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Abstract

This paper is the second in a series[1] that looks at the theory of the
phases of matter from the perspectives of physics and the philosophy of
science. The first paper considered the question of how can matter, ordi-
nary matter, support a diversity of forms. We see this diversity each time
we observe ice in contact with liquid water or see water vapor (steam)
come up from a pot of heated water. These differences have been ap-
parent to humankind for millennia, but only brought within the domain
of scientific understanding since the 1880s. By 1937 a variety of roughly
similar theories, going under the name “mean field theory” described how
the average forces in materials produce the different phases.

Materials can undergo discontinuous jumps from one phase to another,
which are called first order phase transitions. By adjusting the parameter
which control the phases, one can often make the jumps arbitrarily small
and thus produce continuous phase transitions. In the years between
1937 and 1971, scientists recognized that the continuous phase transitions
must be described not by average forces but by fluctuations away from
the average. An entirely new approach, the renormalization group theory,
was developed to deal with this situation. This theory was then applied
to problems in particle physics and several other areas.

Both kinds of phase transitions are abrupt changes in the equilibrium
behavior of the materials. These changes only occur abruptly because
the materials around us can be considered to be made up of an effectively
infinite number of particles. The paper follows the arguments and theories
which use this infinity to describe the behavior of real, finite, materials.
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1 Introduction

1.1 Condensed Matter Physics
The discipline of physics has many different goals. One goal, and certainly not
the least important, is to provide intellectual bridges among the different theo-
ries describing the many different domains of natural behavior. Thus Newton’s
gravitational theory is equally applicable to an apple and the moon. Electro-
magnetic theory describes semiconductor devices, nuclear spins, and starlight.
Nuclear physics encompasses stellar energy production. The subject which bears
the name “condensed matter physics” is in large measure concerned with bridg-
ing the gap between the theory of the microscopic behavior of atoms, electrons,
and ions and the observed macroscopic behavior of bulk matter.

The forces and fields which surround microscopic particles act to produce
the range of different thermodynamic phases observed in the materials we see
about us. The phases are different states of aggregation with qualitatively dif-
ferent properties, which then lead to structures which are amazingly diverse
and beautiful. Water, for example, can exist in several different thermodynamic
phases depending upon the thermodynamic conditions around it. Three of the
phases are illustrated in Figure (1) that shows a snowflake (a crystal of a solid
phase of water) and a splashing of the liquid phase. A third phase of water, the
low density phase familiar as water vapor or steam, exists in the empty-looking
region above and around the splashing liquid.

Different phases of matter have qualitatively different properties. As you
see, ice forms beautiful crystal structures. So do other solids, each with its
own characteristic shape and form. Each crystal picks out particular spatial
directions for its crystal axes. This occurs because of forces and interactions
produced by the interactions of the microscopic constituents of the crystals.
Crystalline materials are formed at relatively low temperatures. At these tem-
peratures, microscopic forces tend to line up neighboring molecules and thereby
produce strong correlations between the orientations of close neighbors. Such
correlations extend through the entire material, with each molecule being lined
up by several neighbors surrounding it, thereby producing an ordering in the
orientation of the molecules that can easily extend over a distance a billion times
larger than the distance between neighboring atoms. This orientational order
thus becomes visible in the macroscopic structure of the crystal, as in Figure (1),
forming a macroscopic manifestations of the effects of microscopic interactions.

The same materials behave differently at higher temperature. Many melt
and form a liquid. The long-range orientational order disappears. The material
gains the ability to flow. It loses its special directions and gains the full rotational
symmetry of ordinary space.

Many of the macroscopic manifestations of matter can be characterized as
having broken symmetries. Phases other than simple vapors or liquids break
one or more of the characteristic symmetry properties obeyed by the microscopic
interactions of the constituents forming these phases. Thus, a snowflake’s outline
changes as it is rotated despite the fact that the molecules forming it can, when
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isolated, freely rotate.
Then too, the alignment of atomic spins or electronic orbits can produce

diverse magnetic materials, including ferromagnets, with their substantial mag-
netic fields, and also many other more subtle forms of magnetic ordering. A
crystal in which the magnetization can point in any direction in the three-
dimensional space conventionally labeled by the X, Y, and Z axes is termed an
“XYZ” ferromagnet. Another kind of ferromagnet is called an “XY” system, and
is one in which internal forces within the ferromagnet permit the magnetization
to point in any direction in a plane. The next logical possibility is one in which
there is a selected axis of magnetization, and the magnetization can point either
parallel of antiparallel to that axis. A simple model describing this situation is
termed an Ising model, named after the physicist Ernest Ising[2], who invented
it in conjunction with his adviser Wilhelm Lenz[3, 4]. We shall, below, consider
in some detail the behavior of this Ising model and its transition from an or-
dered, ferromagnetic state, to a disordered one in which the magnetization is
precisely zero.

Some of these special properties of special thermodynamic phases are of ev-
eryday importance. Our economic infrastructure is, in large measure, based
upon the various phase-dependent capabilities of materials to carry electrical
currents: from the refusal of insulators, to the flexibility of semiconductors,
to the substantial carrying capacity of conductors, to the weird resistance-free
behavior of superconductors. This flow, and other strange properties of su-
perconductors, are manifestations of the subtle behavior of quantum systems,
usually only seen in microscopic properties, but here manifested by these ma-
terials on the everyday scales of centimeters and inches. I could go on and on.
The point is that humankind has, in part, understood and used these different
manifestations of matter, manifestations that go under the name “thermody-
namic phases”. This article is a brief description of the ideas contained in the
science of such things.

1.2 Order parameters
A previous publication[1], hereafter denoted as paper I, describes the develop-
ment of the theory of phase transitions up to and including the year 1937. In
that year Lev Landau[5] put together a theoretical framework that generalized
previously existing mean field theories of phase transitions. In Landau’s ap-
proach, a phase transition is seen in the breaking of a mathematical symmetry
which manifests itself in the behavior of an order parameter describing the state
of the material. When two different phases are in contact, one can distinguish
between them by defing them to have different values of a physical quantity
which is ofteb called an order parameter. For example, in a ferromagnet the
order parameter is the vector magnetization of the material. Since the spins
generate magnetic fields, this alignment is seen as a large time-independent
magnetic field vector, pointing in some particular direction. The order parame-
ter in this example is then the vector describing the orientation and size of the
material’s magnetization and its resulting magnetic field.

4



Figure 1: Splash and snowflake. This picture is intended to illustrate the qual-
itative differences between the fluid and solid phases of water. On the left is
liquid water, splashing up against its vapor phase. It fluidity is evident. On the
right is a crystal of ice in the form of a snowflake. Note the delicate but rigid
structure, with its symmetry under the particular rotations that are multiples
of sixty degrees.

Other order parameters describe other situations. A familiar order param-
eter characterizes the difference between the liquid and the vapor phases of
water. This parameter is simply the mass density, the mass per unit volume,
which takes on larger values in the liquid phase and smaller ones in the vapor
phase. Thus, water expands as it boils. In the superfluid examples, the order
parameter is a complex quantity, describing the wave function of the condensed
state, with a square that is proportional to the mass density of particles within
that state.

