. If α = β we have of course (§25)

x = x′, y = y′, z = z′

and the formulae of last section become

αβ = βα = α2 = −(x2 + y2 + z2)

which was anticipated in §73, where we proved the formula

(Tα)2 = −α2

and also, to a certain extent, in §25.
88. Now let q and r be any quaternions, then

S.qr = S.(Sq + V q)(Sr + V r)
= S.(SqSr + Sr.V q + Sq.V r + V qV r)
= SqSr + S.V qV r

since the two middle terms are vectors. Similarly,

S.rq = SrSq + S.V rV q

Hence, since by (1) of §86 we have

S.V qV r = S.V rV q

we see that
S.qr = S.rq (1)

a formula of considerable importance.

It may easily be extended to any number of quaternions, because, r being arbitrary, we may
put for it rs. Thus we have

S.qrs = S.rsq
= S.sqr

by a second application of the process. In words, we have the theorem the scalar of the
product of any number of given quaternions depends only upon the cyclical order in which
they are arranged.

89. An important case is that of three factors, each a vector. The formula then becomes

S.αβγ = S.βγα = S.γαβ

But
S.αβγ = Sα(Sβγ + V βγ)

= SαV βγ since αSβγ is a vector
= −SαV γβ by (2) of §86
= −Sα(Sγβ + V γβ)
= −S.αγβ
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Hence the scalar of the product of three vectors changes sign when the cyclical order is
altered.

By the results of §§55, 73, 79 we see that, for any number of vectors, we have

K.αβγ . . . ϕχ = ±χϕ . . . γβα

(the positive sign belonging to the product of an even number of vectors) so that

S.αβ . . . ϕχ = ±S.χϕ . . . βα

Similarly
V.αβ . . . ϕχ = ∓V.χϕ . . . βα

Thus we may generalize (3) and (4) of §86 into

2S.αβ . . . ϕχ = αβ . . . χϕ± ϕχ . . . βα

2V.αβ . . . ϕχ = αβ . . . χϕ∓ ϕχ . . . βα

the upper sign still being used when the -number of factors is even.

Other curious propositions connected with this will be given later (some, indeed, will be found
in the Examples appended to this chapter), as we wish to develop the really fundamental
formulae in as compact a form as possible.

90. By (4) of §86,
2V βγ = βγ − γβ

Hence
2V.αV βγ = V.α(βγ − γβ)

(by multiplying both by α, and taking the vector parts of each side)

= V (αβγ + βαγ − βαγ − αγβ)

(by introducing the null term βαγ − βαγ).

That is
2V.αV βγ = V.(αβ + βα)γ − V (βSαγ + βV αγ + Sαγ.β + V αγ.β

= V.(2Sαβ)γ − 2V βSαγ

(if we notice that V (V αγ.β) = −V.βV αγ by (2) of §86). Hence

V.αV βγ = γSαβ − βSγα (1)

a formula of constant occurrence.

Adding αSβγ to both sides, we get another most valuable formula

V.αβγ = αSβγ − βSγα+ γSαβ (2)

and the form of this shows that we may interchange γ and α without altering the right-hand
member. This gives

V.αβγ = V.γβα
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a formula which may be greatly extended. (See §89, above.)
Another simple mode of establishing (2) is as follows :

K.αβγ = −γβα
∴ 2V.αβγ = αβγ −K.αβγ (by §79(2))

= αβγ + γβα
= α(βγ + γβ)− (αγ + γα)β + γ(αβ + βα)
= 2αSβγ − 2βSαγ + 2γSαβ

91. We have also
V V αβV γδ = −V V γδV αβ by (2) of §86

= δSγV αβ − γSδV αβ = δS.αβγ − γS.αβδ

= −βSαV γδ + αSβV γδ = −βS.αγδ + αS.βγδ

all of these being arrived at by the help of §90 (1) and of §89; and by treating alternately
V αβ and V γδ as simple vectors.

Equating two of these values, we have

δS.αβγ = αS.βγδ + βS.γαδ + γS.αβδ (3

a very useful formula, expressing any vector whatever in terms of three given vectors. [This,
of course, presupposes that α, β, γ are not coplanar, §23. In fact, if they be coplanar, the
factor S.αβγ vanishes, and thus (3) does not give an expression for δ. This will be shown in
§101 below.]

92. That such an expression as (3) is possible we knew already by §23. For variety we may
seek another expression of a similar character, by a process which differs entirely from that
employed in last section.

α, β, γ being any three non-coplanar vectors, we may derive from them three others V αβ,
V βγ, V γα and, as these will not be coplanar, any other vector δ may be expressed as the
sum of the three, each multiplied by some scalar. It is required to find this expression for δ.

Let
δ = xV αβ + yV βγ + zV γα

Then
Sγδ = xS.γαβ = xS.αβγ

the terms in y and z going out, because

SγV βγ = S.γβγ = Sβγ2 = γ2Sβ = 0

for γ2 is (§73) a number.

Similarly
Sβδ = zS.βγα = zS.αβγ

and
Sαδ = qS.αβγ
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Thus
δS.αβγ = V αβSγδ + V βγSαδ + V γαSβδ (4)

93. We conclude the chapter by showing (as promised in §64) that the assumption that the
product of two parallel vectors is a number, and the product of two perpendicular vectors
a third vector perpendicular to both, is not only useful and convenient, but absolutely
inevitable, if our system is to deal indifferently with all directions in space. We abridge
Hamilton s reasoning.

Suppose that there is no direction in space pre-eminent, and that the product of two vectors
is something which has quantity, so as to vary in amount if the factors are changed, and
to have its sign changed if that of one of them is reversed ; if the vectors be parallel, their
product cannot be, in whole or in part, a vector inclined to them, for there is nothing to
determine the direction in which it must lie. It cannot be a vector parallel to them; for by
changing the signs of both factors the product is unchanged, whereas, as the whole system
has been reversed, the product vector ought to have been reversed. Hence it must be a
number. Again, the product of two perpendicular vectors cannot be wholly or partly a
number, because on inverting one of them the sign of that number ought to change; but
inverting one of them is simply equivalent to a rotation through two right angles about the
other, and (from the symmetry of space) ought to leave the number unchanged. Hence the
product of two perpendicular vectors must be a vector, and a simple extension of the same
reasoning shows that it must be perpendicular to each of the factors. It is easy to carry this
farther, but enough has been said to show the character of the reasoning.

4.5 Examples To Chapter 2.

1. It is obvious from the properties of polar triangles that any mode of representing versors
by the sides of a spherical triangle must have an equivalent statement in which they are
represented by angles in the polar triangle.

Show directly that the product of two versors represented by two angles of a spherical triangle
is a third versor represented by the supplement of the remaining angle of the triangle ; and
determine the rule which connects the directions in which these angles are to be measured.

2. Hence derive another proof that we have not generally

pq = qp

3. Hence show that the proof of the associative principle, §57, may be made to depend upon
the fact that if from any point of the sphere tangent arcs be drawn to a spherical conic, and
also arcs to the foci, the inclination of either tangent arc to one of the focal arcs is equal to
that of the other tangent arc to the other focal arc.

4. Prove the formulae
2S.αβγ = αβγ − γβα

2V.αβγ = αβγ + γβα
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5. Show that, whatever odd number of vectors be represented by α, β, γ &c., we have always

V.αβγδϵ = V.ϵδγβα

V.αβγδϵζη = V.ηζϵδγβα, &c.

6. Show that
S.V αβV βγV γα = −(S.αβγ)2

V.V αβV βγV γα = V αβ(γ2Sαβ − SβγSγα) + . . .

and
V (V αβV.V βγV γα) = (βSαγ − αSβγ)S.αβγ

7. If α, β, γ be any vectors at right angles to each other, show that

(α3 + β3 + γ3)S.αβγ = α4V βγ + β4V γα+ γ4V αβ

(α2n−1 + β2n−1 + γ2n−1)S.αβγ = α2nV βγ + β2nV γα+ γ2nV αβ

8. If α, β, γ be non-coplanar vectors, find the relations among the six scalars, x, y, z and ξ,
η, ζ which are implied in the equation

xα+ yβ + zγ = ξV βγ + ηV γα+ ζV αβ

9. If α, β, γ be any three non-coplanar vectors, express any fourth vector, δ, as a linear
function of each of the following sets of three derived vectors.

V.γαβ, V.αβγ, V.βγα

and
V.V αβV βγV γα, V.V βγV γαV αβ, V.V γαV αβV βγ

10. Eliminate ρ from the equations

Sαρ = a, Sβρ = b, Sγρ = c, Sδρ = d

where α, β, γ, δ are vectors, and a, b, c, d scalars.

11. In any quadrilateral, plane or gauche, the sum of the squares of the diagonals is double
the sum of the squares of the lines joining the middle points of opposite sides.

4.6 Interpretations And Transformations

94. Among the most useful characteristics of the Calculus of Quaternions, the ease of
interpreting its formulae geometrically, and the extraordinary variety of transformations of
which the simplest expressions are susceptible, deserve a prominent place. We devote this
Chapter to some of the more simple of these, together with a few of somewhat more complex
character but of constant occurrence in geometrical and physical investigations. Others will
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appear in every succeeding Chapter. It is here, perhaps, that the student is likely to feel most
strongly the peculiar difficulties of the new Calculus. But on that very account he should
endeavour to master them, for the variety of forms which any one formula may assume,
though puzzling to the beginner, is of the utmost advantage to the advanced student, not
alone as aiding him in the solution of complex questions, but as affording an invaluable
mental discipline.

95. If we refer again to the figure of §77 we see that

OC = OB cosAOB

CB = OB sinAOB

Hence if
AB = α, OB = β, and ∠AOB = θ

we have
OB = Tβ, OA = Tα

OC = Tβ cos θ, CB = Tβ sin θ

Hence

S
β

α
=

OC

OA
=

Tβ

Tα
cos θ

Similarly,

TV
β

α
=

CB

OA
=

Tβ

Tα
sin θ

Hence, if η be a unit-vector perpendicular to α and β, and such that positive rotation about
it, through the angle θ, turns α towards β or

η =
UCB

UOA
= U

CB

OA
= UV

β

α

we have

V
β

α
=

Tβ

Tα
sin θ.η (See, again, §84)

96. In the same way, or by putting

αβ = Sαβ + V αβ
= Sβα− V βα

= α2
(
S β

α − V β
α

)
= Tα2

(
−S β

α + V β
α

)
we may show that

Sαβ = −TαTβ cos θ

TV αβ = TαTβ sin θ

and
V αβ = TαTβ sin θ.η
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where

η = UV αβ = U(−V βα) = UV
β

α

Thus the scalar of the product of two vectors is the continued product of their tensors and
of the cosine of the supplement of the contained angle.

The tensor of the vector of the product of two vectors is the con tinued product of their
tensors and the sine of the contained angle ; and the versor of the same is a unit-vector
perpendicular to both, and such that the rotation about it from the first vector (i. e. the
multiplier) to the second is left-handed or positive.

Hence also TV αβ is double the area of the triangle two of whose sides are α, β.

97. (a) In any plane triangle ABC we have

AC = AB +BC

Hence,

AC
2
= S.ACAC = S.AC(AB +BC)

With the usual notation for a plane triangle the interpretation of this formula is

b2 = −bc cosA− ab cosC

or
b = c cosC + c cosA

(b) Again we have, obviously,

V.AB AC = V.AB(AB +BC)
= V.AB BC

or
cb sinA = ca sinB

whence
sinA

a
=

sinB

b
=

sinC

c

These are truths, but not truisms, as we might have been led to fancy from the excessive
simplicity of the process employed.

98. From §96 it follows that, if α and β be both actual (i. e. real and non-evanescent)
vectors, the equation

Sαβ = 0

shows that cos θ = 0, or that α is perpendicular to β. And, in fact, we know already that
the product of two perpendicular vectors is a vector.

Again if
V αβ = 0
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we must have sin θ = 0, or α is parallel to β. We know already that the product of two
parallel vectors is a scalar.

Hence we see that
Sαβ = 0

is equivalent to
α = V γβ

where γ is an undetermined vector; and that

V αβ = 0

is equivalent to
α = xβ

where x is an undetermined scalar.

99. If we write, as in §§83, 84,
α = ix+ jy + kz

β = ix′ + jy′ + kz′

we have, at once, by §86,

Sαβ = −xx′ − yy′ − zz′

= −rr′
(

x
r
x′

r′ +
y
r
y′

r′ +
z
r
z′

r′

)
where

r =
√

x2 + y2 + z2, r′ =
√
x′2 + y′2 + z′2

Also

V αβ = rr′
{
yz′ − zy′

rr′
i+

zx′ − xz′

rr′
j +

xy′ = yx′

rr′
k

}
These express in Cartesian coordinates the propositions we have just proved. In commencing
the subject it may perhaps assist the student to see these more familiar forms for the quater-
nion expressions ; and he will doubtless be induced by their appearance to prosecute the
subject, since he cannot fail even at this stage to see how much more simple the quaternion
expressions are than those to which he has been accustomed.

