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It is well known that G. H. Hardy travelled in a taxicab numbered 1729 to an English
nursing home to visit his bedridden colleague S. Ramanujan. Hardy was disappointed
that his cab had such a mundane number, but to his surprise when he mentioned this to
Ramanujan, the brilliant Indian mathematician found 1729 to be quite interesting, for it
is the smallest integer that has two distinct representations as a sum of two cubes:

1729 = 13 + 123 = 93 + 103.

J. H. Silverman used this famous anecdote to motivate the study of elliptic curves in a
recent article [8].

Recently I learned that other permutations of the digits 1, 2, 7, and 9 are significant
to the Ramanujan story. Two permutations involve Bruce Berndt, the diligent editor of
Ramanujan’s notebooks. Bruce has devoted most of his professional career to undertaking
the daunting task of proving many of Ramanujan’s identities (written in notebooks without
proofs), but to my surprise his fascination with Ramanujan has profoundly impacted his
life outside mathematics. Sonja, Bruce’s youngest daughter, was born in 1972. Is this
a coincidence, or could it be an example of “Ramanujan family planning?” With more
sleuthing I discovered that Bruce’s home is in Urbana, Illinois 61802-7219. Could there
be any truth to the rumor that Bruce paid the postmaster a mere $12.79 for this vanity
zipcode?

In a more serious direction, consider the number 2719, which came to my attention
in joint work with K. Soundararajan [5]. We begin with the following footnote from
Ramanujan’s 1916 paper on quadratic forms [6, p. 14]:
“ . . . the even numbers which are not of the form x2 + y2 + 10z2 are the numbers

4λ(16µ + 6),

while the odd numbers that are not of that form, viz.,

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391 . . .

do not seem to obey any simple law.”
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In view of the list of exceptions, could there be a “simple law” that eluded Ramanujan?
After extensive computation, amongst the odd integers two further exceptions emerged,
the numbers 679 and of course 2719. A few years ago W. Duke and R. Schulze-Pillot [3]
(see [2] for a survey) made a great breakthrough in the theory of ternary quadratic forms,
and from their work it follows that there are only finitely many positive odd integers that
are not of the form x2 + y2 + 10z2. Could it be that 2719 is the largest such integer?

Unfortunately we do not yet know enough to decide whether or not it is since they
obtained no bound beyond which every odd integer is so represented. Although obtaining
such a bound appears to be beyond the current state of knowledge, assuming certain
Riemann hypotheses, the author and Soundararajan [5] have shown that the only positive
odd integers that are not of the form x2 + y2 + 10z2 are indeed 679, 2719, and the 16
numbers on Ramanujan’s list. Therefore we have very good reason to believe that 2719 is
the largest odd integer that is not of the form x2 + y2 + 10z2.

Here we explore the special properties that these eighteen integers share. Obviously
they are odd numbers n for which there are no integers x, y, and z with n = x2 +y2 +10z2,
and we even know that they are all square-free (see [1], [5,Th. 1]) and coprime to 10, but
these numbers are linked for much deeper reasons involving some of the most fundamental
objects in algebraic number theory and arithmetic geometry. Let me explain.

Following C. F. Gauss, any collection of equivalence classes of ternary quadratic forms
that represent the same residue classes (mod M) for every M is called a “genus.” In our
case, the genus containing Ramanujan’s ternary quadratic form x2 + y2 + 10z2 contains
only one other class, and a representative for this class is the form 2x2 + 2y2 + 3z2 − 2xz.
For convenience define r1(n) and r2(n) by

r1(n) := #{(x, y, z) | x, y, z ∈ Z, x2 + y2 + 10z2 = n},
r2(n) := #{(x, y, z) | x, y, z ∈ Z, 2x2 + 2y2 + 3z2 − 2xz = n}.

Therefore, Ramanujan wanted a rule for determining those odd n for which r1(n) = 0.
To see the utility in considering both forms together recall Gauss’ Three Squares The-

orem. Let h(D) denote the number of classes of primitive binary quadratic forms with
discriminant D, the usual “class number,” and let r(n) denote the number of representa-
tions of n by x2 + y2 + z2. If n > 3 is square-free, then

r(n) =
{

12h(−4n) if n ≡ 1, 2, 5, 6 (mod 8),
24h(−n) if n ≡ 3 (mod 8).

More generally, Gauss obtained formulas for the number of representations of integers by
genera, and in the case of Ramanujan’s form, if n is a positive square-free integer coprime
to 10, then

r1(n)/2 + r2(n) = h(−40n).