1.2.1 Phase diagrams, phase transitions, and singularities

Condensed matter physics is concerned with identifying and classifying these
different phases of matter, both for their intrinsic interest and for their poten-
tial practical importance. As the environment around the materials is changed,
for example by varying the temperature or pressure, the systems undergo what
are called a phase transition, that is the change from one state of matter into
another. Figure (2) shows a simple example of a phase diagram, a picture which
indicates where the phase transitions occur relative to the variables which de-
scribe the material’s environment. This diagram applies to Ising’s ferromagnet
in two or more dimensions. There are two variables describing the environment,
the temperature ,forming the x-axis, and the magnetic field in the direction of
the axis of magnetization, forming the y-axis.1

1We use the symbol H to describe this field. This symbol is traditionally used for the
magnetic field applied to a material from outside itself[6]. The symbol B is then used to
describe the total (averaged) field within the material, the field from outside added to an
averaged field within the material. The use of B and H is an example of the application of
mean field theory[1]. This approximation is quite successful whenever the sample under study
are large enough to contain a huge number of charged particles.
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Figure 2: Phase diagram for a ferromagnet. The case depicted is one in which
the magnetization can point in one of two possible directions, diametrically op-
posed to one another. The y-axis is the magnetic field applied to the material
from outside, taken aspointing in one of these two directions. The heavy line
segment is at zero magnetic field, and includes temperatures lower than the
critical temperature, Tc. Along this line segment there is a first order phase
transition. The magnetization is positive above this line segment, and negative
below. As the magnetic field passes through zero along this segment, the mag-
netization goes through a jump by changing sign. This jump is the first order
phase transition. The heavy dot at the end of the line indicates a continuous
phase transition. The location of such a transition is called a critical point. At
zero magnetic field and temperatures above this critical point the magnetization
is strictly zero. The jump has disappeared. The point of disappearance at Tc is
the place where there is a continuous phase transition.
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The important characteristic of the ferromagnetic materials is that they can
often support a very strong magnetic field. For this reason, materials from the
lodestones known to the ancients to modern iron have important practical ap-
plications based upon their very strong magnetic properties. This characteristic
arises precisely because neighboring atoms tend to align their spins and their
magnetic moments. Thus a small applied magnetic field is strongly enhanced
by the behavior of the material itself. The enhancement is larger at low tem-
peratures and smaller at high temperatures. The higher temperatures tend to
literally shake up the aligned spins and substantially reduce their alignment.
For temperatures above the critical temperature, when the field is zero; the
alignment is also zero. However there is a qualitative change in behavior on
the zero field line when the temperature passes below the critical temperature.
(This temperature in indicated as Tc on Figure (2).). Below the critical temper-
ature, the spins are always aligned, even at zero field. At these temperatures,
if the field is even slightly positive, the magnetization is substantially positive;
if the field is ever so slightly negative, the magnetization remains substantial
and points in the opposite direction. Thus there is a discontinuous jump in
the magnetization as the field passes through zero whenever the temperature is
smaller than Tc. A discontinuous jump in thermodynamic behavior is indicative
of what is called a phase transition.

The theory of phase transitions was first developed by J. Willard Gibbs[9,
10], a late Nineteenth Century American scientist, who produce a definitive
discussion of the subject called thermodynamics. Despite its name, thermody-
namics is largely concerned with the time-independent behavior of bulk matter.
If a piece of matter is left in a constant environment over a long period of time,
it can settle into a unchanging behavior called thermodynamic equilibrium. The
state of the system in equilibrium depends upon parameters that describe its
environment, for example temperature and pressure. Gibbs saw that the equi-
librium behavior could include the properties of the many different phases of
matter. He then defined a phase transition to be any abrupt change singularity
in the thermodynamic properties of the system as the environmental parameters
are varied. In mathematics a singularity is the word used to describe an abrupt
change in a mathematical function. This mathematical concept will have many
profound implications for the description of phase transitions. A discontinuous
jump in the most fundamental thermodynamic quantitites is called a first or-
der phase transition, while a more subtle change is termed a continuous phase
transition. Gibbs’ thermodynamic studies gave us a definitive treatment of the
qualitative behavior of phase transitions.

1.2.2 From van der Waals to Landau

The magnetization jump has its parallel in the jump in mass density, mass per
unit volume, which occurs in a liquid gas phase transition, which has a phase
diagram rather similar to that of Figure (2). and van der Waals[12] focused upon
this density jump in density in the liquid-gas phase transition They worked with
the experimental data of
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Using the data of Thomas Andrews[13], Johannes van der Waals devel-
oped an approximate equation describing the dependence of the fluids’ pres-
sure upon temperature and density. This was soon augmented by James Clerk
Maxwell’s[11] thermodynamic theory of the jump. Overall the van der Waals
equation was quite successful. It gave a qualitatively accurate picture of the
phase diagram.

There were, of course, deviations between the simple theory and the actual
behavior. For many years, van der Waals worked to reduce these deviations
by gaining a better understanding of molecular forces and by putting together
a more detailed and accurate theory. One discrepancy between theory and
experiment caused him particular distress. One might hope that the jump
in density near the critical point, i.e. the position of the continuous phase
transition, might have a particularly simple dependence upon a parameter like
temperature, T . The jump is particularly small in this region and one might
think that might give it a simple dependence upon the temperature difference
from the critical point, described by a variable T − Tc, where Tc is rhe critical
temperature. In fact, the van der Waals theory predicted a cubic equation for
the density in this region, and a simple result in this region:

jump in density = constant× (Tc − T )β with β = 1/2 (1)

Numbers like β appearing as exponents in power laws describing near-critical
behavior are called critical indices. According to the power law in Eq. (1) the
jump in the order parameter approaches zero as the critical point is approached.
Andrews’ data indeed does show this behavior, and close to criticality it fits a
power law as in Eq. (1). But the value for the critical index in the experimental
data is much closer to one third than to van der Waals’ one half[15]. This
discrepancy will play a very important role in what follows.

The previous paper, I, traces in detail the nature and impact of impact of
van der Waal’s theory. The theory assumes that the molecules in a fluid feel the
average of the forces produced by the other molecules. A theory of this nature is
called a mean field theory. Over his career, van der Waals used mean field theory
to predict the variation of fluid density with pressure and temperature for a wide
variety of pure and mixed fluids. Following rather soon after van der Waals,
Pierre Curie[16] and Pierre Weiss[17] derived a theory of ferromagnetism based
upon the same ideas. Many other workers examined other phase transition,
understood their various order parameters and the forces which drive them and
developed appropriate mean field theories of the resulting transitions. In each
case the theories assumed that the transition could be understood in terms of
the average forces and interactions among the microscopic constituents. The
different papers in these different areas of condensed matter physics were all
concerned with finding appropriate approximate equations describing how the
order parameters varied as the environmental conditions of the materials were
varied.

Landau in his 1937 work[5] generalized the work of van der Waals, Pierre
Curie, and Paul Ehrenfest[18] and followed them in noticing a deep connection
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among different phase transition problems[19]. Starting from the recognition
that each phase transition was a manifestation of a broken symmetry, he used the
order parameter to describe the nature and the extent of symmetry breaking[5].