100. The expression
S.αβγ

may be written
SV (αβ)γ

because the quaternion αβγ may be broken up into

S(αβ)γ + V (αβ)γ

of which the first term is a vector.
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But, by §96,
SV (αβ)γ = TαTβ sin θSηγ

Here Tη = 1, let ϕ be the angle between η and γ, then finally

S.αβγ = −TαTβTγ sin θ cosϕ

But as η is perpendicular to α and β, Tγ cosϕ is the length of the perpendicular from the
extremity of γ upon the plane of α, β. And as the product of the other three factors is (§96)
the area of the parallelogram two of whose sides are α, β, we see that the magnitude of
S.αβγ, independent of its sign, is the volume of the parallelepiped of which three coordinate
edges are α, β, γ; or six times the volume of the pyramid which has α, β, γ for edges.

101. Hence the equation
S.αβγ = 0

if we suppose αβγ to be actual vectors, shows either that

sin θ = 0

or
cosϕ = 0

i. e. two of the three vectors are parallel, or all three are parallel to one plane.

This is consistent with previous results, for if γ = pβ we have

S.αβγ = pS.αβ2 = 0

and, if γ be coplanar with α,β, we have γ = pα+ qβ and

S.αβγ = S.αβ(pα+ qβ) = 0

102. This property of the expression S.αβγ prepares us to find that it is a determinant.
And, in fact, if we take α,β as in §83, and in addition

γ = ix′′ + jy′′ + kz′′

we have at once

S.αβγ = −x′′(yz′ − zy′)− y′′(zx′ − xz′)− z′′(xy′ − yx′)

= −

∣∣∣∣∣∣
x y z
x′ y′ z′

x′′ y′′ z′′

∣∣∣∣∣∣
The determinant changes sign if we make any two rows change places. This is the proposition
we met with before (§89) in the form

S.αβγ = −S.βαγ = S.βγα, &c
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If we take three new vectors
α1 = ix+ jx′ + kx′′

β1 = iy + jy′ + ky′′

γ1 = iz + jz′ + kz′′

we thus see that they are coplanar if α, β, γ are so. That is, if

S.αβγ = 0

then
S.α1β1γ1 = 0

103. We have, by §52,

(Tq)2 = qKq = (Sq + V q)(Sq − V q) (§79)
= (Sq)2 − (V q)2 by algebra
= (Sq)2 + (TV q)2 (§73)

If q = αβ, we have Kq = βα, and the formula becomes

αβ.βα = α2β2 = (Sαβ)2 − (V αβ)2

In Cartesian coordinates this is

(x2 + y2 + zz)(x
′2 + y

′2 + z
′2)

= (xx′ + yy′ + zz′)2 + (yz′ − zy′)2 + (zx′ − xz′)2 + (xy′ − yx′)2

More generally we have
(T (qr))2 = (Tq)2(Tr)2

= (S.qr)2 − (V.qr)2

If we write
q = w + α = w + ix+ jy + kz

r = w′ + β = w′ + ix′ + jy′ + kz′

this becomes
(w2 + x2 + y2 + z2)(w

′2 + x
′2 + y

′2 + z
′2)

= (ww′ − xx′ − yy′ − zz′)2 + (wx′ + w′x+ yz′ − zy′)2

= (xy′ + w′y + zx′ − xz′)2 + (wz′ + w′z + xy′ − yx′)2

a formula of algebra due to Euler.

104. We have, of course, by multiplication,

(α+ β)2 = α2 + αβ + βα+ β2 = α2 + 2Sαβ + β2 (§86 (3))
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Translating into the usual notation of plane trigonometry, this becomes

c2 = a2 − 2ab cosC + b2

the common formula.

Again,
V.(α+ β)(α− β) = −V αβ + V βα = −2V αβ (§86 (2)

Taking tensors of both sides we have the theorem, the parallelogram whose sides are parallel
and equal to the diagonals of a given parallelogram, has double its area (§96).
Also

S(α+ β)(α− β) = α2 − β2

and vanishes only when α2 = β2, or Tα = Tβ; that is, the diagonals of a parallelogram are
at right angles to one another, when, and only when, it is a rhombus.

Later it will be shown that this contains a proof that the angle in a semicircle is a right
angle.

105. The expression ρ = αβα−1

obviously denotes a vector whose tensor is equal to that of β.

But we have S.βαρ = 0
so that ρ is in the plane of α, β

Also we have Sαρ = Sαβ
so that β and ρ make equal angles with α, evidently on opposite sides of it. Thus if α be
the perpendicular to a reflecting surface and β the path of an incident ray, −ρ will be the
path of the reflected ray.

Another mode of obtaining these results is to expand the above expression, thus, §90 (2),

ρ = 2α−1Sαβ − β
= 2α−1Sαβ − α−1(Sαβ + V αβ)
= α−1(Sαβ − V αβ)

so that in the figure of §77 we see that if OA = α, and OB = β, we have OD = ρ = αβα−1

Or, again, we may get the result at once by transforming the equation to ρ
α = K(α−1ρ) = K β

α

106. For any three coplanar vectors the expression

ρ = αβγ

is (§101) a vector. It is interesting to determine what this vector is. The reader will easily
see that if a circle be described about the triangle, two of whose sides are (in order) α and
β, and if from the extremity of β a line parallel to γ be drawn, again cutting the circle, the
vector joining the point of intersection with the origin of α is the direction of the vector αβγ.
For we may write it in the form

ρ = αβ2β−1γ = −(Tβ)2αβ−1γ = −(Tβ)2
α

β
γ
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which shows that the versor

(
α

β

)
which turns β into a direction parallel to α, turns γ into

a direction parallel to ρ. And this expresses the long-known property of opposite angles of
a quadrilateral inscribed in a circle.

Hence if α, β, γ be the sides of a triangle taken in order, the tangents to the circumscribing
circle at the angles of the triangle are parallel respectively to

αβγ, βγα, and γαβ

Suppose two of these to be parallel, i. e. let

αβγ = xβγα = xαγβ (§90)

since the expression is a vector. Hence

βγ = xγβ

which requires either
x = 1, V γβ = 0 or γ||β

a case not contemplated in the problem; or

x = −1, Sβγ = 0

i. e. the triangle is right-angled. And geometry shows us at once that this is correct.

Again, if the triangle be isosceles, the tangent at the vertex is parallel to the base. Here we
have

xβ = αβγ

or
x(α+ γ) = α(α+ γ)γ

whence x = γ2 = α2, or Tγ = Tα, as required.

As an elegant extension of this proposition the reader may prove that the vector of the
continued product αβγδ of the vectorsides of any quadrilateral inscribed in a sphere is
parallel to the radius drawn to the corner (α, δ). [For, if ϵ be the vector from δ, α to β, γ,
αβϵ and ϵγδ are (by what precedes) vectors touching the sphere at α, δ. And their product
(whose vector part must be parallel to the radius at α, δ) is

αβϵ.ϵγδ = ϵ2.αβγδ]

107. To exemplify the variety of possible transformations even of simple expressions, we will
take cases which are of frequent occurrence in applications to geometry.

Thus
T (ρ+ α) = T (ρ− α)

[which expresses that if

OA = α OA′ = −α and OP = ρ
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we have AP = A′P
and thus that P is any point equidistant from two fixed points,] may be written

(ρ+ α)2 = (ρ− α)2

or ρ2 + 2Sαρ+ α2 = ρ2 − 2Sαρ+ α2 (§104)
whence Sαρ = 0
This may be changed to

αρ+ ρα = 0

or
αρ+Kαρ = 0

SU
ρ

α
= 0

or finally,

TV U
ρ

α
= 1

all of which express properties of a plane.

Again, Tρ = Tα

may be written T
ρ

α
= 1

(
S
ρ

α

)2
−
(
V
ρ

α

)2
= 1

(ρ+ α)2 − 2Sα(ρ+ α) = 0

ρ = (ρ+ α)−1α(ρ+ α)

S(ρ+ α)(ρ− α) = 0

or finally,
T.(ρ+ α)(ρ− α) = 2TV αρ

All of these express properties of a sphere. They will be interpreted when we come to
geometrical applications.

108. To find the space relation among five points.

A system of five points, so far as its internal relations are concerned, is fully given by the
vectors from one to the other four. If three of these be called α, β, γ, the fourth, δ, is
necessarily expressible as xα+ yβ+ zγ. Hence the relation required must be independent of
x, y, z.

But
Sαδ = xα2 + ySαβ + zSαγ
Sβδ = xSβα + yβ2 + zSβγ
Sγδ = xSγα + ySγβ + zγ2

Sδδ = δ2 = xSδα + ySδβ + zSδγ

 (1)
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The elimination of x, y, z gives a determinant of the fourth order, which may be written∣∣∣∣∣∣∣∣
Sαα Sαβ Sαγ Sαδ
Sβα Sββ Sβγ Sβδ
Sγα Sγβ Sγγ Sγδ
Sδα Sδβ Sδγ Sδδ

∣∣∣∣∣∣∣∣ = 0

Now each term may be put in either of two forms, thus

Sβγ =
1

2

{
β2 + γ2 − (β − γ)2

}
= −TβTγ cos β̂γ

If the former be taken we have the expression connecting the distances, two and two, of five
points in the form given by Muir (Proc. R. S. E. 1889) ; if we use the latter, the tensors
divide out (some in rows, some in columns), and we have the relation among the cosines of
the sides and diagonals of a spherical quadrilateral.

We may easily show (as an exercise in quaternion manipulation merely) that this is the only
condition, by showing that from it we can get the condition when any other of the points is
taken as origin. Thus, let the origin be at α, the vectors are α, β − α, γ − α, δ − α. But,
by changing the signs of the first row, and first column, of the determinant above, and then
adding their values term by term to the other rows and columns, it becomes∣∣∣∣∣∣∣∣

S( −α)(−α) S( −α)(β − α) S( −α)(γ − α) S( −α)(δ − α)
S(β − α)(−α) S(β − α)(β − α) S(β − α)(γ − α) S(β − α)(δ − α)
S(γ − α)(−α) S(γ − α)(β − α) S(γ − α)(γ − α) S(γ − α)(δ − α)
S(δ − α)(−α) S(δ − α)(β − α) S(δ − α)(γ − α) S(δ − α)(δ − α)

∣∣∣∣∣∣∣∣
which, when equated to zero, gives the same relation as before. [See Ex. 10 at the end of
this Chapter.]

An additional point, with ϵ = x′α+ y′β + z′γ gives six additional equations like (1) ; i. e.

Sαϵ = x′α2 +y′Sαβ +z′Sαγ
Sβϵ = x′Sβα +y′β2 +z′Sβγ
Sγϵ = x′Sγα +y′Sγβ +z′γ2

Sδϵ = x′Sδα +y′Sδβ +z′Sδγ
= xSϵα +ySϵβ +zSϵγ

ϵ2 = x′Sαϵ +y′Sβϵ +z′Sγϵ

from which corresponding conclusions may be drawn.

Another mode of solving the problem at the head of this section is to write the identity∑
m(α− θ)2 =

∑
mα2 − sS.θ

∑
mα+ θ2

∑
m

where the ms are undetermined scalars, and the αs are given vectors, while θ is any vector
whatever.

Now, provided that the number of given vectors exceeds four, we do not completely determine
the ms by imposing the conditions∑

m = 0,
∑

mα = 0
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Thus we may write the above identity, for each of five vectors successively, as∑
m(α− α1)

2 =
∑

mα2∑
m(α− α2)

2 =
∑

mα2

. . . . . . = . . .∑
m(α− αn)

2 =
∑

mα2

Take, with these,
∑

m = 0
and we have six linear equations from which to eliminate the ms. The resulting determinant
is ∣∣∣∣∣∣∣∣∣∣∣∣

α1 − α2
1 α1 − α2

s α1 − α2
3 . α1 − α2

5 1

α2 − α2
1 α2 − α2

s α2 − α2
3 . α2 − α2

5 1
. . . .
. . . .

α5 − α2
1 α5 − α2

s α5 − α2
3 . α5 − α2

5 1
1 1 . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
∑

mα2 = 0

This is equivalent to the form in which Cayley gave the relation among the mutual distances
of five points. (Camb. Math. Journ. 1841.)

109. We have seen in §95 that a quaternion may be divided into its scalar and vector parts
as follows:

β

α
= S

β

α
+ V

β

α
=

Tβ

Tα
(cos θ + ϵ sin θ)

where θ is the angle between the directions of α and β and ϵ = UV
β

α
is the unit-vector

perpendicular to the plane of α and β so situated that positive (i.e. left-handed) rotation
about it turns α towards β

Similarly we have (§96)
αβ = Sαβ + V αβ

= TαTβ(− cos θ + ϵ sin θ)

θ and ϵ having the same signification as before.

