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The Adaptation of Babylonian 

Methods in Greek 


Numerical Astronomy 


By Alexander Jones* 

THE DISTINCTION CUSTOMARILY MADE between the two chief astro- 
nomical traditions of antiquity is that Greek astronomy was geometrical, 

whereas Babylonian astronomy was arithmetical. That is to say, the Babylonian 
astronomers of the last five centuries B.C. devised elaborate combinations of 
arithmetical sequences to predict the apparent motions of the heavenly bodies, 
while the Greeks persistently tried to explain the same phenomena by hypothe- 
sizing kinematic models compounded out of circular motions. This description is 
substantially correct so far as it goes, but it conceals a great difference on the 
Greek side between the methods of, say, Eudoxus in the fourth century B.C. and 
those of Ptolemy in the second century of our era. Both tried to account for the 
observed behavior of the stars, sun, moon, and planets by means of combinations 
of circular motions. But Eudoxus seems to have studied the properties of his 
models purely through the resources of geometry. The only numerical parameters 
associated with his concentric spheres in our ancient sources are crude periods of 
synodic and longitudinal revolution, that is to say, data imposed on the models 
rather than deduced from them.' By contrast, Ptolemy's approach in the Almn-
gest is thoroughly numer i~a l .~  In its theoretical aspect, Ptolemy's astronomy set 
out to describe the apparent motions of the sun, moon, and planets according to 
models composed of parts, the dimensions and speeds of which were all calcu- 
lated from quantitative observations. Its practical aspect expressed the behavior 
of the models in the form of numerical tables by which the apparent positions and 
other observable phenomena of the heavenly bodies could be predicted for a 
specified time. 

* Institute for the History and Philosophy of Science and Technology, Victoria College 316, Uni- 
versity of Toronto, Toronto M5S 1K7, Canada. 

The research for this article was carried out under a Canada Research Fellowship (Social Sciences 
and Humanities Research Council of Canada). 

' Simplicius, Commentary on Aristotle's De Caelo, in Commentaria in Aristotelem Graeca, Vol. 
VII: Simplicii in Aristotelis De caelo Commentaria, ed. J .  L. Heiberg (Berlin, 1894), pp. 493-507. 
choose Eudoxus for this comparison because we are relatively well informed by Simplicius about the 
arrangement of his models, the astronomical phenomena they were intended to explain, and the 
grounds on which they were first criticized. The same conditions, as I intend to argue elsewhere, 
probably still applied to the astronomy of Apollonius (ca. 200 B.c.) .  

G. J. Toomer, Ptolemy's "Alrnagest" (London: Duckworth; New York: Springer, 1984). 
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Figure 1. A Babylonian tablet (B.M. 37236) listing undated phases of Mars according to the 
System A scheme. By permission of the Trustees of the British Museum. 
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The earliest Greek astronomer known to have extensively applied numerical 
methods to geometrical models is Hipparchus (active ca. 150-125 B . c . ) . ~ In the 
Almagest Ptolemy passes on much information about how Hipparchus deter- 
mined the parameters of his solar and lunar models, both when he agrees with 
Hipparchus's results (as in the measurement of the solar eccentricity and apsidal 
line) and when he finds fault with them (as in finding the dimensions and periods 
of the lunar m ~ d e l ) . ~  Not only do these passages prove the numerical character of 
Hipparchus's work; but the fact that Ptolemy nowhere discusses comparable 
measurements by anyone other than Hipparchus is a weighty argument that Hip- 
parchus was the founder of this methodology. This conclusion also finds support 
in the lack of evidence that any Greek before Hipparchus's time possessed three 
of the foundations of Greek numerical astronomy: sexagesimal arithmetic, degree 
measure, and a table of chords for trigonometric computation^.^ 