Landau wrote an expression for a thermodynamic quantity, the free energy,
as a function of the order parameter. He worked near the critical point, so
that he could simplify his expression by assuming that the order parameter was
small. He then used the symmetries of the order parameter to further limit the
possible behaviors of the free energy. In the simplest case, the result he found
depended upon two environmental parameters, those used in the magnetic case
discussed above. One parameter t = 1 − Tc/T measures the deviation from
the critical temperature, while the other, h, the analog of the ferromagnet’s ap-
plied magnetic field, measures the extend of the symmetry breaking by external
fields. Landau then calculated an equation for the order parameter by using
the themodynamic result that the free energy is minimized in thermodynamic
equilibirum. In calculating the value of the order parameter which would pro-
duce such a minimum, he found a cublic equation for the order parameter. This
equation could be specialized to the case in which there is no external symmetry
breaking. His equation predicted a jump in the order parameter of the form of
Eq. (1), with once more the value β = 1/2.

1.3 Away from corresponding states— Toward universal-
ity

Landau’s calculation represented the high water mark of the class of theories
described as “mean field theories”. He showed that all of them could be covered
by the same basic calculational method. They differed in the symmetries of
the order parameter, and different symmetries could give different outcomes.
However, within one kind of symmetry the result was always the same. This
outcome was very pleasing for many students of the subject, particularly so
for the physicists involved. We physicists especially like mathematically based
generalizations and Landau had brought in an elegant generalization, which
simplified a complex subject. The idea that different fluids have almost identical
relations between their pressure temperature and density is called the “principle
of corresponding states.”

This ideas had broad support among the scientists working on phase tran-
sitions. Starting with van der Waals, continuing with Einstein[20], George Uh-
lenbeck, and later on E. A. Guggenheim[21], work on phase transitions was
inspired by the aim and hope that all fluid’s phase diagrams would be essen-
tially alike. However, Landau’s work marked a new beginning. His method
would apply only near a critical point and his version of corresponding states
could be expected to apply only in this region. So Landau deepened the theory
but implicitly also narrowed its domain of application to a small region on the
phase diagram. This was the start of a new point of view, which we shall see
develop in the rest of this paper. The new point of view would come with a
new vocabulary so that instead of corresponding states people would begin to
use the word “universality” a borrowing from an originally Russian word[22].
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1.4 Outline of paper
The following section is concerned with bringing the reader up to speed by
describing the state of our understanding of phase transitions up through 1937.
It starts with a definition of the disciplines of statistical mechanics and ends
with summarizing the Landau phase transition theory. In the middle it focuses
upon the idea contained in the extended singularity theorem, which identifies
the abrupt change of a phase transition with a singularity caused by material
behavior extended over the entire system. Chapter three details the evidence
that shows that mean field theory cannot correctly describe the behavior near
the critical point. The development of a new point of view, renormalization
group theory, is described in the subsequent chapter. Finally, chapter 5 is a
selective description of a few of the ideas that developed from consideration of
the extended singularity theorem, critical point behavior, and renormalization
group theory. It particularly focuses upon how the extended singularity theorem
might be applied to a broad class of problems in statistical physics.

2 correlations and spatial structures

2.1 Gibbs’ legacy
2.1.1 statistical mechanics

In addition to his extensive studies of thermodynamics, J. Willard Gibbs will
be remembered for his careful and elegant formation of statistical mechanics[9].
Thermodynamics describes the equilibrium behavior of matter and sets bounds
on the possible non-equilbrium behavior. This science starts by assuming that
you know some properties of the matter as given in a basic thermodynamic
function. One possible such function is the free energy function that expresses
the properties of a system with a specified number of particles as a function of
its temperature and volume.

On the other hand, statistical mechanics is the science which describes how
one calculates the properties of the material system including the free energy
function starting from a knowledge of the material’s microscopic behavior. The
microscopics is usually expressed in terms of a Hamiltonian function that gives
the system’s energy in terms of such basic variables as the momenta and co-
ordinate of its particles. In the Gibbs formulation of statistical mechanics, all
thermodynamic quantities, e.g. the free energy, are formed from taking sums of
expressions formed from the Hamiltonian over all the different possible config-
urations of the basic variables.

2.1.2 Averages, fluctuations, and correlations

By forming derivatives of this free energy function one can find all the pos-
sible averages of thermodynamic quantities. For example, the average energy
can be computed from the free energy and its temperature derivative. Fur-
ther processes of differentiation generates information about fluctuations from
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average values. For example, another derivative of the energy with respect to
temperature determines the typical fluctuations in the energy.

It is possible to gain more detailed information. Using Gibbs’ prescription
to determine the free energy in a situation in which basic parameters like the
temperature are taken to be varying with position, one can learn about fluctu-
ations in the energy contained in different regions of the system. Furthermore,
one can find out about how the fluctuation in energy in one region is correlated
with the fluctuation in another region. Information about both averages and
fluctuations will be crucial in our discussions. As we shall see, the theory of first
order phase transitions is mostly based on average properties, while the modern
theory of continuous transitions depends on understanding fluctuations.

2.1.3 Smoothness versus singularities

In Gibbs’ formulation of statistical mechanics, the free energy comes from sums
(or sometimes integrals) over configurations. In the usual situation in which
everything in the system is quite finite and smoothly varying, the sum has each
term proportional to a simple smooth function determined by the number of
particles and the energy divided by the temperature. Such a sum2 of a finite
number of terms is a smooth function of the environmental parameters like
temperature, magnetic field, volume, and pressure.

The reader will notice that this smoothness seems to contradict another
part of Gibbs’ legacy, the statement that a phase transition is a singularity, i.e.
failure of smoothness, in some thermodynamic quantity.

This seeming contradiction is the key to understanding much of what hap-
pens in phase transitions. No sum of a finite number of smooth terms can be
singular. However, for large systems, the number of terms in the sum grows
quite rapidly with the size of the system. When the system is infinite, the
number of terms in infinite. Then singularities can arise. Thus all singulari-
ties, and hence all phase transitions, are consequences of the influence of some
kind of infinity. Among the likely possibilities are infinite numbers of particles,
infinite volumes, or –more rarely – perhaps infinitely strong interactions. Real
condensed matter systems often have large numbers of particles. A cubic cen-
timeter of air contain perhaps 1020 particles. When the numbers are this large,
the systems most often behave almost as if they had an infinity of particles.

I am going to give a name to the idea that phase transitions only occur
when the condensed matter system exhibits the effect of some singularity ex-
tended over the entire spatial extent of the system. Usually the infinity arises
because some effect is propagated over the entire condensed system, that is over
a potentially unbounded distance. I am going to call this result the “extended
singularity theorem”, despite the fact that the argument is rather too vague to
be a real theorem. It is instead a slightly imprecise mathematically property of
real phase transitions3.

2The Ising model free energy involves a sum. For a fluid, integrals must be calculated. For
simplicity, I’ll call everything a sum.

3Imprecision can often be used to distinguish between the mathematician and the physi-
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This phase-transition-singularity-theorem is only partially informative. It
tells us to look for a source of the singularity, but not exactly what we should
seek. In the important and usual case in which the phase transition is produced
by the infinite size of the system the theorem tells us that any theory of the
phase transition should look to things which happen in the far reaches of the
system. What things? How big are they? How should one look for them? Will
they dominate the behavior near the phase transition or be tiny? The theorem
is uninformative on all these points.

Sometimes it is very hard to see the result of the theorem. Near a first order
phase transition the singularity is very weak. One must use indirect methods
to observe it or analyze the singularity. We shall come back to this toward the
end of the paper. Conversely, near critical points, singularities are very easy to
observe and measure. For example in a ferromagnet, the magnetic susceptibility,
the derivative of the magnetization with respect to applied magnetic field, is
infinite at the critical point. (See Figure (3).)