110. Hence, considering the versor parts alone, we have

U
β

α
= cos θ + ϵ sin θ

Similarly

U
γ

β
= cosϕ+ ϵ sinϕ

ϕ being the positive angle between the directions of γ and β, and ϵ the same vector as before,
if α, β, γ be coplanar.

Also we have
U
γ

α
= cos(θ + ϕ) + ϵ sin(θ + ϕ)

But we have always
γ

β
.
β

α
=

γ

α
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and therefore

U
γ

β
.U

β

α
= U

γ

α

or
cos(ϕ+ θ) + ϵ sin(ϕ+ θ) = (cosϕ+ ϵ sinϕ)(cos θ + ϵ sin θ)

= cosϕ cos θ − sinϕ sin θ + ϵ(sinϕ cos θ + cosϕ sin θ)

from which we have at once the fundamental formulae for the cosine and sine of the sum of
two arcs, by equating separately the scalar and vector parts of these quaternions.

And we see, as an immediate consequence of the expressions above, that

cosmθ + ϵ sinmθ = (cos θ + ϵ sin θ)m

if m be a positive whole number. For the left-hand side is a versor which turns through the
angle mθ at once, while the right-hand side is a versor which effects the same object by m
successive turn ings each through an angle θ. See §§8, 9.

111. To extend this proposition to fractional indices we have only to write
θ

n
for θ, when

we obtain the results as in ordinary trigonometry.

From De Moivre’s Theorem, thus proved, we may of course deduce the rest of Analytical
Trigonometry. And as we have already deduced, as interpretations of self-evident quaternion
transformations (§§97, 104), the fundamental formulae for the solution of plane triangles, we
will now pass to the consideration of spherical trigonometry, a subject specially adapted for
treatment by qua ternions; but to which we cannot afford more than a very few sections.
(More on this subject will be found in Chap. XI in connexion with the Kinematics of
rotation.) The reader is referred to Hamilton s works for the treatment of this subject by
quaternion exponentials.

112. Let α, β, γ be unit-vectors drawn from the centr to the corners A, B, C of a triangle
on the unit-sphere. Then it is evident that, with the usual notation, we have (§96),

Sαβ = − cos c, Sβγ = − cos a, Sγα = − cos b

TV αβ = sin c, TV βγ = sin a, TV γα = sin b

Also UV αβ, UV βγ, UV γα are evidently the vectors of the corners of the polar triangle.

Hence
S.UV αβUV βγ = cosB, &c.

TV.UV αβUV βγ = sinB, &c.

Now (§90 (1)) we have

SV αβV βγ = S.αV (βV βγ)
= −SαβSβγ + β2Sαγ

Remembering that we have

SV αβV βγ = TV αβTV βγS.UV αβUV βγ
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we see that the formula just written is equivalent to

sin a sin c cosB = − cos a cos c+ cos b

or
cos b = cos a cos c+ sin a sin c cosB

113. Again,
V.V αβV βγ = −βSαβγ

which gives

TV.V αβV βγ = TS.αβγ = TS.αV βγ = TS.βV γα = TS.γV αβ

or
sin a sin c sinB = sin a sin pa = sin b sin pb = sin c sin pc

where pa is the arc drawn from A perpendicular to BC, &c. Hence

sin pa = sin c sinB

sin pb =
sin a sin c

sin b
sinB

sin pc = sin a sinB

114. Combining the results of the last two sections, we have

V αβ.V βγ = sin a sin c cosB − β sin a sin c sinB

= sin a sin c(cosB − β sinB)

Hence U.V αβV βγ = (cosB − β sinB)
and U.V γβV βα = (cosB + β sinB)

}
These are therefore versors which turn all vectors perpendicular to OB negatively or posi-
tively about OB through the angle B.

[It will be shown later (§119) that, in the combination

(cosB + β sinB)( )(cosB − β sinB)

the system operated on is made to rotate, as if rigid, round the vector axis β through an
angle 2B.]

As another instance, we have

tanB =
sinB

cosB

=
TV.V αβV βγ

S.V αβV βγ

= −β−1V.V αβV βγ

S.V αβV βγ

= − S.αβγ

Sαγ + SαβSβγ
= &c

(1)
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The interpretation of each of these forms gives a different theorem in spherical trigonometry.

115. Again, let us square the equal quantities

V.αβγ and αSβγ − βSαγ + γSαβ

supposing α, β, γ to be any unit-vectors whatever. We have

−(V.αβγ)2 = S2βγ + S2γα+ S2αβ + 2SβγSγαSαβ

But the left-hand member may be written as

T 2.αβγ − S2.αβγ

whence
1− S2.αβγ = S2βγ + S2γα+ S2αβ + 2SβγSγαSαβ

or
1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

= sin2 a sin2 pa = &c.

= sin2 a sin2 b sin2 C = &c.

all of which are well-known formulae.

116. Again, for any quaternion,
q = Sq + V q

so that, if n be a positive integer,

qn = (Sq)n + n(Sq)n−1V q +
n.n− 1

1.2
(Sq)n−2(V q)2 + . . .

From this at once

S.qn = (Sq)n − n.n− 1

1.2
(Sq)n−2T 2V q

+
n.n− 1.n− 2.n− 3

1.2.3.4
(Sq)n−4T 4(V q)−&c.,

V.qn = V q

[
n(Sq)n−1 − n.n− 1.n− 2

1.2.3
(Sq)n−3T 2V q +&c.,

]
If q be a versor we have

q = cosu+ θ sinu

so that

S.qn = (cosu)n − n.n− 1

1.2
(cosu)n−2(sinu)2 + . . .

= cosnu;

V.qn = θ sinu

[
n(cosu)n−1 − n.n− 1.n− 2

1.2.3
(cosu)n−3(sinu)2 + . . .

]
= θ sinnu;
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as we might at once have concluded from §110.
Such results may be multiplied indefinitely by any one who has mastered the elements of
quaternions.

117. A curious proposition, due to Hamilton, gives us a quaternion expression for the
spherical excess in any triangle. The following proof, which is very nearly the same as one of
his, though by no means the simplest that can be given, is chosen here because it incidentally
gives a good deal of other information. We leave the quaternion proof as an exercise.

Let the unit-vectors drawn from the centre of the sphere to A, B, C, respectively, be α, β,
γ. It is required to express, as an arc and as an angle on the sphere, the quaternion

βα−1γ

The figure represents an orthographic projection made on a plane perpendicular to γ. Hence
C is the centre of the circle DEe. Let the great circle through A, B meet DEe in E, e, and

let DE be a quadrant. Thus
⌢

DE represents γ (§72). Also make
⌢

EF =
⌢

AB = βα−1 Then,
evidently,

⌢

DF = βα−1γ

which gives the arcual representation required.

Let DF cut Ee in G. Make Ca = EG, and join D, a, and a, F . Obviously, as D is the pole
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of Ee, Da is a quadrant ; and since EG = Ca, Ga = EG, a quadrant also. Hence a is the
pole of DG, and therefore the quaternion may be represented by the angle DaF .

Make Cb = Ca, and draw the arcs Paβ, Pbα from P , the pole of AB. Comparing the
triangles Ebα and eaβ, we see that Eα = eβ. But, since P is the pole of AB, Fβa is a right
angle: and therefore as Fa is a quadrant, so is Fβ. Thus AB is the complement of Eα or
βe, and therefore

αβ = 2AB

Join bA. and produce it to c so that Ac = bA; join c, P , cutting AB in o. Also join c, B,
and B, a.

Since P is the pole of AB, the angles at o are right angles; and therefore, by the equal
triangles bαA, coA, we have

αA = Ao

But
αβ = 2AB

whence
oB = Bβ

and therefore the triangles coB and Baβ are equal, and c, B, a lie on the same great circle.

Produce cA and cB to meet in H (on the opposite side of the sphere). H and c are diamet-
rically opposite, and therefore cP , produced, passes through H.

Now Pa = Pb = PH, for they differ from quadrants by the equal arcs aβ, bα, oc. Hence
these arcs divide the triangle Hab into three isosceles triangles.

But
∠PHb+ ∠PHA = ∠aHb = ∠bca

Also
∠Pab = π − ∠cab− ∠PaH

∠Pba = ∠Pab = π − ∠cba− ∠PbH

Adding,
2∠Pab = 2π − ∠cab− ∠cba− ∠bca

= π − (spherical excess of abc)

But, as ∠Faβ and ∠Dae are right angles, we have

angle of βα−1γ = ∠FaD = βae = ∠Pab

=
π

2
− 1

2
(spherical excess of abc)

[Numerous singular geometrical theorems, easily proved ab initio by quaternions, follow from
this: e.g. The arc AB, which bisects two sides of a spherical triangle abc, intersects the base
at the distance of a quadrant from its middle point. All spherical triangles, with a common
side, and having their other sides bisected by the same great circle (i.e. having their vertices
in a small circle parallel to this great circle) have equal areas, &c. ]
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118. Let Oa = α′, Ob = β′, Oc = γ′, and we have(
α′

β′

) 1
2
(

β′

γ′

) 1
2
(

γ′

α′

) 1
2

=
⌢

Ca.
⌢

cA.
⌢

Bc

=
⌢

Ca.
⌢

BA

=
⌢

EG.
⌢

FE =
⌢

FG

But FG is the complement of DF . Hence the angle of the quaternion(
α′

β′

) 1
2
(
β′

γ′

) 1
2
(
γ′

α′

) 1
2

is half the spherical excess of the triangle whose angular points are at the extremities of the
unit-vectors α′, β′, and γ′.

[In seeking a purely quaternion proof of the preceding proposi tions, the student may com-
mence by showing that for any three unit-vectors we have

β

α

γ

β

α

γ
= −(βα−1γ)2

The angle of the first of these quaternions can be easily assigned; and the equation shows
how to find that of βα−1γ.

Another easy method is to commence afresh by forming from the vectors of the corners of a
spherical triangle three new vectors thus:

α′ =

(
β + γ

α

2)2

. α, &c.

Then the angle between the planes of α, β′ and γ′, α; or of β, γ′ and α′, β; or of γ, α′ and
β′, γ is obviously the spherical excess.

But a still simpler method of proof is easily derived from the composition of rotations.]

119. It may be well to introduce here, though it belongs rather to Kinematics than to
Geometry, the interpretation of the operator

q( )q−1

By a rotation, about the axis of q, through double the angle of q, the quaternion r becomes
the quaternion qrq−1 . Its tensor and angle remain unchanged, its plane or axis alone varies.
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A glance at the figure is sufficient for the proof, if we note that of course T.qrq−1 = Tr, and
therefore that we need consider the versor parts only. Let Q be the pole of q.

⌢

AB = q,
⌢

AB−1 = q−1,
⌢

B′C ′ = r

Join C ′A, and make
⌢

AC =
⌢

C ′A. Join CB.

Then
⌢

CB is qrq−1, its arc CB is evidently equal in length to that of r, B′C ′; and its plane
(making the same angle with B′B that that of B′C ′ does) has evidently been made to revolve
about Q, the pole of q, through double the angle of q.

It is obvious, from the nature of the above proof, that this operation is distributive; i.e. that

q(r + s)q−1 = qrq−1 + qsq−1

If r be a vector, = ρ, then qρq−1 (which is also a vector) is the result of a rotation through
double the angle of q about the axis of q. Hence, as Hamilton has expressed it, if B represent
a rigid system, or assemblage of vectors,

qBq−1

is its new position after rotating through double the angle of q about the axis of q.

120. To compound such rotations, we have

r.qBq−1.r−1 = rq.B.(rq)−1

To cause rotation through an angle t-fold the double of the angle of q we write

qtBq−t

To reverse the direction of this rotation write

q−tBqt
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To translate the body B without rotation, each point of it moving through the vector α, we
write α+B.

To produce rotation of the translated body about the same axis, and through the same angle,
as before,

q(α+B)q−1

Had we rotated first, and then translated, we should have had

α+ qBq−1

From the point of view of those who do not believe in the Moon s rotation, the former of
these expressions ought to be

qαq−1 +B

instead of
qαq−1 + qBq−1

But to such men quaternions are unintelligible.

121. The operator above explained finds, of course, some of its most direct applications in
the ordinary questions of Astronomy, connected with the apparent diurnal rotation of the
stars. If λ be a unit-vector parallel to the polar axis, and h the hour angle from the meridian,
the operator is (

cos
h

2
− λ sin

h

2

)
( )

(
cos

h

2
+ λ sin

h

2

)
or

L−1 ( )L

the inverse going first, because the apparent rotation is negative (clockwise).

If the upward line be i, and the southward j, we have

λ = i sin l − j cos l

where l is the latitude of the observer. The meridian equatorial unit vector is

µ = i cos l + j sin l

and λ, µ, k of course form a rectangular unit system.