The Mesopotamian origin of the first two of these three resources points to 
another respect in which Hipparchus differed from his predecessors: his exten- 
sive use of elements of Babylonian astronomy. This is not to deny that Babylo- 
nian astronomical concepts and conventions, for example the ecliptic and its 
division into twelve equal zodiacal signs, had entered Greek astronomy from the 
time of Eudoxus on. But Hipparchus had access to Babylonian data, both obser- 
vational and theoretical, on a much larger scale and of a much more technical 
nature than anything that we find in earlier Greek sources. In 1900 F. X. Kugler 
showed from the recently deciphered astronomical cuneiform texts that the fun- 
damental period relations of Hipparchus's lunar theory, namely his value for the 
mean synodic month and its ratio to the anomalistic and dracontic months, were 
parameters taken from the heart of the complex Babylonian System B lunar 
theory.6 Significant as it was, this discovery was only the beginning: Babylonian 
elements have since been recognized in numerous aspects of Hipparchus's astro- 
nomical work.7 At the same time, the study of astrological texts, Greco-Egyptian 
papyri of the Roman period, and Indian treatises descended from Greek originals 
has revealed extensive traces of Babylonian predictive schemes, to the degree 
that it is now evident that many of the most advanced methods of Babylonian 

A good general survey of Hipparchus's work is G. J.  Toomer, "Hipparchus," in Dictionary of 
Scientific Biography, ed. C. C. Gillispie, 16 vols. (New York: Scribners, 1970-1980) (hereafter DSB) 
Vol. XV, pp. 207-224. For details of the topics discussed here see also section 4 of A. Jones, "Models 
and Tables of Ancient Astronomy, 200 B.C.  to A.D. 300," Part 37.4 of Aufstieg und Niedergang der 
Romischen Welt, ser. 11, Principat (BerlinINew York: de Gruyter, in press). 

Ptolemy, Almagest 3.4 (solar model), 4.2, 7, and 9 (lunar periods), and 4.1 1 (lunar eccentricity). 
Degrees and sexagesimal arithmetic first appear in Greek in the Anaphorikos of Hypsicles, who 

wrote a generation or so later than Apollonius, i.e., roughly contemporary with Hipparchus if not a 
decade or two earlier. See V.  De Falco, M. Krause, and 0. Neugebauer, Hypsikles: Die Auf- 
gangszeiten der Gestirne (Abhandlungen der Akademie der Wissenschaften in Gottingen, Philo1.-hist. 
Kl., 3rd Ser., 62) (Gottingen, 1966); and for the date, G. L.  Huxley, "Studies in Greek Astronomers," 
Greek, Roman, and Byzantine Studies, 1963, 4:83-105. The chord table was probably Hipparchus's 
invention, as argued by G. J. Toomer, "The Chord Table of Hipparchus and the Early History of 
Greek Trigonometry," Centaurus, 1973, 18:6-28. 

F. X. Kugler, Die babylonische Mondrechnung (Freiburg, 1900), pp. 20-40. 
'Most of the evidence is collected and discussed in G. J. Toomer, "Hipparchus and Babylonian 

Astronomy," in A ScientiJic Humanist: Studies in Memory of Abraham Sachs, ed. E. Leichty, M. 
deJ. Ellis, and P. Gerardi (Occasional Publications of the Samuel Noah Kramer Fund, 9) (Philadel- 
phia, 1988), pp. 353-362. 
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planetary and lunar theory were substantially transmitted into Greek and prac- 
ticed widely in the Hellenistic world.8 

How the Greeks came by this knowledge remains controversial, and indeed no 
single channel of transmission seems adequate to explain the whole range of 
Babylonian astronomical lore attested in Greek sources. Hipparchus (and 
through him, Ptolemy) had access to reports of lunar eclipses from Babylon rang- 
ing from 747 B.C. to the early fourth century B.c., if not later, as well as Babylo- 
nian planetary observations from the second half of the third century B.C. The 
source of these reports was almost certainly the astronomical archive of Babylon. 
Significant numbers of observational texts from this archive are extant and are in 
the course of publi~ation.~ We can now see that the reports in Ptolemy's Alma- 
gest represent only a selection from a mass of information so enormous that a 
translation into Greek of the whole, or even of a large fraction of it, is inconceiv- 
able. The only plausible alternative seems to be that some Greek, having consid- 
erable technical competence and a specific idea of what sort of observations he 
wanted, extracted reports from the archive with the collaboration of the astron- 
omers of Babylon. Perhaps this happened more than once, for the Greeks had a 
long-standing interest in eclipse observations, and the conventions according to 
which the Babylonian reports in the Almagest were translated and dated vary. 
G. J. Toomer plausibly suggests that Hipparchus himself was responsible for 
fetching some of the Babylonian observations.1° That he organized the reports in 
the published form in which Ptolemy found them is practically certain." 