By looking at simulations of finite-sized Ising systems one can see how the
infinite size of the system enters the susceptibility. Figure (3) is a set of plots
of susceptibility versus temperature in an Ising system with a vanishingly small
positive magnetic field. The different plots show what happens as the number
of particles increases toward infinity. As you can see, the finite N curves are
smooth, while the infinite-N curve goes to infinity. This infinity is the singu-
larity. It does not exist for any finite value of N . However, as N gets larger,
the finite-N result approaches the infinite-N curve. When we look at a natu-
ral system, we tend to see phase transitions which look very sharp indeed, but
are actually slightly rounded. However, a conceptual understanding of phase
transitions requires that we consider the limiting, infinite-N , case.

The reader might wish to note that Gibbs never explicitly made the case
that we need an infinite number of particles to get a phase transition. However,
the conceptual apparatus that he set up forces us to that conclusion[40].

2.2 Correlations
We have seen a mathematical argument that phase transitions require an infinite
system[25]. We shall be most interested in seeing how this argument works itself
out in a physical system. A phase transition is a selection process in which a
system chooses its thermodynamic phase in a situation in which several choices
are equally possible. This choice is extended in space over the entire, in principle
infinite, physical system. The manifestation of this choice at two or more points
within the system is described by a correlation between or among these points.
Thus a phase transition is described by a situation in which correlations extend
over the entire physical system. The various kinds of behaviors of correlations
is described mathematically by an object called the order parameter correlation

cist. The former tries to be precise, the latter sometimes uses vague statements which can
then be extended to cover more cases. However, in precisely defined situations, for exam-
ple the situation defined by the Ising model, the extended similarity “theorem” is actually a
theorem[23].
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Figure 3: Cartoon view of magnetic susceptibility plotted against temperature
for different values of N . The heavy line is shows what happens to the mag-
netization in an infinite system. The lighter lines apply to systems with finite
numbers of particles, with the higher line being the larger number of particles
As N gets larger and larger, the susceptibility becomes more and more peaked.
The work of Weiss and Curie show that this plot also applies equally to the
derivative of density with respect to pressure in the liquid-gas phase transition.
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function. This function describes how the fluctuations in the order parameter,
is correlated in different regions of the system. The quantity g(r, s) describes
the correlation between the fluctuations at the two points in space, r and s.
Mathematically, it is the average of the product of the fluctuations at the two
points. In a spatially homogeneous system this correlation function depends
only upon the difference between the spatial positions, r− s. If in addition
the system is isotropic, as is for example a fluid, this correlation function only
depends upon the distance between the points, |r− s|.

This function is the most important and useful signal of the situation in the
material. In all materials away from a phase transition it dies away at least as
fast as an exponential function of the separation distance. For many systems,
the large-distance form of the correlation function is roughly given by4

g(r, s) = constant × exp(−|r− s|/ξ)
|r− s|

(2)

so that the falloff depends upon the ratio of the distance to ξ. The quantity ξ is
called the correlation length. It describes the typical range of spatial correlations
in the system.

The extended singularity argument implies that an infinite number of par-
ticles should participate in a phase transition. Specifically, we expect them to
contribute by producing local changes in the order parameter. On the other
hand, a correlation function which drops off as an exponential describes a sit-
uation in which local correlations die off with exponential rapidity as they are
passed from one part of the system to another. A exponentially rapid die-off,
like that in Eq. (2), is inconsistent with a singularity. We expect a slower
dropoff, for example that of a power law, to be a signal of a phase transition in
process.

For this reason, it would not be surprising if, as a phase transition is ap-
proached, the correlation function extended over a larger and larger distance,
and if it ended up dropping off more slowly than exponentially at the point of
a phase transition.

An extension over a larger spatial extent can be expected to occur via a
correlation length that gets larger as the phase transition is approached and
then became infinite just at the point of transition. This is, in fact, the behavior
observed in a continuous transition.

2.3 Critical Opalescence
Exactly this behavior is seen in the neighborhood of a continuous transition, but
not near a first order transition. We shall return to the first order transition
below, but for now we concentrate on behavior near the continuous transition.

Observers have long noticed that, as we move close to the liquid gas critical
point, the fluid, which hitherto was clear and transparent, turns milky. This

4Eq. (2) is the form of the correlation function at large distances given by mean field
theory in three dimensions.
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phenomenon is is called critical opalescence. First Marian Smoluchovsky (1908)
and then Einstein (1910) studied these fluctuations in statistical systems[24].
Both recognized that critical opalescence was caused by the scattering of light
from fluctuations in the fluid’s density. They pointed out that the total amount
of light scattering was proportional to the spatial integral of the correlation
function, g and that the large amount of scattering near the critical point was
indicative of anomalously large fluctuations. The heavy line in Figure (3) shows
a plot of the temperature dependence of this quantity, which goes to infinity
at criticality. In this way, they provided an explanation of critical opalescence.
Einstein used his explanation of this physical effect to provide one of his several
suggested ways of measuring Avagadro’s number, the number of molecules in a
mole of material.

The best early detailed theory of critical opalescence was due to Leonard
Ornstein and Frederik Zernike[26]. They applied mean-field ideas, derived in
part from the work of van der Waals, to the derivation of a correlation function
appropriate to a fluid system to a derivation of the form of the correlation
function, and particularly to an estimate of the correlation length, ξ. They
saw this length diverge on the line of coexistence between the two phases of
liquid-gas phase transition as the critical point was approached in the form

ξ = constant× 1/|t|ν with ν = 1/2 (3)

with t being, once again, the temperature deviation from criticality. Thus the
correlation length does go to infinity as the critical point is approached. This
result is crucially important to the overall understanding of the critical point.
It is a realization of the Gibbs inspired idea that the phase transition, or more
specifically criticality, reflects correlations over an infinite region of the system.

Notice that the basic theory equally requires an infinite range of correlation
close to the critical point, and also close to any first order phase transition. Both
the experiments and the mean field theory point toward long-ranged correlations
near criticality; neither do so for the first order transition. The latter point will
require some explaining, to be found below.

2.4 Summary of Landau’s mean field theory
As already mentioned, Landau’s 1937 result provides a kind of mean field theory
which agrees in all essential ways with the results of the main previous workers.
The only difference is that it is a specialized theory which is intended to apply
mostly to the region near the critical point. From the point of view of the
discussion that will follow the main points of the theory are

• Universality. The Landau theory gives an equation for the order parameter
as a function of the environmental parameters that is universal: It only
depends upon the kind of symmetry reflected in the ordering.

• Symmetry. A first order phase transition if often, but not always, a re-
flection of a change in the basic symmetry of the condensed system.
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• Interactions. This symmetry change is usually caused by local interactions
among the basis constituents of the system.

• Scaling. The results depend upon simple ratios of the environmental pa-
rameters raised to powers. For example in the ferromagnetic transition all
physical quantities depend upon the ratio t3/h2

• Order parameter jump. There is a discontinuous jump in the order pa-
rameter at the first order phase transition as in Eq. (1). The jump goes
to zero as the critical point is approached, with critical index β = 1/2.

• heat capacity jump. The heat capacity has a discontinuous jump at the
critical point. In particular for h = 0 the heat capacity is larger immedi-
ately into the ordered region than its value immediately into the disordered
region. This behavior is shown in Figure (5).

• Correlation length. The correlation length goes to infinity at criticality as
in Eq. (3) with an index ν = 1/2.