The meridian unit-vector of a heavenly body is

δ = i cos(l − d) + j sin(l − d)

= λ sin d+ µ cos d

where d is its declination.

Hence when its hour-angle is h, its vector is

δ′ = L−1δL
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The vertical plane containing it intersects the horizon in

iV iδ′ = jSjδ′ + kSkδ′

so that

tan(azimuth) =
Skδ′

Sjδ′
(1)

[This may also be obtained directly from the last formula (1) of §114.]
To find its Amplitude, i.e. its azimuth at rising or setting, the hour-angle must be obtained
from the condition

Siδ′ = 0 (2)

These relations, with others immediately deducible from them, enable us (at once and for
ever) to dispense with the hideous formulae of Spherical Trigonometry.

122. To show how readily they can be applied, let us translate the expressions above into
the ordinary notation. This is effected at once by means of the expressions for λ, µ, L, and
δ above, which give by inspection

δ′ = λ sin d+ (µ cosh− k sinh) cos d

= x sin d + (fjb cos h k sin h) cos d, and we have from (1) and (2) of last section respectively

tan(azimuth) =
sinh cos d

cos l sin d− sin l cos d cosh
(1)

cosh+ tan l tan d = 0 (2)

In Capt. Weir s ingenious Azimuth Diagram, these equations are represented graphically by
the rectangular coordinates of a system of confocal conics: viz.

x = sinh sec l
y = cosh tan l

}
(3)

The ellipses of this system depend upon l alone, the hyperbolas upon h. Since (1) can, by
means of (3), be written as

tan(azimuth) =
x

tan d− y

we see that the azimuth can be constructed at once by joining with the point 0, − tan d, the
intersection of the proper ellipse and hyperbola.

Equation (2) puts these expressions for the coordinates in the form

x = sec l
√
1− tan2 l tan2 d

y = − tan2 l tan d

}
The elimination of d gives the ellipse as before, but that of l gives, instead of the hyperbolas,
the circles

x2 + y2 − y(tan d− cot d) = 1
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The radius is
1

2
(tan d+ cot d)

and the coordinates of the centre are

0,
1

2
(tan d− cot d)

123. A scalar equation in ρ, the vector of an undetermined point, is generally the equation
of a surface; since we may use in it the expression

ρ = xα

where x is an unknown scalar, and α any assumed unit-vector. The result is an equation to
determine x. Thus one or more points are found on the vector xα, whose coordinates satisfy
the equation; and the locus is a surface whose degree is determined by that of the equation
which gives the values of x.

But a vector equation in ρ, as we have seen, generally leads to three scalar equations, from
which the three rectangular or other components of the sought vector are to be derived.
Such a vector equation, then, usually belongs to a definite number of points in space. But
in certain cases these may form a line, and even a surface, the vector equation losing as it
were one or two of the three scalar equations to which it is usually equivalent.

Thus while the equation
αρ = β

gives at once
ρ = α−1β

which is the vector of a definite point, since by making ρ a vector we have evidently assumed

Sαβ = 0

the closely allied equation
V αρ = β

is easily seen to involve
Sαβ = 0

and to be satisfied by
ρ = α−1β + xα

whatever be x. Hence the vector of any point whatever in the line drawn parallel to α
from the extremity of α−1β satisfies the given equation. [The difference between the results
depends upon the fact that Sαρ is indeterminate in the second form, but definite (= 0) in
the first.]

124. Again,
V αρ.V ρβ = (V αβ)2
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is equivalent to but two scalar equations. For it shows that V αρ and V βρ are parallel, i.e.
ρ lies in the same plane as α and β, and can therefore be written (§24)

ρ = xα+ yβ

where x and y are scalars as yet undetermined.

We have now
V αρ = yV αβ

V ρβ = xV αβ

which, by the given equation, lead to

xy = 1, or y =
1

x

or finally

ρ = xα+
1

x
β

which (§40) is the equation of a hyperbola whose asymptotes are in the directions of α and
β.

125. Again, the equation
V.V αβV αρ = 0

though apparently equivalent to three scalar equations, is really equivalent to one only. In
fact we see by §91 that it may be written

−αS.αβρ = 0

whence, if α be not zero, we have
S.αβρ = 0

and thus (§101) the only condition is that ρ is coplanar with α, β. Hence the equation
represents the plane in which α and β lie.

126. Some very curious results are obtained when we extend these processes of interpretation
to functions of a quaternion

q = w + ρ

instead of functions of a mere vector ρ.

A scalar equation containing such a quaternion, along with quaternion constants, gives, as
in last section, the equation of a surface, if we assign a definite value to w. Hence for
successive values of w, we have successive surfaces belonging to a system ; and thus when w
is indeterminate the equation represents not a surface, as before, but a volume, in the sense
that the vector of any point within that volume satisfies the equation.

Thus the equation
(Tq)2 = a2

or
w2 − ρ2 = a2
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or
(TP )2 = a2 − w2

represents, for any assigned value of w, not greater than a, a sphere whose radius is
√
a2 − w2.

Hence the equation is satisfied by the vector of any point whatever in the volume of a sphere
of radius a, whose centre is origin.

Again, by the same kind of investigation,

(T (q − β))2 = a2

where q = w + ρ, is easily seen to represent the volume of a sphere of radius a described
about the extremity of β as centre.

Also S(q2) = −a2 is the equation of infinite space less the space contained in a sphere of
radius a about the origin.

Similar consequences as to the interpretation of vector equations in quaternions may be
readily deduced by the reader.

127. The following transformation is enuntiated without proof by Hamilton (Lectures, p.
587, and Elements, p. 299).

r−1(r2q2)
1
2 q−1 = U(rq +KrKq)

To prove it, let
r−1(r2q2)

1
2 q−1 = t

then
Tt = 1

and therefore
Kt = t−1

But
(r2q2)

1
2 = rtq

or
r2q2 = rtqrtq

or
rq = tqrt

Hence
KqKr = t−1KrKqt−1

or
KrKq = tKqKrt

Thus we have
U(rq ±KrKq) = tU(qr ±KqKr)t

or, if we put
s = U(qr ±KqKr)
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Ks = ±tst

Hence
sKs = (Ts)2 = 1 = ±stst

which, if we take the positive sign, requires

st = ±1

or
t = ±s−1 = ±UKs

which is the required transformation.

[It is to be noticed that there are other results which might have been arrived at by using the
negative sign above ; some involving an arbitrary unit-vector, others involving the imaginary
of ordinary algebra.]

128. As a final example, we take a transformation of Hamilton’s, of great importance in the
theory of surfaces of the second order.

Transform the expression
(Sαρ)2 + (Sβρ)2 + (Sγρ)2

in which α, β, γ are any three mutually rectangular vectors, into the form(
T (ιρ+ ρκ)

κ2 − ι2

)2

which involves only two vector-constants, ι, κ.

[The student should remark here that ι, κ, two undetermined vectors, involve six disposable
constants : and that α, β, γ, being a rectangular system, involve also only six constants.]

{T (ιρ+ ρκ)}2 = (ιρ+ ρκ)(ρι+ κρ) (§§52, 55)
= (ι2 + κ2)ρ2 + (ιρκρ+ ρκρι)
= (ι2 + κ2)ρ2 + 2S.ιρκρ
= (ι− κ)2ρ2 + 4SιρSκρ

Hence

(Sαρ)2 + (Sβρ)2 + (Sγρ)2 =
(ι− κ)2

(κ2 − ι2)2
ρ2 + 4

SιρSκρ

(κ2 − ι2)2

But
α−2(Sαρ)2 + β−2(Sβρ)2 + γ−2(Sγρ)2 = ρ2 (§§25, 73).

Multiply by β2 and subtract, we get(
1− β2

α2

)
(Sαρ)2 −

(
β2

γ2
− 1

)
(Sγρ)2 =

{
(ι− κ)2

(κ2 − ι2)2
− β2

}
ρ2 + 4

SιρSκρ

(κ2 − ι2)2

The left side breaks up into two real factors if β2 be intermediate in value to α2 and γ2: and
that the right side may do so the term in ρ2 must vanish. This condition gives

β2 =
(ι− κ)2

(κ2 − ι2)2
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and the identity becomes

S

{
α

√(
1− β2

α2

)
+ γ

√(
β2

γ2
− 1

)}
ρS

{
α

√(
1− β2

α2

)
− γ

√(
β2

γ2
− 1

)}
ρ = 4

SιρSκρ

(κ2 − ι2)2

Hence we must have

2ι

κ2 − ι2
= p

{
α

√(
1− β2

α2

)
+ γ

√(
β2

γ2
− 1

)}

2κ

κ2 − ι2
=

1

p

{
α

√(
1− β2

α2

)
− γ

√(
β2

γ2
− 1

)}
where ρ is an undetermined scalar.

To determine ρ, substitute in the expression for β2, and we find

4β2 = 4(ι−κ)2

(κ2−ι2)2 =
(
p− 1

p

)2
(α2 − β2) +

(
p+ 1

p

)2
(β2 − γ2)

=
(
p2 + 1

p2

)
(α2 − γ2)− 2(α2 + γ2) + 4β2

Thus the transformation succeeds if

p2 +
1

p2
=

2(α2 + γ2)

α2 − γ2

which gives

p+
1

p
= ±2

√
α2

α2 − γ2

p− 1

p
= ±2

√
γ2

α2 − γ2

Hence
4(κ2 − ι2)

(κ2 − ι2)2
=

(
1

p2
− p2

)
(α2 − γ2) = ±4

√
α2γ2

(κ2 − ι2)−1 = ±TαTγ

Again

p =
Tα+ Tγ√
γ2 − α2

,
1

p
=

Tα− Tγ√
γ2 − α2

and therefore

2ι =
Tα+ Tγ

TαTγ

(√
β2 − α2

γ2 − α2
Uα+

√
γ2 − β2

γ2 − α2
Uγ

)

2κ =
Tα− Tγ

TαTγ

(√
β2 − α2

γ2 − α2
Uα−

√
γ2 − β2

γ2 − α2
Uγ

)
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Thus we have proved the possibility of the transformation, and determined the transforming
vectors ι, κ.

129. By differentiating the equation

(Sαρ)2 + (Sβρ)2 + (Sγρ)2 =

(
T (ιρ+ ρκ)

(κ2 − ι2)

)2

we obtain, as will be seen in Chapter IV, the following,

SαρSαρ′ + SβρSβρ′ + SγρSγρ′ =
S.(ιρ+ ρκ)(κρ′ + ρ′ι)

(κ2 − ι2)2

where ρ also may be any vector whatever.

This is another very important formula of transformation ; and it will be a good exercise
for the student to prove its truth by processes analogous to those in last section. We may
merely observe, what indeed is obvious, that by putting ρ′ = ρ it becomes the formula of
last section. And we see that we may write, with the recent values of ι and κ in terms of α,
β, γ, the identity

αSαρ+ βSβρ+ γSγρ =
(ι2 + κ2)ρ+ 2V.ιρκ

(κ2 − ι2)2

=
(ι− κ)2ρ+ 2(ιSκρ+ κSιρ)

(κ2 − ι2)2

130. In various quaternion investigations, especially in such as involve imaginary intersec-
tions of curves and surfaces, the old imaginary of algebra of course appears. But it is to
be particularly noticed that this expression is analogous to a scalar and not to a vector,
and that like real scalars it is commutative in multiplication with all other factors. Thus it
appears, by the same proof as in algebra, that any quaternion expression which contains this
imaginary can always be broken up into the sum of two parts, one real, the other multiplied
by the first power of

√
−1. Such an expression, viz.

q = q′ +
√
−1q′′

where q′ and q′′ are real quaternions, is called by Hamilton a BIQUATERNION. [The student
should be warned that the term Biquaternion has since been employed by other writers in
the sense sometimes of a “set” of 8 elements, analogous to the Quaternion 4 ; sometimes
for an expression q′ + θq′′ where θ is not the algebraic imaginary. By them Hamilton s
Biquaternion is called simply a quaternion with non-real constituents.] Some little care is
requisite in the management of these expressions, but there is no new difficulty. The points
to be observed are: first, that any biquaternion can be divided into a real and an imaginary
part, the latter being the product of

√
−1 by a real quaternion; second, that this

√
−1 is

commutative with all other quantities in multiplication; third, that if two biquaternions be
equal, as

q′ +
√
−1 q′′ = r′ +

√
−1 r′′
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we have, as in algebra,
q′ = r′, q′′ = r′′

so that an equation between biquaternions involves in general eight equations between
scalars. Compare §80.
131. We have obviously, since

√
−1 is a scalar,

S(q′ +
√
−1 q′′) = Sq′ +

√
−1 Sq′′

V (q′ +
√
−1 q′′) = V q′ +

√
−1 V q′′

Hence (§103)
{T (q′ +

√
−1 q′′)}2

= (Sq′ +
√
−1 Sq′′ + V q′ +

√
−1 V q′′)(Sq′ +

√
−1 Sq′′ − V q′ −

√
−1 V q′′)

= (Sq′ +
√
−1 Sq′′)2 − (V q′ +

√
−1 V q′′)2

= (Tq′)2 − (Tq′′)2 + 2
√
−1 S.q′Kq′′

The only remark which need be made on such formulae is this, that the tensor of a biquater-
nion may vanish while both of the component quaternions are finite.