Therefore if n is a positive odd integer that is not of the form x2 + y2 + 10z2, then

(1) r2(n) = h(−40n).
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It is also useful to consider the differences r1(n)− r2(n). To do so, define
(2)

f(z) :=
1
4

∞∑
n=1

(r1(n)−r2(n))qn = q−q3−q7−q9 +2q13 + · · · (q := e2πiz with Im(z) > 0).

This function f is a “weight 3/2 modular form.” An analytic function m(z) on the up-
per half of the complex plane is a modular form of weight k if for each suitable matrix(

a b
c d

)
∈ SL2(Z) there exist roots of unity ε(d) for which

m

(
az + b

cz + d

)
= ε(d)(cz + d)km(z).

To study r1(n)−r2(n) we employ the Shimura lift [7], a beautiful correspondence between
certain half-integral weight modular forms and integral weight modular forms. In this case
if integers A(n) are defined by

∞∑
n=1

A(n)
ns

:=
1
4
·

( ∞∑
n=1

χ(n)
ns

)
·

( ∞∑
m=1

r1(m2)− r2(m2)
ms

)

where χ denotes the Legendre-Kronecker quadratic character χ(n) :=
(−10

n

)
, and if q and

z are as in (2), then

(3) F (z) :=
∞∑

n=1

A(n)qn = q
∞∏

n=1

(1− q2n)2(1− q10n)2 = q− 2q3− q5 +2q7 + q9 +2q13 + · · ·

is a weight 2 modular form.
The modular form F (z) provides an example of the celebrated Shimura-Taniyama Con-

jecture, whose proof in special cases by A. Wiles yields Fermat’s Last Theorem. The
conjecture asserts that the coefficients of certain weight 2 modular forms, the A(n), equal
the coefficients of L-functions of elliptic curves. In this case let E denote the elliptic curve
over the rational numbers

E : y2 = x3 + x2 + 4x + 4.

For each odd prime p let N(p) denote the number of pairs, x (mod p), y (mod p), that
satisfy the congruence

y2 ≡ x3 + x2 + 4x + 4 (mod p).

If c(p) := p − N(p), then the Hasse-Weil L-function L(E, s) is defined by the following
product over all the odd primes:

(4) L(E, s) :=
∞∑

n=1

c(n)
ns

=
∏
p6=2

1
1− c(p)p−s + p1−2s

= 1− 2
3s
− 1

5s
+

2
7s

+
1
9s

+
2

13s
+ · · · .
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By comparing (3) and (4) one sees that A(n) = c(n) for each n ≤ 13. In fact this equality
holds for every positive integer n, and is an example of the phenomenon described by the
Shimura-Taniyama Conjecture.

Are these observations relevant to Ramanujan’s query? They are, and the answer lies in
the work of J.-L. Waldspurger [10] who provided a very deep and beautiful interpretation
of Shimura’s lift. In our case let n be a positive odd square-free integer, and define the
−10n quadratic twist L(E(−10n), s) by

L(E(−10n), s) :=
∏

p6=2,5

1
1− c(p)

(−10n
p

)
p−s + p1−2s

.

This is the L-function for the elliptic curve E(−10n)

E(−10n) : y2 = x3 − 10nx2 + 400n2x− 4000n3.

If
Ω :=

∫ ∞
10

1√
x3 − 10x2 + 400x− 4000

dx ∼ 0.7195 . . . ,

then for every odd square-free integer n 6= 5 Waldspurger’s theorem implies

(r1(n)− r2(n))2 =
4
√

n

Ω
· L(E(−10n), 1).

Therefore, by (1), if n is a positive odd integer that is not of the form x2 + y2 + 10z2, then

(5) h2(−40n) =
4
√

n

Ω
· L(E(−10n), 1).

Although (5) is a “law” that the odd integers not of the form x2 + y2 + 10z2 obey, it
certainly is not a simple one. However, its formulation is particularly intriguing.

First we recall some facts about elliptic curves. Let C denote the set of rational points
(x, y) satisfying

C : y2 = x3 + ax2 + bx + c

where a, b and c are fixed rational numbers. If the discriminant of x3 +ax2 + bx+ c is non-
zero, then Mordell proved that C, including a “point at infinity,” forms a finitely generated
abelian group whose group law is a “chord-tangent” law (see [9]). Therefore,

C=̃Ctorsion × Zr

where Ctorsion, the torsion subgroup of C, is a finite abelian group, and the rank r is a
non-negative integer. Note that C has finitely many points if and only if r = 0. Quite a
bit is known about Ctorsion. By a theorem of Mazur it is known that Ctorsion satisfies

Ctorsion ∈
{ Zm | where 1 ≤ m ≤ 10, or m = 12,

Z2× Z2m | where 1 ≤ m ≤ 4
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(Zd denotes the cyclic group with d elements), and with this classification it is fairly easy
to deduce Ctorsion for any given C.