As we shall see, the Landau theory has been replaced by a renormalization group
theory of phase transitions. The qualitative properties of the Landau theory, like
universality and scaling, have been retained but all the quantitative properties
of the theory, for example, the values of the critical indices, have been replaced.

3 Beyond (or Beside) Mean Field Theory
Mean field theory began to lose favor in the scientific community almost as soon
as Landau stated it in its generalized form. This section will describe the process
of displacement of mean field theory, at least for behavior near the critical point,
which we might say began in 1937 and culminated in Wilson’s enunciation of a
replacement theory in 1971[27].

Landau’s theory provided a standard and a model for theories of general
phenomena in condensed matter physics. Looking at Landau’s result one might
conclude that a theory should be as general and elegant as the phenomena
it explained. The mean field theories that arose before (and after) Landau’s
work were partial and incomplete, in that each referred to a particular type of
system. That was certainly necessary in that the details of the phase diagrams
were different for different kinds of systems, but somewhat similar for different
materials of the same general kind. Landau’s magisterial work swept all these
difficulties under the rug and for that reason could not apply to the whole phase
diagram of any given substance. Thus, if Landau were to be correct he would
most like be so in the region near criticality. Certainly his theory is based
upon an order parameter expansion that only is plausible in the critical region.
However, precisely in this region, as we shall outline below both theoretical an
experimental facts were were developed that contradicted his theory.
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3.1 Experimental facts
I have already mentioned that the ghosts of Andrews and van der Waals might
have whispered to Landau that a theory which predicts β = 1/2 near criticality
cannot be correct. However there was also a much larger body of early work
which pointed to the conclusion that mean field theory was wrong, at least for
fluids. These early data, developed and published by J.E. Verschaeffelt[14] and
summarized by Levelt Sengers[15], touched almost every aspect of the critical
behavior of fluids. Verschaffelt particularly stresses the incompatibility of the
data with mean field theory. But these data certainly did not dissuade Landau,
who perhaps had never heard of them.

These same experimental facts appear once more in the 1945 work of E.A.
Guggenheim,[21] who compiled data on the relation among pressure, density,
and temperature for a wide variety of fluids. This relation among these three is
called the equation of state. He was mostly looking for evidence related to the
principle of corresponding states, that is the idea that the equation of state is the
same for almost all fluids. He says “The principle of corresponding states may
safely be regarded as the most useful by-product of van der Waals’ equation
of state. While this [van der Waals] equation of state is recognized to be of
little or no value, the principle of corresponding states as correctly applied is
extremely useful and remarkably accurate.” He then devotes most of this work
to examining the data which might give support to his universality for four noble
gases together with oxygen, nitrogen, carbon dioxide, and methane. Specifically
he examined data for liquid-vapor coexistence on the line of the liquid-gas phase
transition, see Figure (4) and fits the data to a power law with β = 1/3, rather
than the mean field value β = 1/2. The latter value clearly does not work; the
former fits reasonably well. Thus “corresponding states” receives support in this
region, but not mean field theory per se.

But neither Guggenheim nor Kamerlingh Onnes[15] before him was ready
to receive information suggesting that behavior in the critical region was spe-
cial, so that former rejected mean field theory while the latter accepted it with
reservations as to its quantitative accuracy.

Later, data on heat capacities near liquid gas phase transitions became avail-
able. (The heat capacity is the derivative of free energy with respect to temper-
ature.) Mean field theory predicts a discontinuity in the constant volume heat
capacity as in Figure (5). Among the first experiments in this direction was
carried out by Kellers[28], who looked at the normal fluid to superfluid transi-
tion in Helium4. (See Figure (6).) The data in this phase transition seemed to
support the view that the heat capacity diverges weakly, perhaps a a logarithm
of |t|, as criticality is approached. Similar heat capacity curves were observed
by Alexander Voronel’[29, 30] in the liquid gas transition of classical gases, and
in further work in Helium[31].
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Figure 4: Density jump for several fluids. The data comes from their lines of
first order phase transitions. This picture, drawn from Guggenheim[21], plots
along the x-axis the density divided by the critical density and on the y-axis the
temperature divided by the critical temperature. The symbols give the densities
of several fluids in their vapor phase on the left and their liquid phase on the
right. The top portion of the curve fits a power law with β = 1/3.
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Figure 5: Cartoon sketch of heat capacity in neighborhood of critical temper-
ature as predicted by mean field theory. The heat capacity is higher below Tc
because there is an additional temperature dependence in the energy in this
region produced by a term proportional to the square of the order parameter.

3.2 Theoretical facts
As we have seen, experimental evidence suggested that mean field theory was
incorrect in the critical region. A further strong argument in this direction
came from Lars Onsager’s exact solution[32] of the two dimensional Ising model,
followed by C.N. Yang’s calculation[33] of the zero-field magnetization for that
model. Onsager’s logarithmic result for the heat capacity diverged as did the
experimental observations, as shown for example in Figure (6), but did not
resemble the discontinuity of mean field theory.5

Yang’s results, for which β = 1/8, also disagreed with mean field theory,
which has β = 1/2. Yang’s index-value also differs substantially from the ex-
perimental results observed in three-dimensional systems, which has β roughly
equal to 1/3, but they offered neither support nor comfort to mean field theory.
The Onsager solution implies a correlation length with ν = 1, see Eq. (3), which
is not the mean field value ν = 1/2.

The most systematic theoretical discrediting of mean field theory came from
the series expansion work of the King’s College (London) school, under the lead-
ership of Cyril Domb, Martin Sykes, and after a time Michael Fisher. Much of
the story of this group’s activities can be found in the books by Domb[34] and
a study of the history of the Ising model by Martin Niss[4]. Recall that the

5Onsager’s results looked different from those depicted in Figure (6) in that they showed
much more symmetry between the high temperature region and the low temperature region.
This difference reflects the fact that two dimensional critical phenomena are markedly different
in detail from three dimensional critical phenomena. Further, subsequent work has indicated
that none of the heat capacity singularities shown in Figure (6) are actually logarithmic in
character. They are all power law singularities.
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Figure 6: Heat capacity as measured. This picture, drawn from the work of
Moldover and Little[31] shows measured heat capacities for the normal-superfuid
transition of Helium4, labeled as Tλ, and the liquid-vapor transition of Helium3

and Helium4. Note that all three heat capacities seem to go to infinity, in
contrast to the prediction of mean field theory. These data certainly draw ones
attention to the critical region.
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Ising model is a simplified model which can be used to describe magnetic tran-
sitions. It is described by a strength of the coupling between neighboring spins
proportional to a coupling constant J . The statistical mechanics of the model
is defined by the ratio of coupling to temperature, specifically K = −J/(kT ),
where k is the Boltzmann constant, used to translate temperatures into energy
units. One can get considerable information about the behavior of these models
by doing expansions of quantities like the magnetization and the heat capacity
in power series in K, for high temperatures, and e−K , for low temperatures.
The group at King’s developed and used methods for doing such expansions
and then analyzing them to obtain approximate values of critical indices like
β and ν. The resulting index-values in two dimensions agreed very well with
values derived from the Onsager solution. In three dimensions, models on differ-
ent lattices gave index values, roughly agreeing with experiment on liquids and
magnetic materials, but differing substantially from predictions of mean field
theory. This work provided a powerful argument indicating that mean field the-
ory was wrong, at least near the critical point. It also played a very important
role in focusing attention upon that region.