Thus, if
Tq′ = Tq′′

and
S.q′Kq′′ = 0

the above formula gives
T (q′ +

√
−1 q′′) = 0

The condition
S.q′Kq′′ = 0

may be written

Kq′′ = q
′−1α, or q′′ = −αKq

′−1 = − αq′

(Tq′)2

where α is any vector whatever.

Hence

Tq′ = Tq′′ = TKq′′ =
Tα

Tq′′

and therefore
Tq′(Uq′ −

√
−1 Uα.Uq′) = (1−

√
−1 Uα)q′

is the general form of a biquaternion whose tensor is zero.

132. More generally we have, q, r, q′, r′ being any four real and non-evanescent quaternions,

(q +
√
−1 q′)(r +

√
−1 r′) = qr − q′r′ +

√
−1 (qr′ + q′r)
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That this product may vanish we must have

qr = q′r′

and
qr′ = −q′r

Eliminating r′ we have
qq

′−1qr = −q′r

which gives
(q

′−1q)2 = −1

i.e.
q = q′α

where α is some unit-vector.

And the two equations now agree in giving

−r = αr′

so that we have the biquaternion factors in the form

q′(α+
√
−1) and − (α−

√
−1)r′

and their product is
−q′(α+

√
−1)(α−

√
−1)r′

which, of course, vanishes.

[A somewhat simpler investigation of the same proposition may be obtained by writing the
biquaternions as

q′(q
′−1q +

√
−1) and (rr

′−1 +
√
−1)r′

or
q′(q′′ +

√
−1) and (r′′ +

√
−1)r′

and showing that
q′′ = −r′′ = α where Tα = 1]

From this it appears that if the product of two bivectors

ρ+ σ
√
−1 and ρ′ + σ′√−1

is zero, we must have
σ−1ρ = −ρ′σ

′−1 = Uα

where α may be any vector whatever. But this result is still more easily obtained by means
of a direct process.

133. It may be well to observe here (as we intend to avail our selves of them in the succeeding
Chapters) that certain abbreviated forms of expression may be used when they are not liable
to confuse, or lead to error. Thus we may write

T 2q for (Tq)2
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just as we write
cos2 θ for (cos θ)2

although the true meanings of these expressions are

T (Tq) and cos(cos θ)

The former is justifiable, as T (Tq) = Tq, and therefore T 2q is not required to signify the
second tensor (or tensor of the tensor) of q. But the trigonometrical usage is defensible only
on the score of convenience, and is habitually violated by the employment of cos−1x in its
natural and proper sense. Similarly we may write

S2q for (Sq)2, &c.

but it may be advisable not to use
Sq2

as the equivalent of either of those just written; inasmuch as it might be confounded with
the (generally) different quantity

S.q2 or S(q2)

although this is rarely written without the point or the brackets.

The question of the use of points or brackets is one on which no very definite rules can be
laid down. A beginner ought to use them freely, and he will soon learn by trial which of
them are absolutely necessary to prevent ambiguity.

In the present work this course has been adopted:– the earlier examples in each part of the
subject being treated with a free use of points and brackets, while in the later examples
superfluous marks of the kind are gradually got rid of.

It may be well to indicate some general principles which regulate the omission of these marks.
Thus in S.αβ or V.αβ the point is obviously unnecessary:– because Sα = 0, and V α = α so
that the S would annihilate the term if it applied to α alone, while in the same case the V
would be superfluous. But in S.qr and V.qr, the point (or an equivalent) is indispensable,
for Sq.r, and V q.r are usually quite different from the first written quantities. In the case
of K, and of d (used for scalar differentiation), the omission of the point indicates that the
operator acts only on the nearest factor:– thus

Kqr = (Kq)r = Kq.r, dqr = (dq)r = dq.r

Kqr = (Kq) r = Kq . r, dqr = (dq) r=dq.r; while, if its action extend farther, we write

K.qr = K(qr), d.qr = d(qr) &c.

In more complex cases we must be ruled by the general principle of dropping nothing which
is essential. Thus, for instance

V (pK(dq)V (V q.r))

may be written without ambiguity as

V (pK(dq)V (V q.r))
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but nothing more can be dropped without altering its value.

Another peculiarity of notation, which will occasionally be required, shows which portions
of a complex product are affected by an operator. Thus we write

∇Sστ

if ∇ operates on σ and also on τ , but

∇1Sστ1

if it operates on τ alone. See, in this connection, the last Example at the end of Chap. IV.
below.

134. The beginner may expect to be at first a little puzzled with this aspect of the notation;
but, as he learns more of the subject, he will soon see clearly the distinction between such
an expression as

S.V αβV βγ

where we may omit at pleasure either the point or the first V without altering the value,
and the very different one

Sαβ.V βγ

which admits of no such changes, without alteration of its value.

All these simplifications of notation are, in fact, merely examples of the transformations of
quaternion expressions to which part of this Chapter has been devoted. Thus, to take a very
simple ex ample, we easily see that

S.V αβV βγ = SV αβV βγ = S.αβV βγ = SαV.βV βγ = −SαV.(V βγ)β
= SαV.(V γβ)β = S.αV (γβ)β = S.V (γβ)βα = SV γβV βα
= S.γβV βα = S.K(βγ)V βα = S.βγKV βα = −S.βγV βα
= S.V γβV βα,&c., &c.

The above group does not nearly exhaust the list of even the simpler ways of expressing the
given quantity. We recommend it to the careful study of the reader. He will find it advisable,
at first, to use stops and brackets pretty freely; but will gradually learn to dispense with
those which are not absolutely necessary to prevent ambiguity.

There is, however, one additional point of notation to which the reader s attention should
be most carefully directed. A very simple instance will suffice. Take the expressions

β

γ
.
γ

α
and

βγ

γα

The first of these is
βγ−1.γα−1 = βα−1

and presents no difficulty. But the second, though at first sight it closely resembles the first,
is in general totally different in value, being in fact equal to

βγα−1γ−1
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For the denominator must be treated as one quaternion. If, then, we write

βγ

γα
= q

we have
βγ = qγα

so that, as stated above,
q = βγα−1γ−1

We see therefore that
β

γ
.
γ

α
=

β

α
=

βγ

αγ
; but not =

βγ

γα

4.7 Examples to Chapter 3

1. Investigate, by quaternions, the requisite formulae for changing from any one set of
coordinate axes to another ; and derive from your general result, and also from special
investiga tions, the usual expressions for the following cases:

(a) Rectangular axes turned about z through any angle.

(b) Rectangular axes turned into any new position by rota tion about a line equally inclined
to the three.

(c) Rectangular turned to oblique, one of the new axes lying in each of the former coordi-
nate planes.

2. Point out the distinction between(
α+ β

α

)2

and
(α+ β)2

α2

and find the value of their difference.

If

Tβ/α = 1 and U
α+ β

α
=

(
β

α

) 1
2

Show also that
α+ β

α− β
=

V αβ

1 + Sαβ′

and
α− β

α+ β
= − V αβ

1− Sαβ′

provided α and β be unit-vectors. If these conditions are not fulfilled, what are the true
values ?
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3. Show that, whatever quaternion r may be, the expression

αr + rβ

in which α and β are any two unit- vectors, is reducible to the form

l(α+ β) +m(αβ − 1)

where l and m are scalars.

4. If Tp = Tα = Tβ = 1, and S.αβρ = 0 show by direct transformations that

S.U(ρ− α)U(ρ− β) = ±
√

1

2
(1− Sαβ)

Interpret this theorem geometrically.

5. If Sαβ = 0, Tα = Tβ = 1, show that

(1 + αm)β = 2 cos
mπ

4
α

m
2 β = 2Sα

m
2 .α

m
2 β

6. Put in its simplest form the equation

ρS.V αβV βγV γα = aV.V γαV αβ + bV.V αβV βγ + cV.V βγV γα

and show that
a = S.βγρ, &c.

7. Show that any quaternion may in general, in one way only, be expressed as a homogeneous
linear function of four given quaternions. Point out the nature of the exceptional cases. Also
find the simplest form in which any quaternion may generally be expressed in terms of two
given quaternions.

8. Prove the following theorems, and exhibit them as properties of determinants :

(a) S.(α+ β)(β + γ)(γ + α) = 2S.αβγ

(b) S.V αβV βγV γα = −(S.αβγ)2

(c) S.V (α+ β)(β + γ)V (β + γ)(γ + α)V (γ + α)(α+ β) = −4(S.αβγ)2

(d) S.V (V αβV βγ)V (V βγV γα)V (V γαV αβ) = −(S.αβγ)4

(e) S.δϵζ = −16(S.αβγ)4

where
δ = V (V (α+ β)(β + γ)V (β + γ)(γ + α))

ϵ = V (V (β + γ)(γ + α)V (γ + α)(α+ β))

ζ = V (V (γ + α)(α+ β)V (α+ β)(β + γ))
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9. Prove the common formula for the product of two determinants of the third order in the
form

S.αβγS.α1β1γ1 =

∣∣∣∣∣∣
Sαα1 Sβα1 Sγα1

Sαβ1 Sββ1 Sγβ1

Sαγ1 Sβγ1 Sγγ1

∣∣∣∣∣∣
10. Show that, whatever be the eight vectors involved,∣∣∣∣∣∣∣∣

Sαα1 Sαβ1 Sαγ1 Sαδ1
Sβα1 Sββ1 Sβγ1 Sβδ1
Sγα1 Sγβ1 Sγγ1 Sγδ1
Sδα1 Sδβ1 Sδγ1 Sδδ1

∣∣∣∣∣∣∣∣ = S.αβγS.β1γ1δ1Sα1(δ − δ) = 0

If the single term Sαα1, be changed to Sα0α1, the value of the determinant is

S.βγδS.β1γ1δ1Sα1(α0 − α)

State these as propositions in spherical trigonometry.

Form the corresponding null determinant for any two groups of five quaternions : and give
its geometrical interpretation.

11. If, in §102, α, β, γ be three mutually perpendicular vectors, can anything be predicated
as to α1, β1, γ1? If α, β, γ be rectangular unit-vectors, what of α1, β1, γ1?

12. If α, β, γ, α′, β′, γ′ be two sets of rectangular unit-vectors, show that

Sαα′ = Sγβ′Sβγ′ = Sββ′Sγγ′ &c. &c.

13. The lines bisecting pairs of opposite sides of a quadrilateral (plane or gauche) are
perpendicular to each other when the diagonals of the quadrilateral are equal.

14. Show that

(a) S.q2 = 2S2q − T 2q

(b) S.q3 = S3q − 3SqT 2V q

(c) α2β2γ2 + S2.αβγ = V 2.αβγ

(d) S(V.αβγV.βγαV.γαβ) = 4SαβSβγSγαS.αβγ

(e) V.q3 = (2S2q − T 2V q)V q

(f) qUV q−1 = −Sq.UV q + TV q

and interpret each as a formula in plane or spherical trigonometry.

15. If q be an undetermined quaternion, what loci are represented by

(a) (qα−1)2 = −a2
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(b) (qα−1)4 = a4

(c) S.(q − α)2 = a2

where a is any given scalar and α any given vector ?

16. If q be any quaternion, show that the equation

Q2 = q2

is satisfied, not alone by Q = ±q, but also by

Q = ±
√
−1(Sq.UV q − TV q)

(Hamilton, Lectures, p. 673.)

17. Wherein consists the difference between the two equations

T 2 ρ

α
= 1 and

( ρ
α

)2
= −1

What is the full interpretation of each, α being a given, and p an undetermined, vector?