Computing r is a more difficult question, and although one can typically compute r in
practice, the problem in general remains open. In part these problems revolve around the
Birch and Swinnerton-Dyer Conjecture, which asserts that the analytic behavior of L(C, s)
at s = 1 predicts the structure of C, in particular r. In its weakest form the conjecture
asserts that L(C, s) has an analytic continuation to the entire complex plane, and that r
equals the order of vanishing at s = 1 of L(C, s). In particular, C has finitely many points
precisely when L(C, 1) 6= 0.

For a “modular” elliptic curve C, one satisfying the Shimura-Taniyama Conjecture, V.
Kolyvagin [4] proved that C has finitely many points if L(C, 1) 6= 0. Therefore by the
positivity of h(−40n), (5), and Kolyvagin’s theorem, if n is a positive odd integer that is
not of the form x2 + y2 + 10z2, then E(−10n) has finitely many points. In fact if n equals
679, 2719, or any of the 16 numbers on Ramanujan’s list, then the only rational point (x, y)
on E(−10n)

y2 = x3 − 10nx2 + 400n2x− 4000n3,

is (10n, 0).
In its full strength the Birch and Swinnerton-Dyer Conjecture predicts even more. If

L(C, 1) 6= 0 the conjecture predicts that L(C, 1) is an explicit real multiple of the order of
X(C), the Tate-Shafarevich group of C, which measures the extent to which the “local-
global principle” fails for an elliptic curve C. Recall that a conic has a point with rational
coordinates precisely when it contains a point with real coordinates and a point with
coordinates that are p-adic numbers for every prime p. However this is not true for elliptic
curves. In a famous example, E. Selmer noted that there are no non-trivial rational points
on

3x3 + 4y3 + 5z3 = 0,

even though it has points over every field of p-adic numbers. The Tate-Shafarevich group
measures the failure of this principle.

In our case if n is 679, 2719, or one of the 16 integers on Ramanujan’s list, then (5) and
the Birch and Swinnerton-Dyer Conjecture imply

(6) h2(−40n) = 4t(n)+1 · |X(E(−10n))|

where t(n) denotes the number of prime factors of n.
Just as Tate-Shafarevich groups measure the obstruction to the “local-global” principle

for elliptic curves, the set of classes of discriminant D primitive binary quadratic forms,
denoted by CL(D), measures an obstruction. The set CL(D) is an abelian group with
order h(D) that is isomorphic to the “ideal class group” of Q(

√
D), and it measures the

extent to which unique factorization fails in the ring of integers of Q(
√

D). For instance, in
the ring of integers of Q(

√
−40), numbers of the form a+ b

√
−10 with a, b ∈ Z, the integer

14 does not factor uniquely into irreducibles since it has the following factorizations:

14 = 2 · 7 = (2 +
√
−10) · (2−

√
−10).
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By Gauss’ genus theory the index of the subgroup

CL2(−40n) := {α2 | α ∈ CL(−40n)}

in CL(−40n) is 2t(n)+1. Therefore for the known odd integers not of the form x2+y2+10z2,
(6) and the Birch and Swinnerton-Dyer Conjecture imply the following tantalizing equality
relating class groups and Tate-Shafarevich groups:

(7) |CL2(−40n)× CL2(−40n)| = |X(E(−10n))|.

From our discussion, Ramanujan’s search for a “simple law” leads to several deep theo-
rems and conjectures in arithmetic geometry. To reiterate, if n equals 679, 2719, or one of
the integers on Ramanujan’s list, then using Shimura’s lift, the Shimura-Taniyama corre-
spondence, and the works of Kolyvagin and Waldspurger, we have obtained the following
gems:

(i) There are no rational numbers x and y with y 6= 0 for which

y2 = x3 − 10nx2 + 400n2x− 4000n3.

(ii) Assuming the Birch and Swinnerton-Dyer Conjecture,

|CL2(−40n)× CL2(−40n)| = |X(E(−10n))|.

There are a few other ternary forms that also have such elegant properties, but most do
not. This illustrates again how Ramanujan’s deep insight continues to thrive beyond his
centenary. By the way, Ramanujan’s lifespan was 1887-1920.
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