One reason for doubting mean field theory, ironically enough, came from
Landau himself. In 1941, Kolmogorov[35] developed a theory of turbulence
based upon concepts similar to the ones used in mean field theory, in particular
the idea of a typical velocity scale for velocity differences over a distance r.
These differences would, in this theory, have a characteristic size which would
be a power of r. Landau criticized this theory saying that it did not take into
account fluctuations[36], whereupon Kolmogorov modified the theory to make
it substantially less similar to mean field theory[37].

3.3 Spatial structures
The spatial structure of mean field theory does not agree with the theorem
that phase transitions can only occur in infinite systems. Mean field theory is
based on the alignment of order parameter values at neighboring sites, so that
particles will order if neighboring particles are ordered also. Any collection of
couplings in which the bonds can form a closed loop can have a mean field theory
phase transition. Thus, four particles forming a square with four interactions
connecting the corners of the square are quite sufficient to produce a phase
transition in mean field theory. On the other hand, the extended singularity
theorem insists that the occurence of a phase transition requires some sort of
infinity, most often the existence of an infinite number of interacting parts within
the system. Thus mean field theory is inconsistent with statistical mechanics6.
According to George E. Uhlenbeck [38], Hendrick A. Kramers was the first to
point out that the sharp singularity of a phase transition could only occur in a
system with some infinity built in. Apparently the point remained contentious
as late as 1937. I quote E. G. D. Cohen’s description of material contained in

6Arthur Wightman[40] has emphasized that Gibbs could certainly have known that phase
transition are properties of infinite systems. However, Gibbs’ book on statistical mechanics[9]
never did anything quite as specific as discuss phase transitions.
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another work of Uhlenbeck[39]: “Apparently the audience at this Van der Waals
memorial meeting in 1937, could not agree on the above question, whether the
partition function could or could not explain a sharp phase transition. So the
chairman of the session, Kramers, put it to a vote.” The result was a 50-50
split.

So some attention was given to this point. However, Landau himself had
information which would argue that mean field theory was a weak basis for a
theory of phase transitions. The general point has to do with systems which
are infinite in only one of their dimensions. After the formulation of the Ising
model, Ising himself solved the model in one dimension. He found no phase
transition[4] in this situation. Some scholars thought that the model itself was
not rich enough to give a phase transition. However, Landau[41] showed that
in any system which was infinite in only one of its dimensions fluctuations
would effectively separate itself into noncommunicating finite pieces and these
pieces would show no phase transition. This argument was perfectly general
and correct. Mean field theory gave phase transitions in one dimension. Thus
something must be wrong with mean field theory.

As we shall see, what is wrong with mean field theory is that in the critical
region the average behavior of the average order parameter can be completely
swamped by fluctuations in this quantity. In 1959 and 1960, A. P. Levanyuk[42]
and V.L. Ginzburg[43] described a criterion which one could use to determine
whether the behavior was dominated by average values or by fluctuations. For
example, when applied to critical behavior of the type seen in the simplest
version of the Ising model, this criterion indicates that fluctuations dominate in
the critical region whenever the dimension is less than or equal to four Hence
mean field theory is wrong[46] for all the usual critical phenomena in systems
with dimension smaller than or equal to four7. Conversely, this criterion suggests
that mean field theory is the leading behavior above four dimensions.

4 New foci; new ideas

4.1 Bureau of Standards conference
So far, the field of phase transition had lived up perfectly to Thomas Kuhn’s[47]
view of the conservatism of science. Before World War II there was no theory
of phase transitions save mean field theory. There was no theory or model that
yielded Eq. (1) with any value of β different from one half, so there was no fo-
cus for anyone’s discontent. For this reason, the mean-field-theory point of view
continued on, despite evidence to the contrary, until a set of events occurred
which would move the field in a new direction. One crucial event was the con-
ference on critical phenomena held at the U.S. National Bureau of Standards

7There are exceptions. Mean field theory works quite well for the usual superconducting
materials studied up through the 1980s[44]. However, mean field theory does not work for
the newer “high-temperature superconductors”, a class discovered in 1986 by Karl Müller and
Johannes Bednorz[45].
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in 1965[48]. The point of this conference was that behavior near the critical
point formed a separate body of science which might be studied on its own
merits, independent of the rest of the phase diagram. In the years just before
the conference, enough work[49, 50, 51] had been done so that the conference
could serve as an inauguration of a new field. We have mentioned the exper-
imental studies of Kellers and of Voronel’s group. At roughly the same time
important theoretical work was done by Pataskinskii and Pokrovsky[52], Ben-
jamin Widom[55] and myself[56], which would form a basis for a new synthesis.
The experimental and theoretical situation just after the meeting was summa-
rized in reviews[46, 51, 50]. This section begins by reporting on those new ideas
and then describes the culmination of these ideas in the work of Kenneth G.
Wilson[27].

4.2 correlation function calculations
For many years the Landau group had been working on putting together a field
theoretical basis for critical point work. Two young theoreticians, A. Z. Patask-
inskii and V. L. Pokrovsky, focused their attention upon the correlated fluctua-
tions of order parameters at many different points in space. They succeeded[52]
in getting the right general structure of the correlations, but they got a wrong
value of a critical indices. Nonetheless they pointed the way toward future field
theoretic calculations of correlation behavior.

In parallel, I calculated[53] the long-distance form of the spin correlation
function for the two-dimensional Ising model by making use of the Onsager
solution. This was the part of a long series of calculations which would give
insight into the structure of that model[54].

Benjamin Widom[55] (See Figure (7).) reported at the National Bureau of
Standard meeting upon a phenomenological theory in which he used insight
and previous results to obtain a formula for the scaling structure of the main
thermodynamic derivatives of near-critical fluids. He also got a scaling relation
for the surface tension, the free energy of the boundary between liquid and
vapor. In this remarkable work, he correctly pointed out the scaling structure
of the future theory.

4.3 Block transforms
Widom supplied much of the answer to questions about the thermodynamics
of the critical point. I then supplied a part of the strategy for deriving the
answer[56]. I will now describe the method in a bit of detail since the calculation
provides some insight into the structure of the solution.

Imagine calculating the free energy of an Ising model near its critical tem-
perature based upon the Ising model interactions incorporated in Ising’s Hamil-
tonian function for the problem. The result will depend upon the number of
lattice sites, the temperature deviation from criticality and the dimensionless
magnetic field. Next imagine redoing the calculation using a new set of vari-
ables constructed by splitting the system into cells containing several spins and
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Figure 7: Michael Fisher, foreground, and Benjamin Widom, background, at a
65th birthday party for Michael.

then using new spin variables. Each of the new spin variables are intended to
summarize the situation in a block containing several old spin variable. (See
Figure (8)) To make that happen one can, for example, pick the new variables
to have the same direction as the sum of the old spin variables in the block
and the same magnitude as each of the old variables. One can then do an ap-
proximate calculation and set up a new “effective” free energy calculation which
will give the same answer as the old calculation based upon an approximate
“effective” Hamiltonian making use of the new variables. . One argues on the
basis of universality that the new Hamiltonian can have the same structure as
the old one but that the new parameters in it, the number of lattice sites, the
temperature deviation from criticality, and the dimensionless magnetic field all
are proportional to the corresponding old parameters. This proportionality is a
representation of scaling, and the coefficients in the linear relations define the
scaling relations among the variables. These scaling relations then give a theory
with all the empirical relations given by Widom[55], but backed by the outlines
of a conceptual and calculational scheme.