18. Find the full consequences of each of the following groups of equations, as regards both
the unknown vector ρ and the given vectors α, β, γ:

S.αβρ = 0 Sαρ = 0 Sαρ = 0
(a) (b) S.αβρ = 0 (c) S.αβρ = 0

S.βγρ = 0 Sβρ = 0 S.αβγρ = 0

19. From §§74, 110, show that, if ϵ be any unit-vector, and m any scalar,

ϵm = cos
mπ

2
+ ϵ sin

mπ

2

Hence show that if α, β, γ be radii drawn to the corners of a triangle on the unit-sphere,
whose spherical excess is m right angles,

α+ β

β + γ
.
γ + α

α+ β
.
β + γ

γ + α
= αm

Also that, if A, B, C be the angles of the triangle, we have

γ
2C
π β

2B
π α

2A
π = −1

20. Show that for any three vectors α, β, γ we have

(Uαβ)2 + (Uβγ)2 + (Uαγ)2 + (U.αβγ)2 + 4Uαγ.SUαβSUβγ = −2

(Hamilton, Elements, p. 388.)
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21. If a1, a2, a3, x be any four scalars, and ρ1, ρ2, ρ3 any three vectors, show that

(S.ρ1ρ2ρ3)
2 + (

∑
.a1V ρ2ρ3)

2 + x2(
∑

V ρ1ρ2)
2−

x2(
∑

.a1(ρ2 − ρ3))
2 + 2

∏
(x2 + Sρ1ρ2 + a1a2)

= 2
∏

(x2 + ρ2) + 2
∏

a2+∑
{(x2 + a21 + ρ21)((V ρ2ρ3)

2 + 2a2a3(x
2 + Sρ2ρ3)− x2(ρ2 − ρ3)

2)}

where
∏

a2 = a21a
2
2a

2
3

Verify this formula by a simple process in the particular case

a1 = a2 = a3 = x = 0

(Ibid)

22. Eliminate p from the equations

V.βραρ = 0, Sγρ = 0

and state the problem and its solution in a geometrical form.

23. If p, q, r, s be four versors, such that

qp = −sr = α

rq = −ps = β

where α and β are unit-vectors; show that

S(V.V sV qV.V rV p) = 0

Interpret this as a property of a spherical quadrilateral.

24. Show that, if pq, rs, pr, and qs be vectors, we have

S(V.V pV sV.V qV r) = 0

25. If α, β, γ be unit-vectors,

V βγS.αβγ = −α(1− S2βγ)− β(SαγSβr + Sαβ)− γ(SαβSβγ + Sαγ)

26. If i, j, k, i′, j′, k′, be two sets of rectangular unit-vectors, show that

S.V ii′V jj′V kk′ = (Sij′)2 − (Sji′)2

= (Sjk′)2 − (Skj′)2 = &c.

and find the values of the vector of the same product.



4.7. EXAMPLES TO CHAPTER 3 135

27. If α, β, γ be a rectangular unit-vector system, show that, whatever be λ, µ, ν

λS2iα+ µS2jγ + νS2kβ

λS2kγ + µS2iβ + νS2jα

and
λS2jβ + µS2kα+ νS2iγ

are coplanar vectors. What is the connection between this and the result of the preceding
example ?
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4.8 Axiom Examples

The basic operation for creating quaternions is quatern. This is a quaternion over the
rational numbers.

q:=quatern(2/11,-8,3/4,1)

2

11
− 8 i+

3

4
j + k

Type: Quaternion Fraction Integer

This is a quaternion over the integers.

r:=quatern(1,2,3,4)

1 + 2 i+ 3 j + 4 k

Type: Quaternion Integer

We can also construct quaternions with complex components. First we construct a complex
number.

b:=complex(3,4)

3 + 4 i

Type: Complex Integer

and then we use it as a component in a quaternion.

s:=quatern(3,1/7,b,2)

3 +
1

7
i+ (3 + 4 i) j + 2 k

Type: Quaternion Complex Fraction Integer

Notice that the i component of the complex number has no relation to the i component of
the quaternion even though they use the same symbol by convention.

The four parts of a quaternion are the real part, the i imaginary part, the j imaginary part,
and the k imaginary part. The real function returns the real part.

real q
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2

11

Type: Fraction Integer

The imagI function returns the i imaginary part.

imagI q

−8

Type: Fraction Integer

The imagJ function returns the j imaginary part.

imagJ q

3

4

Type: Fraction Integer

The imagK function returns the k imaginary part.

imagK q

1

Type: Fraction Integer

Quaternions satisfy a very fundamental relationship between the parts, namely that

i2 = j2 = k2 = ijk = −1

. This is similar to the requirement in complex numbers of the form a+ bi that i2 = −1.

The set of quaternions is denoted by H, whereas the integers are denoted by Z and the
complex numbers by C.
Quaternions are not commutative which means that in general

AB ̸= BA

for any two quaternions, A and B. So, for instance,

q*r
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437

44
− 84

11
i+

1553

44
j − 523

22
k

Type: Quaternion Fraction Integer

r*q

437

44
− 84

11
i− 1439

44
j +

599

22
k

Type: Quaternion Fraction Integer

and these are clearly not equal.

Complex 2× 2 matrices form an alternate, equivalent representation of quaternions. These
matrices have the form: [

u v
−v u

]
= [

a+ bi c+ di
−c+ di a− bi

]
where u and v are complex, u is complex conjugate of u, z is the complex conjugate of z,
and a,b,c, and d are real.

Within the quaternion each component operator represents a basis element in R4 thus:

1 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1



i =


0 1 0 0
−1 0 0 1
0 0 0 1
0 0 −1 0





Chapter 5

Clifford Algebra

This is quoted from John Fletcher’s web page [Flet09] (with permission).

The theory of Clifford Algebra includes a statement that each Clifford Algebra is isomor-
phic to a matrix representation. Several authors discuss this and in particular Ablamowicz
[Abla98] gives examples of derivation of the matrix representation. A matrix will itself satisfy
the characteristic polynomial equation obeyed by its own eigenvalues. This relationship can
be used to calculate the inverse of a matrix from powers of the matrix itself. It is demon-
strated that the matrix basis of a Clifford number can be used to calculate the inverse of a
Clifford number using the characteristic equation of the matrix and powers of the Clifford
number. Examples are given for the algebras Clifford(2), Clifford(3) and Clifford(2,2).

5.1 Introduction

Introductory texts on Clifford algebra state that for any chosen Clifford Algebra there is a
matrix representation which is equivalent. Several authors discuss this in more detail and
in particular, Ablamowicz [Abla98] shows that the matrices can be derived for each algebra
from a choice of idempotent, a member of the algebra which when squared gives itself. The
idea of this paper is that any matrix obeys the characteristic equation of its own eigenvalues,
and that therefore the equivalent Clifford number will also obey the same characteristic
equation. This relationship can be exploited to calculate the inverse of a Clifford number.
This result can be used symbolically to find the general form of the inverse in a particular
algebra, and also in numerical work to calculate the inverse of a particular member. This
latter approach needs the knowledge of the matrices. Ablamowicz has provided a method
for generating them in the form of a Maple implementation. This knowledge is not believed
to be new, but the theory is distributed in the literature and the purpose of this paper is to
make it clear. The examples have been first developed using a system of symbolic algebra
described in another paper by this author [Flet01].

139
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5.2 Clifford Basis Matrix Theory

The theory of the matrix basis is discussed extensively by Ablamowicz. This theory will be
illustrated here following the notation of Ablamowicz by reference to Clifford(2) algebra and
can be applied to other Clifford Algebras. For most Clifford algebras there is at least one
primitive idempotent, such that it squares to itself. For Clifford (2), which has two basis
members e1 and e2, one such idempotent involves only one of the basis members, e1, i.e.

f1 = f =
1

2
(1 + e1)

If the idempotent is mutiplied by the other basis function e2, other functions can be gener-
ated:

f2 = e2f =

(
1

2
− 1

2
e1

)
e2

f3 = fe2 =

(
1

2
+

1

2
e1

)
e2

f4 = e2fe2 =
1

2
− 1

2
e1

Note that fe22f = 0. These four functions provide a means of representing any member of
the space, so that if a general member c is given in terms of the basis members of the algebra

c = a0 + a1e1 + a2e2 + a3e1e2

it can also be represented by a series of terms in the idempotent and the other functions.

c = a11f1 + a21f2 + a12f3 + a22f4

= 1
2a11 +

1
2a11e1 +

1
2a21e2 −

1
2a21e1e2+

1
2a12e2 +

1
2a12e1e2 +

1
2a22 −

1
2a22e1

Equating coefficients it is clear that the following equations apply.

a0 = 1
2a11 +

1
2a22

a1 = 1
2a11 −

1
2a22

a2 = 1
2a12 +

1
2a21

a3 = 1
2a12 −

1
2a21
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The reverse equations can be recovered by multiplying the two forms of c by different com-
binations of the functions f1, f2 and f3. The equation

f1cf1 = f1(a11f1 + a21f2 + a12f3 + a22f4)f1

= f1(a0 + a1e1 + a2e2 + a3e1e2)f1

reduces to the equation

a11f = (a0 + a1)f

and similar equations can be deduced from other combinations of the functions as follows.

f1cf2 : a12f = (a2 + a3)f

f2cf1 : a21f = (a2 − a3)f

f3cf2 : a22f = (a0 − a1)f

If a matrix is defined as

A =

(
a11 a12
a21 a22

)
so that

Af =

(
a11f a12f
a21f a22f

)
=

(
a0 + a1 a2 + a3
a2 − a3 a0 − a1

)
f

then the expression

(
1 e2

)( a11f a12f
a21f a22f

)(
1
e2

)
= a11f1 + a21f2 + a12f3 + a22f4 = c

generates the general Clifford object c. All that remains to form the basis matrices is to
make c each basis member in turn, and named as shown.

c = 1 : Af =

(
f 0
0 f

)
= E0f

c = e1 Af =

(
f 0
0 −f

)
= E1f

c = e2 Af =

(
0 f
f 0

)
= E2f

c = e1e2 Af =

(
0 f
−f 0

)
= E12f
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These are the usual basis matrices for Clifford (2) except that they are multiplied by the
idempotent.

This approach provides an explanation for the basis matrices in terms only of the Clifford
Algebra itself. They are the matrix representation of the basis objects of the algebra in
terms of an idempotent and an associated vector of basis functions. This has been shown
for Clifford (2) and it can be extended to other algebras once the idempotent and the vector
of basis functions have been identified. This has been done in many cases by Ablamowicz.
This will now be developed to show how the inverse of a Clifford number can be obtained
from the matrix representation.

5.3 Calculation of the inverse of a Clifford number

The matrix basis demonstrated above can be used to calculate the inverse of a Clifford
number. In simple cases this can be used to obtain an algebraic formulation. For other
cases the algebra is too complex to be clear, but the method can still be used to obtain the
numerical value of the inverse. To apply the method it is necessary to know a basis matrix
representation of the algebra being used.

The idea of the method is that the matrix representation will have a characteristic poly-
nomial obeyed by the eigenvalues of the matrix and also by the matrix itself. There may
also be a minimal polynomial which is a factor of the characteristic polynomial, which will
have also be satisfied by the matrix. It is clear from the proceding section that if A is a
matrix representation of c in a Clifford Algebra then if some function f(A) = 0 then the
corresponding Clifford function f(c) = 0 must also be zero. In particular if f(A) = 0 is the
characteristic or minimal polynomial of A, then f(c) = 0 implies that c also satisfies the
same polynomial. Then if the inverse of the Clifford number, c−1 is to be found, then

c−1f(c) = 0

provides a relationship for c−1 in terms of multiples a small number of low powers of c, with
the maximum power one less than the order of the polynomial. The method suceeds unless
the constant term in the polynomial is zero, which means that the inverse does not exist.
For cases where the basis matrices are of order two, the inverse will be shown to be a linear
function of c.

The method can be summed up as follows.

1. Find the matrix basis of the Clifford algebra.

2. Find the matrix representation of the Clifford number whose inverse is required.

3. Compute the characteristic or minimal polynomial.

4. Check for the existence of the inverse.

5. Compute the inverse using the coefficients from the polynomial.
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Step 1 need only be done once for any Clifford algebra, and this can be done using the
method in the previous section, where needed.

Step 2 is trivially a matter of accumulation of the correct multiples of the matrices.

Step 3 may involve the use of a computer algebra system to find the coefficients of the
polynomial, if the matrix size is at all large.

Steps 4 and 5 are then easy once the coefficients are known.

The method will now be demonstrated using some examples.

Example 1: Clifford (2)

In this case the matrix basis for a member of the Clifford algebra

c = a0 + a1e1 + a2e2 + a3e1e2

was developed in the previous section as

A =

(
a0 + a1 a2 + a3
a2 − a3 a0 − a1

)
This matrix has the characteristic polynomial

X2 − 2Xa0 + a20 − a21 − a22 + a23 = 0

and therefore

X−1(X2 − 2Xa0 + a20 − a21 − a22 + a23) = 0

and

X−1 = (2a0 −X)/(a20 − a21 − a22 + a23) = 0

which provides a general solution to the inverse in this algebra.

c−1 = (2a0 − c)/(a20 − a21 − a22 + a23) = 0

Example 2: Clifford (3)

A set of basis matrices for Clifford (3) as given by Abalmowicz and deduced are
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E0 =

(
1 0
0 1

)
E1 =

(
1 0
0 −1

)
E2 =

(
0 1
1 0

)
E3 =

(
0 −j
j 0

)
E1E2 =

(
0 1
−1 0

)
E1E3 =

(
0 −j
−j 0

)
E2E3 =

(
j 0
0 −j

)
E1E2E3 =

(
j 0
0 j

)
for the idempotent

f =
(1 + e1)

2
, where j2 = −1.