Note that here scaling is viewed as a change in the effective values of the
thermodynamic parameter produced by a change in the length scale at which
the system is analyzed. The length scale must be irrelevant to the determination
of the eventual answer and must drop out of the final result for the free energy.
It is this dropping out that gives the empirical relations proposed by Widom.

This theoretical work of references [52, 70, 71, 55, 56] was all well-received.
The review paper of [46] was particularly aimed at seeing whether the new phe-
nomenology agreed with the experimental data. It reviewed most of the recent
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Figure 8: Making blocks. In this
illustration a two dimensional Ising
model containing 81 spins is broken
into blocks, each containing 9 spins.
Each one of those blocks is assigned a
new spin with a direction set by the av-
erage of the old ones, We imagine the
model is reanalyzed in terms of the new
spin variables.

Figure 9: Kenneth G. Wilson. His
graduate studies were carried out at
the California Institute of Technology.
He spent two years in the Kellogg Lab-
oratory of nuclear physics, and then
worked on a thesis for Murray Gell-
Mann. This was followed by a Junior
Fellowship at Harvard, a year’s stay at
CERN, and then an academic appoint-
ment at Cornell. The renormalization
group work was done while Wilson was
at Cornell.

experiments but missed large numbers of the older ones which are included in
references[15, 34]. All of this activity validated the consideration of the critical
region as an appropriate subject of study and led to a spate of experimental
and numerical work, but hardly any further theoretical accomplishments until
the work of Wilson[27].

4.4 The Wilson Revolution
Around 1970, these concepts were extended and combined with previous ideas
from particle physics[58, 59] to produce a complete and beautiful theory of criti-
cal point behavior, the renormalization group theory of Kenneth G. Wilson[27].
(See Figure (9).) The basic idea of reducing the number of degrees of freedom,
described in reference[56], was extended and completed.

Wilson, in essence, converted a phenomenology into a calculational method
by introducing ideas not present in the earlier phenomenological treatment[56]:

• Instead of using a few numbers to describe environmental parameters, e.g.

25



t, h, he extended the list of possible parameters to include all the kinds of
coupling terms which might be found in the Hamiltonian of the system.
Then the statement that a renormalization produced exactly the same
kinds of couplings, while changing the parameters which described these
couplings is reduced to a tautology.

• Wilson considers indefinitely repeated transformations, as in the earlier
particle physic work. Each transformation increases the size of the length
scale. In concept, then, the transformation would eventually reach out for
information about the parts of the system which are infinitely far away.
In this way, the infinite spatial extent of the system became part of the
calculation. The idea that behaviors at the far reaches of the system
would determine the thermodynamic singularities were thence included in
the calculation.

• Furthermore, Wilson added the new idea that a phase transition would
occur when the transformations brought the coupling to a fixed point. That
is, after repeated transformations, the couplings all would settle down to
a behavior in which further renormalization transformation would leave
them unchanged.

• Finally, at the fixed point, the correlation length would be required to
be unchanged by renormalization transformations. The transformation
multiplies the length scale by a factor that depends upon the details of the
transformation. Wilson noted that there are two ways that the correlation
length might be unchanged. For transformations related to a continuous
transition, the correlation length is infinite, thence reflecting the infinite-
range correlation. For transformations related to first order transitions,
the correlation length is zero reflecting the local interactions driving the
transition.

A very important corollary to the use of repeated transforms is the idea of
running coupling constants. As the length scale changes, so do the values of
the different parameters describing the system. In the earlier field theoretical
work[58, 59], the important parameters were the charge, masses, and couplings
of the “elementary” particles described by the theory. The change in length scale
then changed these from the “bare” values appearing in the basic Hamiltonian
for the problem to renormalized values which might be observed by experiments
examining a larger scale.. The use of renormalized or “effective” couplings was
current not only in particle theory, but also in quasiparticle theories which are
pervasive in condensed matter physics[60]. In these theories one deals with
particles that interact strongly with one another. Nonetheless, one treats them
using the same Hamiltonian formalism that one would use for non-interacting
particles. The only difference from free particles is that the Hamiltonian is
allowed to have a position and momentum dependence that reflects the changes
produced by the interactions.
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4.5 New concepts
The renormalization revolution and the phenomenological work which preceded
it included several very important new concepts which were applied not only to
critical phenomena but also to many other situations. These new ideas include,
in addition to the running couplings described above,

• Fluctuations. The behavior at the critical point is determined by fluctu-
ations in all kinds of physical quantities, with the order parameter being
the most important.

• Scaling. Near criticality, fluctuations occur over a very wide range of
length scales. The near-critical couplings like t and h can each be measured
against powers of the relevant length scale.

• Universality classes. The universality idea was used to classify all the
different possible behaviors at critical points. There are only a limited
number of different universality classes. When different phase transition
fall into the same class, all aspects of their critical behavior then turn out
to be identical. For example, the liquid-gas phase transition and the Ising
model are in the same universality class.

• Symmetry. Different symmetries and different numbers of dimensions im-
ply different universality classes. Thus a superfluid transition on a surface
is quite different from one in bulk.

5 Building upon the revolution

5.1 applications to critical phenomena
This Wilson renormalization theory provided a basis for the development of new
methods that could be used for building an understanding of critical phenomena.
One example is the ε expansion of Wilson and Fisher[57]. This calculational
method focuses upon the dependence of physical quantities upon dimension, by
uses renormalization transforms near four dimensions, where mean field theory
is almost, but not quite, correct. The idea of using the dimension of the system
as an variable parameter seems a bit strange at first sight. However, the method
gave quite accurate results for of critical behavior for many different models in
three dimensions. These results helped convince people that both the variable-
dimension method and the renormalization method were valid. Many different
results were constructed using variable-dimensions.

Another method, real space renormalization was pioneered as a calculational
technique by Niemeijer and van Leeuwen[61]. This method is better suited
than the epsilon expansion for calculations in lower dimensions. The method is
extensively described in reference [62].

Following the work of Wilson, a tremendous amount of theoretical work was
done in a very short period. It soon seemed that all of critical phenomena had
been explained.
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5.2 particle physics
The renormalization group was closely allied to developments in particle physics.
It had grown out of work aimed at taming the infinities in particle applications
of field theory. In fact, the applications in the two disciplines were very closely
parallel. In both cases, one visualized a basic theory formulated at scale much
smaller than the human scale of observations. In both cases, the idea was to
interpolate between the effects at the two scales by using the running coupling
constants. In condensed matter physics, one imagined that the experimentalist
“dialed” experimental parameters so as to bring the system close to criticality.
This choice of parameters would make the coherence length rather long so that
the effect of critical fluctuations would be observable. In particle physics, the
analog of the coherence length was the mass of an observable particle. Or rather
the mass was the analog of one over the coherence length, when appropriate
factors of Planck’s constant and the speed of light were factored in. If that mass
were directly set at the very small scales of the fundamental theory, it would
be unobservably large. Experimentally observable masses are somehow reduced
by some approximate symmetry principle, and perhaps by some imperfectly
understood process of “dialing” coupling constant. Then the observed masses
are modified by the “running” process. So the calculations in particle physics’
field theory are in many ways similar to those in statistical physics’ critical
phenomena[63].

5.2.1 asymptotic freedom

One set of very important field theories were the SU2 and SU3 gauge theo-
ries which undergird the standard model of particle physics. David Gross and
Frank Wilczek[64] and in parallel David Politzer[65] discovered that renormal-
ization made these interactions stronger at larger distances. Correspondingly,
they would be very weak at shorter distances, which would bring in higher en-
ergies. his result permitted calculations of high energy standard model effects
by expansions in the weakened couplings and thereby brought effects at modern
accelerators within the realm of accurate calculation.

5.2.2 conformal field theory

Field theory itself gained considerable in depth after the renormalization revolu-
tion. One of the major advances was the development of conformal field theory
by A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov[66, 67]. This is a
version of field theory that applies especially to situations in which the coher-
ence length is infinite. Of course, that is specifically the case which holds in
continuous phase transitions. The specialization to conformal situations gives
particularly powerful results in two dimensions. In that case, one can pick out a
large group of familiar models, including the Ising model, which can be mostly
solved by using conformal field theory[68].
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5.3 Singularities in first order transitions
In a brilliant pair of papers[69], T.D. Lee and Yang developed a description of
how singularities actually appear in phase transitions. By extending the defini-
tion of the Ising model’s magnetic field to include complex values, they found
singularities in the free energy of the Ising model. Most of these singularities
were off into the complex plane and did not cause any physical singularities.
However, they showed that, for temperatures at or below the critical tempera-
ture, these singularities approached the line of real magnetic field values. This
pinching produced singularities in the free energy. However, this Lee-Yang cal-
culation was a beginning, not an end. It located the singularities in the complex
plane but still did not define their exact nature. Since the Onsager solution only
gave values of the free energy for zero magnetic field, it too could not be helpful
in establishing the nature of these singularities.

As we have discussed in detail, renormalization group calculations defined
the nature of the singularities at the critical point, but they did not much touch
upon the singularities which were expected to occur on the zero field line below
the critical temperature.

One might guess that the only singular behavior on this line was the discon-
tinuous jump in magnetization. This guess would accord with the folk wisdom
which said that first order transitions were a sort of accident that occurred
whenever the difference between the free energies of two different phases hap-
pened to be zero. The next step was to say that this accidental equality would
leave no mark on the free energy itself. However, that last statement turns out
to be wrong. Even before the nature of the singularities at the critical point
were established, Fisher[70] (See Figure (7).) and A. F. Andreev[71] imagined a
system near a first order phase transition as a set of regions of the two different
phases in contact with each other. They then estimated the effect of these fluc-
tuating “droplets” upon the free energy and thereby upon the entire statistical
behavior of the system. In this way, they developed calculations of the kinds
of singularities which could occur at first order phase transitions. These works
remain as the best description of singularities in this domain. Fisher’s work
also pointed the way toward scaling theories of continuous transitions, but the
scaling relations were not exactly the same as the ones which finally emerged.

These singularities in first order transitions are a result of theory, but are
almost invisible, both to experiment and to simulation. In fact, they are invisible
to theory as well at least if the theory is limited to magnetic field equal to zero.
All corrections from droplet singularities seem to pop up as very small terms
which appear at small values of magnetic field. Further the largest fluctuating
droplets are very rare, and take a long time to develop. These properties makes
them very hard to observe.
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5.4 Other singularities
5.4.1 Lee Yang singularities

The exact nature of the Lee Yang singularities[69] as they arise in the com-
plex plane for temperatures above the critical temperature was established by
Fisher[72] and others. The result was that these singularities could be analyzed
as the usual kind of phase transition, but displaced into the complex plane.
In two dimensions, detailed exact information about the singular behavior was
available through the use of conformal field theory.

5.4.2 Bose-Einstein transition

For interacting particles, as in Helium4 the transition to superfluid flow is a
standard phase transition problem in the same universality class as an XY mag-
netic phase transition. However, there is an analogous transition in the non-
interacting case. It was originally considered by Satyendra Nath Bose[73] and
Einstein[74]. It is treated in beginning statistical mechanics courses as an exam-
ple of the use of the grand canonical ensemble, a method of averaging originally
introduced by Gibbs in his book on statistical mechanics[9]. In this case, there
is a singularity at the phase transition to the bose condensed state in which
a finite fraction of the particles in the system are described by a single wave
function. The singularity here is caused by the ensemble’s possible inclusion
of an infinite number of particles. This inclusion is possible precisely because
the particles do not interact so it is possible for an infinite number of them to
appear in a finite volume. In this case, the fluctuations play a substantial role
in the analysis, but the mean field behavior is dominant.

5.4.3 glasses

Despite the familiarity of window glass, glass is a very special state of matter.
Glasses are produced in situations in which the particles in the glass get stuck
in one of many different regions in “configuration space” and only explore that
relatively small region, at least in any reasonable period of time. Over longer
times, the size of the region will grow very slowly, but the region never en-
compasses most of the possible configurations. The repeated exploration of a
slowly growing region of configurations is characteristic of a behavior described
as “glassy”. Such glasses tend to occur in many materials with relatively strong
interactions. They are believed to be in some cases a dynamical property of
materials[75], and in others an equilibrium property described by an extension
of Gibbsian statistical mechanics. Present-day condensed matter science does
not understand glassy behavior. Some people believe that glasses can undergo
a phase transition. But as people have looked for some infinitely extended cor-
relation, nothing like this has been found. The relation between glasses and the
“extended singularity theorem” remains obscure.
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5.4.4 jamming

Particles in glasses are in motion. In another related phenomenon, the jamming
transition, the particles are stuck[76] and are not moving at all. The usually
quoted example of this is the pouring of dry cereal through an aperture. For a
reasonably small aperture, the cereal may pour for a while and then get stuck
because each grain is jammed up against the next one. This jamming is a kind
of phase transition which, in recent years, has become a subject of scientific
study.

Like the glass transition, the jamming transition is not fully understood.
The jamming might involve a singularity produced by the potentially infinite
forces produced when one gain squeezes against the next. That is one kind of
infinity. It is likely to further involve an infinite spatial extension in which a
whole chain of grains pushed against one another produces a chain of forcing
that can extend over a potentially infinite distance. Several different diverging
length scales have been proposed[77] to explain the situation in which the system
is nearly jammed.

5.4.5 quantum phase transitions

Everything in nature obeys the laws of quantum mechanics. In that sense, all
phase transitions are quantum in their nature. However many phase transitions
like the liquid-gas transition can be rather completely understood by using the
concepts of classical physics. We describe them by saying that information about
the value of some order parameter is passed from place to place within the sys-
tem. The extended singularity theorem tell us that for most phase transitions,
this information is, remarkably enough, transferred over the entire system, a
potentially infinite distance.

In classical mechanics all information is in the form of numbers. This in-
formation describing a classical phase may be a vectors or even a tensor, but
that is as complex as it usually gets. But in quantum theory, information may
be much richer in character. It may describe the entanglement of data about
two subsystems. The usual example of the two systems might be a spin vari-
able described by its wave function, and the state (alive or dead) of Professor
Schrödinger’s cat, described in terms of its own wave function. This entangled
information might perhaps be transferred by some phase of a quantum nature
over an entire material.

We know that there are quantum phase transitions. For example, the behav-
ior of the materials known a high temperature superconductors[45, 78] probably
involve one or more kinds of quantum phase transitions. And we would like to
learn what kinds of information are implicated in such transitions.

Physics is candy for the intellect!
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