The general member of the algebra

c3 = a0 + a1e1 + a2e2 + a3e3 + a12e1e2 + a13e1e3 + a23e2e3 + a123e1e2e3

has the matrix representation

A3 = a0E0 + a1E1 + a2E2 + a3E3 + a12E1E2

+a13E1E3 + a23E2E3 + a123E1E2E3

=

(
a0 + a1 + ja23 + ja123 a2 − ja3 + a12 − ja13
a2 + ja3 − a12 − ja13 a0 − a1 − ja23 + ja123

)
This has the characteristic polynomial

a20 − a21 − a22 − a23 + a212 + a213 + a223 − a2123

+ 2j(a0a123 − a1a23 − a12a3 + a13a2)

− 2(a0 + ja123)X +X2 = 0

and the expression for the inverse is

X−1 = (2a0 + 2ja123 −X)/
(a20 − a21 − a22 − a23 + a212 + a213 + a223 − a2123
+2j(a0a123 − a1a23 − a12a3 + a13a2))

Complex terms arise in two cases,

a123 ̸= 0
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and

(a0a123 − a1a23 − a12a3 + a13a2) ̸= 0

Two simple cases have real minumum polynomials:

Zero and first grade terms only:

A1 = a0E0 + a1E1 + a2E2 + a3E3

=

(
a0 + a1 a2 − ja3
a2 + ja3 a0 − a1

)
which has the minimum polynomial

a20 − a21 − a22 − a23 − 2a0X +X2 = 0

which gives

X−1 = (2a0 −X)/(a20 − a21 − a22 − a23)

Zero and second grade terms only (ie. the even subspace).

A2 = a0E0 + a12E1E2 + a13E1E3 + a23E2E3(
a0 + ja23 a12 − ja13

−a12 − ja13 a0 − ja23

)
which has minimum polynomial

a20 + a223 + a212 + a213 − 2a0X +X2 = 0

giving

X−1 = (2a0 −X)/(a20 + a223 + a212 + a213)

This provides a general solution for the inverse together with two simple cases of wide
usefulness.

Example 3: Clifford (2,2)

The following basis matrices are given by Ablamowicz [Abla98]

E1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 E2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


E3 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 E4 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0
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for the idempotent

f =
(1 + e1e3)(1 + e1e3)

4
.

Note that this implies that the order of the basis members is such that e1 and e2 have square
+1 and e3 and e4 have square −1. Other orderings are used by other authors. The remaining
basis matrices can be deduced to be as follows.

Second Grade members

E1E2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 E1E3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


E1E4 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 E2E3 =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0


E2E4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 E3E4 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


Third grade members

E1E2E3 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 E1E2E4 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


E1E3E4 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 E2E3E4 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


Fourth grade member

E1E2E3E4 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Zero grade member (identity)

E0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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The general member of the Clifford (2,2) algebra can be written as follows.

c22 = a0 + a1e1 + a2e2 + a3e3 + a4e4+
a12e1e2 + a13e1e3 + a14e1e4 + a23e2e3 + a24e2e4 + a34e3e4
+a123e1e2e3 + a124e1e2e4 + a134e1e3e4 + a234e2e3e4 + a1234e1e2e3e4

This has the following matrix representation.

a0 + a13+ a1 − a3+ a2 − a4− −a12 + a14−
a24 − a1234 a124 + a234 a123 − a134 a23 − a34

a1 + a3+ a0 − a13+ a12 − a14− −a2 + a4−
a124 − a234 a24 + a1234 a23 − a34 a123 − a134

a2 + a4− −a12 − a14− a0 + a13− a1 − a3−
a123 + a134 a23 + a34 a24 + a1234 a124 − a234

a12 + a14− −a2 − a4− a1 + a3− a0 − a13−
a23 + a34 a123 + a134 a124 + a234 a24 − a1234


In this case it is possible to generate the characteristic equation using computer algebra.
However, it is too complex to be of practical use. Instead here are numerical examples of
the use of the method to calculate the inverse. For the case where

n1 = 1 + e1 + e2 + e3 + e4

then the matrix representation is

N1 = E0 + E1 + E2 + E3 + E4 =


1 0 0 0
2 1 0 0
2 0 1 0
0 −2 2 1


This has the minimum polynomial

X2 − 2X + 1 = 0

so that

X−1 = 2−X

and

n−1
1 = 2− n1 = 1− e1 − e2 − e3 − e4
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For

n2 = 1 + e1 + e2 + e3 + e4 + e1e2

the matrix representation is

N2 = I + E1 + E2 + E3 + E4 + E1E2 =


1 0 0 −1
2 1 1 0
2 −1 1 0
1 −2 2 1


This has the minimum polynomial

X4 − 4X3 + 8X2 − 8X − 4 = 0

so that

X−1 =
X3 − 4X2 + 8X − 8

4

and

n−1
2 =

n3
2 − 4n2

2 + 8n2 − 8

4

This expression can be evaluated easily using a computer algebra system for Clifford algebra
such as described in Fletcher [Flet01]. The result is

n−1
2 = −0.5 + 0.5e1 + 0.5e2 − 0.5e1e2 − 0.5e1e3

−0.5e1e4 + 0.5e2e3 + 0.5e2e4 − 0.5e1e2e3 − 0.5e1e2e4

Note that in some cases the inverse is linear in the original Clifford number, and in others it
is nonlinear.

Conclusion

The paper has demonstrated a method for the calculation of inverses of Clifford numbers
by means of the matrix representation of the corresponding Clifford algebra. The method
depends upon the calculation of the basis matrices for the algebra. This can be done from an
idempotent for the algebra if the matrices are not already available. The method provides
an easy check on the existence of the inverse. For simple systems a general algebraic solution
can be found and for more complex systems the algebra of the inverse can be generated
and evaluated numerically for a particular example, given a system of computer algebra for
Clifford algebra.



Chapter 6

Package for Algebraic Function
Fields

PAFF is a Package for Algebraic Function Fields in one variable by Gaétan Haché

PAFF is a package written in Axiom and one of its many purpose is to construct geometric
Goppa codes (also called algebraic geometric codes or AG-codes). This package was written
as part of Gaétan’s doctorate thesis on “Effective construction of geometric codes”: this
thesis was done at Inria in Rocquencourt at project CODES and under the direction of
Dominique LeBrigand at Universit Pierre et Marie Curie (Paris 6). Here is a résumé of the
thesis.

It is well known that the most difficult part in constructing AG-code is the computation of
a basis of the vector space “L(D)” where D is a divisor of the function field of an irreducible
curve. To compute such a basis, PAFF used the Brill-Noether algorithm which was gener-
alized to any plane curve by D. LeBrigand and J.J. Risler [LeBr88]. In [Hach96] you will
find more details about the algorithmic aspect of the Brill-Noether algorithm. Also, if you
prefer, as I do, a strictly algebraic approach, see [Hach95]. This is the approach I used in
my thesis ([Hach96]) and of course this is where you will find complete details about the im-
plementation of the algorithm. The algebraic approach use the theory of algebraic function
field in one variable : you will find in [Stic93] a very good introduction to this theory and
AG-codes.

It is important to notice that PAFF can be used for most computation related to the function
field of an irreducible plane curve. For example, you can compute the genus, find all places
above all the singular points, compute the adjunction divisor and of course compute a basis
of the vector space L(D) for any divisor D of the function field of the curve.

There is also the package PAFFFF which is especially designed to be used over finite fields.
This package is essentially the same as PAFF, except that the computation are done over
“dynamic extensions” of the ground field. For this, I used a simplify version of the notion
of dynamic algebraic closure as proposed by D. Duval [Duva95].
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Example 1

This example compute the genus of the projective plane curve defined by:

5 2 3 4

X + Y Z + Y Z = 0

over the field GF(2).

First we define the field GF(2).

K:=PF 2

R:=DMP([X,Y,Z],K)

P:=PAFF(K,[X,Y,Z],BLQT)

We defined the polynomial of the curve.

C:R:=X**5 + Y**2*Z**3+Y*Z**4

We give it to the package PAFF(K,[X,Y,Z]) which was assigned to the variable P .

setCurve(C)$P



151



152 CHAPTER 7. INTERPOLATION FORMULAS

Chapter 7

Interpolation Formulas

y(-3) C(u+3,1) ∆2y(-4) C(u+4,3) ∆4y(-5)

1 ∆y(-3) C(u+3,2) ∆3y(-4) C(u+4,4)

y(-2) C(u+2,1) ∆2y(-3) C(u+3,3) ∆4y(-4)

1 ∆y(-2) C(u+2,2) ∆3y(-3) C(u+3,4)

y(-1) C(u+1,1) ∆2y(-2) C(u+2,3) ∆4y(-3)

1 ∆y(-1) C(u+1,2) ∆3y(-2) C(u+2,4)

y(0) C(u,1) ∆2y(-1) C(u+1,3) ∆4y(-2)

1 ∆y(0) C(u,2) ∆3y(-1) C(u+1,4)

y(1) C(u-1,1) ∆2y(0) C(u,3) ∆4y(-1)

1 ∆y(1) C(u-1,2) ∆3y(0) C(u,4)

y(2) C(u-2,1) ∆2y(1) C(u-1,3) ∆4y(0)

1 ∆y(2) C(u-2,2) ∆3y(1) C(u-1,4)

y(3) C(u-3,1) ∆2y(2) C(u-2,3) ∆4y(1)

1 ∆y(3) C(u-3,2) ∆3y(2) C(u-2,4)
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The lozenge diagram is a device for showing that a large number of formulas which appear
to be different are really all the same. The notation for the binomial coefficients

C(u+ k, n) =
(u+ k)(u+ k − 1)(u+ k − 2) · · · (u+ k − n+ 1)

n!

There are n factors in the numerator and n in the denominator. Viewed as a function of u,
C(u+ k, n) is a polynomial of degree n.

The figure above, Hamming [Hamm62] calls a lozenge diagram. A line starting at a point
on the left edge and following some path across the page defines an interpolation formula if
the following rules are used.

1a For a left-to-right step, add

1b For a right-to-left, subtract

2a If the slope of the step is positive, use the product of the difference crossed times the
factor immediately below.

2b If the slope of the step is negative, use the product of the difference crossed times the
factor immediately above

3a If the step is horizontal and passes through a difference, use the product of the difference
times the average of the factors above and below.

3b If the step is horizontal and passes through a factor, use the product of the factor times
the average of the differences above and below.

As an example of rules 1a and 2a, consider starting at y(0) and going down to the right.
We get, term by term,

y(u) = y(0) + C(u, 1)∆y(0) + C(u, 2)∆2y(0) + C(u, 3)∆3y(0) + · · ·

= y(0) + u∆y(0) +
u(u− 1)

2
∆2y(0) +

u(u− 1)(y − 2)

3!
∆3y(0) + · · ·

which is Newton’s formula.

Had we gone up and to the right, we would have used 1a and 2a to get Newton’s backward
formula:

y(u) = y(0) + C(u, 1)∆y(−1) + C(u+ 1, 2)∆2y(−2) + C(u+ 2, 3)∆3y(−3) + · · ·

= y(0) + u∆y(−1) +
(u+ 1)u

2
∆2y(−2) +

(u+ 2)(u+ 1)u

3!
∆3y(−3) + · · ·

To get Stirling’s formula, we start at y(0) and go horizontally to the right, using rules 3a
and 3b:

y(u) = y(0)+u
∆y0 +∆y−1

2
+
C(u+ 1, 2) + C(u, 2)

2
∆2y−1+C(u+1, 3)

∆3y−2 +∆3y−1

2
+· · ·
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= y0 + u
∆y0 +∆y−1

2
+

u2

2
∆2y−1 +

u(u2 − 1)

3!

∆3y−2 +∆3y−1

2
+ · · ·

If we start midway between y(0) and y(1), we get Bessel’s formula:

y(u) = 1
y0 + y1

2
+

C(u, 1) + C(u− 1, 1)

2
∆y0 + C(u, 2)

∆2y−1 +∆2y0
2

+ · · ·

=
y0 + y1

2
+ (u− 1

2
)∆y0 +

u(u− 1)

2

∆2y−1 +∆2y0
2

+ · · ·

If we zigzag properly, we can get Gauss’ formula for interpolation:

y(u) = y0 + u∆y0 +
u(u− 1)

2
∆2y(−1) +

u(u2 − 1)

3!
∆3y(−1) + · · ·
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Chapter 8

Potential Future Algebra



Chapter 9

Groebner Basis

Groebner Basis

157



158 CHAPTER 9. GROEBNER BASIS



Chapter 10

Greatest Common Divisor

Greatest Common Divisor
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Chapter 11

Polynomial Factorization

Polynomial Factorization
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Chapter 12

Cylindrical Algebraic
Decomposition

We quote from LaValle [LaVa06]. The idea is to develop a sequence of projections that drops
the dimension of the semi-algebraic set by one each time. Initially, the set is defined over Rn,
and after one projection, a semi-algebraic set is obtained in Rn−1. Eventually, the projection
reaches R, and a univariate polynomial is obtained for which the zeros are at the critical
places where cell boundaries need to be formed. A cell decomposition of 1-cells (intervals)
and 0-cells is formed by partitioning R. The sequences is then reversed, and decompositions
are formed from R2 up to Rn. Each iteration starts with a cell decomposition in Ri and
lifts it to obtain a cylinder of cells in Ri+1.
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Chapter 13

Differential Forms

This is quoted from Wheeler [Whee12].

13.1 From differentials to differential forms

In a formal sense, we may define differentials as the vector space of linear mappings from
curves to the reals, that is, given a differential df we may use it to map any curve, C ∈ C
to a real number simply by integrating:

df : C → R

x =

∫
C

df

This suggests a generalization, since we know how to integrate over surfaces and volumes as
well as curves. In higher dimensions we also have higher order multiple integrals. We now
consider the integrands of arbitrary multiple integrals∫

f(x)dl,

∫ ∫
f(x)dS,

∫ ∫ ∫
f(x)dV

Much of their importance lies in the coordinate invariance of the resulting integrals.

One of the important properties of integrands is that they can all be regarded as oriented. If
we integrate a line integral along a curve from A to B we get a number, while if we integrate
from B to A we get minus the same number,∫ B

A

f(x)dl = −
∫ A

B

f(x)dl

We can also demand oriented surface integrals, so the surface integral∫ ∫
A · n dS
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changes sign if we reverse the direction of the normal to the surface. This normal can be
thought of as the cross product of two basis vectors within the surface. If these basis vectors’
cross product is taken in one order, n has one sign. If the opposite order is taken then -n
results. Similarly, volume integrals change sign if we change from a right- or left-handed
coordinate system.

The wedge product

We can build this alternating sign into our convention for writing differential forms by
introducing a formal antisymmetric product, called the wedge product, symbolized by ∧,
which is defined to give these differential elements the proper signs. Thus, surface integrals
will be written as integrals over the products

dx ∧ dy,dy ∧ dz,dz ∧ dx

with the convention that ∧ is antisymmetric:

dx ∧ dy = −dy ∧ dx

under the interchange of any two basis forms. This automatically gives the right orientation
of the surface. Similarly, the volume element becomes

V = dx ∧ dy ∧ dz

which changes sign if any pair of the basis elements are switched.

We can go further than this by formalizing the full integrand. For a line integral, the general
form of the integrand is a linear combination of the basis differentials,

Axdx+Aydy +Azdz

Notice that we simply add the different parts. Similary, a general surface integrand is

Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

while the volume integrand is
f(x) dx ∧ dy ∧ dz

These objects are called differential forms.

Clearly, differential forms come in severaly types. Functions are called 0-forms, line elements
1-forms, surface elements 2-forms, and volume elements are called 3-forms. These are all the
types that exist in 3-dimensions, but in more than three dimensions we can have p-forms
with p ranging from zero to the dimension, d, of the space. Since we can take arbitrary linear
combinations of p-forms, they form a vector space, Λp.

We can always wedge together any two forms. We assume this wedge product is associative,
and obeys the usual distributive laws. The wedge product of a p-form with a q-form is a
(p+ q)-form.
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Notice that the antisymmetry is all we need to rearrange any combination of forms. In
general, wedge products of even order forms with any other forms commute while wedge
products of pairs of odd-order forms anticommute. In particular, functions (0-forms) com-
mute with all p-forms. Using this, we may interchange the order of a line element and a
surface area, for if

l = A dx

S = B dy ∧ dz

then
l ∧ S = (A dx) ∧ (B dy ∧ dz)

= A dx ∧B dy ∧ dz
= AB dx ∧ dy ∧ dz
= −AB dy ∧ dx ∧ dz
= AB dy ∧ dz ∧ dx
= S ∧ l

but the wedge product of two line elements changes sign, for if

l1 = A dx

l2 = B dy + C dz

then
l1 ∧ l2 = (A dx) ∧ (B dy + C dz)

= A dx ∧B dy +A dx ∧ C dz
+ AB dx ∧ dy +AC dx ∧ dz
= −AB dy ∧ dx−AC dz ∧ dz
= −B dy ∧A dx− C dz ∧A dx
= −l2 ∧ l1

For any odd-order form, ω, we immediately have

ω ∧ ω = −ω ∧ ω = 0

In 3-dimensions there are no 4-forms because anything we try to construct must contain a
repeated basis form. For example,

l ∧V = (A dx) ∧ (B dx ∧ dy ∧ dz)
= AB dx ∧ dx ∧ dy ∧ dz
= 0

since dx ∧ dx = 0. The same occurs for anything we try. Of course, if we have more
dimensions then there are more independent directions and we can find nonzero 4-forms. In
general, in d-dimensions we can find d-forms, but no (d+ 1)-forms.

Now suppose we want to change coordinates. How does an integrand change? Suppose
Cartesian coordinates (x,y) in the plane are given as some functions of new coordinates
(u,v). Then we already know that differentials change according to

dx = dx(u, v) =
∂x

∂u
du+

∂x

∂v
dv
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and similarly for dy, applying the usual rules for partial differentiation. Notice what happens
when we use the wedge product to calculate the new area element:

dx ∧ dy =

(
∂x

∂u
du+

∂x

∂v
dv

)
∧
(
∂y

∂u
du+

∂y

∂v
dv

)

=
∂x

∂v

∂y

∂u
dv ∧ du+

∂x

∂u

∂y

∂v
du ∧ dv

=

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
du ∧ dv

= J du ∧ dv

where

J = det


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


is the Jacobian of the coordinate transformation. This is exactly the way that an area element
changes when we change coordinates. Notice the Jacobian coming out automatically. We
couldn’t ask for more - the wedge product not only gives us the right signs for oriented areas
and volumes, but gives us the right transformation to new coordinates. Of course the volume
change works, too.

Under a coordinate transformation

x → x(u, v, w)

y → y(u, v, w)

z → z(u, v, w)

the new volume element is the full Jacobian times the new volume form,

dx ∧ dy ∧ dz = J(xyz;uvw) du ∧ dv ∧ dw

So the wedge product successfully keesp track of p-dim volumes and their orientations in a
coordinate invariant way. Now any time we have an integral, we can regard the integrand as
being a differential form. But all of this can go much further. Recall our proof that 1-forms
form a vector space. Thus, the differential, dx of x(u, v) given above is just a gradient. It
vanishes along surfaces where x is constant, and the components of the vector(

∂x

∂u
,
∂x

∂v

)
point in a direction normal to those surfaces. So symbols like dx or du contain directional
information. Writing them with a boldface d indicates this vector character. Thus, we write

A = Aidx
i
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Let
f(x, y) = axy

The vector with components (
∂f

∂u
,
∂f

∂v

)
is perpendicular to the surfaces of constant f .

We have defined forms, have written down their formal properties, and have used those
properties to write them in components. Then, we define the wedge product, which enables
us to write p-dimensional integrands as p-forms in such a way that the orientation and
coordinate transformation properties of the integrals emerges automatically.

Though it is 1-forms, Aidx
i that corresponding to vectors, we have defined a product of

basis forms that we can generalize to more complicated objects. Many of these objects are
already familiar. Consider the product of two 1-forms.

A ∧B = Ai dx
i ∧Bj dxj

= AiBj dxi ∧ dxj

=
1

2
AiBj (dxi ∧ dxj − dxj ∧ dxi)

=
1

2
(AiBj dxi ∧ dxj −AiBj dxj ∧ dxi)

=
1

2
(AiBj dxi ∧ dxj −AjBi dx

i ∧ dxj)

=
1

2
(AiBj −AjBi) dx

i ∧ dxj

The coefficients
AiBj −AjBi

are essentially the components of the cross product. We will see this in more detail below
when we discuss the curl.

The exterior derivative

We may regard the differential of any function, say f(x, y, z), as the 1-form:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

=
∂f

∂xi
dxi

Since a fnction is a 0-form then we can imagine an operator d that differentiates any 0-
form to give a 1-form. In Cartesian coordinates, the coefficients of this 1-form are just the
Cartesian components of the gradient.
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The operator d is called the exterior derivative, and we may apply it to any p-form to get a
(p+ 1)-form. The extension is defined as follows. First consider a 1-form

A = Ai dx
i

We define
dA = dAi ∧ dxi

Similarly, since an arbitrary p-form in n-dimensions may be written as

ω = Ai1,i2,···,ip ∧ dxi1 ∧ dxi2 · · · ∧ dxip

we define the exterior derivative of ω to be a (p+ 1)-form

dω = dAi1,i2,···,ip ∧ dxi1 ∧ dxi2 · · · ∧ dxip

Let’s see what happens if we apply d twice to the Cartesian coordinate, x regarded as a
function of x, y and z:

d2x = d(dx)
= d(1dx)
= d(1) ∧ dx
= 0

since all derivatives of the constant function f = 1 are zero. The same applies if we apply d
twice to any function:

d2f = d(df)

= d

(
∂f

∂xi
dxi

)

= d

(
∂f

∂xi
∧ dxi

)

=

(
∂2f

∂xj∂xi
dxj

)
∧ dxi

=
∂2f

∂xj∂xi
dxj ∧ dxi

By the same argument we used to get the components of the curl, we may write this as

d2f =
1

2

(
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
dxj ∧ dxi

= 0

since partial derivatives commute.

Poincaré Lemma: d2ω = 0 where ω is an arbitrary p-form.
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Next, consider the effect on d on an arbitrary 1-form. We have

dA = d(Aidx
i)

=

(
∂Ai

∂xj
dxj

)
∧ dxi

=
1

2

(
∂Ai

∂xj
− ∂Aj

∂xi

)
dxj ∧ dxi

We have the components of the curl of the vector A. We must be careful here, however,
because these are the components of the curl only in Cartesian coordinates. Later we will
see how these components relate to those in a general coordinate system. Also, recall that
the components Ai are distinct from the usual vector components Ai. These differences will
be resolved when we give a detailed discussion of the metric. Ultimately, the action of d on
a 1-form gives us a coordinate invariant way to calculate the curl.

Finally, suppose we have a 2-form expressed as

S = Az dx ∧ dy +Ay dz ∧ dx+Ax dy ∧ dz

Then apply the exterior derivative gives

dS = dAz ∧ dx ∧ dy + dAy ∧ dz ∧ dx+ dAx ∧ dy ∧ dz

=
∂Az

∂z
dz ∧ dx ∧ dy +

∂Ay

∂y
dy ∧ dz ∧ dx+

∂Ax

∂x
dx ∧ dy ∧ dz

=

(
∂Az

∂z
+

∂Ay

∂y
+

∂Ax

∂x

)
dx ∧ dy ∧ dz

so that the exterior derivative can also reproduce the divergence.

The Hodge dual

To truly have the curl we need a way to turn a 2-form into a vector, i.e., a 1-form and a way
to turn a 3-form into a 0-form. This leads us to introduce the Hodge dual , or star, operator
⋆.

Notice that in 3-dim, both 1-forms and 2-forms have three independent components, while
both 0- and 3-forms have one component. This suggests that we can define an invertible
mapping between these pairs. In Cartesian coordinates, suppose we set

⋆(dx ∧ dy) = dz
⋆(dy ∧ dz) = dx
⋆(dz ∧ dx) = dy

⋆(dx ∧ dy ∧ dz) = 1

and further require that the star be its own inverse

⋆⋆ = 1
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With these rules we can find the Hodge dual of any form in 3-dim.

The dual of the general 1-form
A = Aidx

i

is the 2-form
S = Az dx ∧ dy +Ay dz ∧ dx+Ax dy ∧ dz

For an arbitrary (Cartesian) 1-form

A = Aidx
i

that
⋆d ⋆A = divA

The curl of A

curl(A) =

(
∂Ay

∂z
− ∂Az

∂y

)
dx+

(
∂Az

∂x
− ∂Ax

∂z

)
dy

(
∂Ax

∂y
− ∂Ay

∂x

)
dz

Three operations - the wedge product ∧, the exterior derivative d, and the Hodge dual ⋆
- together encompass the usual dot and cross products as well as the divergence, curl and
gradient. In fact, they do much more - they extend all of these operations to arbitrary
coordinates and arbitrary numbers of dimensions. To explore these generalizations, we must
first explore properties of the metric and look at coordinate transformations. This will allow
us to define the Hodge dula in arbitrary coordinates.
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