~ i r e c tcontact with Babylonian astronomers could also explain the Babylonian 
theoretical parameters in Hipparchus's works. It does not suffice, however, to 
account for the fact, coming to be fully appreciated only in recent years, that the 
Babylonian predictive schemes were themselves practiced in Ptolemy's day in 
substantially unaltered form. The most striking proof of this is a second-century 
papyrus published by Otto Neugebauer in 1988 that, for all that it uses Greek 
numerals, is effectively a fragment of a Babylonian System B lunar "ephemeris" 
in which visibility or eclipse phenomena were computed for a succession of syzy- 
gies.12 This document was a surprise to historians of ancient astronomy, although 
the shock was perhaps greater than it need have been; for there was already 
evidence that the rather less complicated Babylonian schemes for predicting 
planetary phases were used in Roman ~ g y ~ t . ' ~  

By what means, then, did the Babylonian predictive schemes pass into the 
hands of the astrologers of Ptolemy's day? It is at the very least superfluous to 

Jones, "Models and Tables" (cit. n. 3), sect. 3. 
A. J. Sachs and H. Hunger, Astronomical Diaries and Related Texts from Babylonia, 2 vols. to 

date (Osterreichische Akademie der Wissenschaften, Phil.-hist. Kl., 195 and 210) (Vienna, 1988- 
1989). For the contents of the observational texts see also A. J .  Sachs, "A Classification of the 
Babylonian Astronomical Tablets of the Seleucid Period," Journal of Cuneiform Studies, 1948, 
2:271-290; and Sachs, "Babylonian Observational Astronomy," Philosophical Transactions of the 
Royal Society of London, 1974, Series A, 276:43-50. 

lo Toomer, "Hipparchus and Babylonian Astronomy" (cit. n. 71, pp. 357-360. 
" Ptolemy, Al~nagest9.2, refers to an "edition" by Hipparchus of older planetary observations. 
l2 0 .  Neugebauer, "A Babylonian Lunar Ephemeris from Roman Egypt," in Leichty et al., Scien- 

tijic Humanist (cit. n. 7), pp. 301-304. The papyrus is in a private collection. 
"The evidence is most compelling for Mars and Venus. See B. L. van der Waerden, "Aegyptische 

Planetenrechnung," Centaurus, 1972, 16:65-91; and A. Jones, "A Second-Century Greek Ephemeris 
for Venus," Archives Internationales &Histoire des Sciences, in press. 
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insist that they had to be published in treatises by Greek astronomers before 
reentering the domain of practical use. One need only assume that scribes trained 
in the Babylonian astronomical centers occasionally carried their skills else- 
where, and that the methods of astronomical computation that we find in Roman 
Egypt and still later in India belong to a continuous tradition in which a change of 
language was an event of little practical significance.14 Hipparchus and later 
Greek astronomers could have obtained details of Babylonian theory either in 
Babylon or from "Chaldeans" residing elsewhere. 

Thus two parallel streams of mathematical astronomy emerged in the Hellenis- 
tic world during the second century B.c.:an arithmetical astronomy originating in 
Babylonia and carried on by astrologers, and a numerical-geometrical astronomy 
founded by Hipparchus and continued by "scientific" astronomers such as 
Ptolemy. Until quite recently one could have maintained that the two streams 
maintained separate courses until at last, in late antiquity, the arithmetical ap- 
proach dried up. Hipparchus, it is true, had assigned to the revolutions in his 
models certain period relations taken from the Babylonian schemes, but then 
periodicity was almost the only theoretical assumption shared by the Babylonian 
schemes and the Greek kinematic model^.'^ On a more general level, the very 
inspiration for Hipparchus's quantification of the models might be traced to his 
knowledge of what the Babylonians had accomplished.16 But surely the two tra- 
ditions, based as they were on fundamentally divergent principles, had little else 
of substance to offer each other! 

However, the assumption that the Greek arithmetical and geometrical tradi- 
tions developed independently has less foundation in actual documents than in a 
tacit assumption that the two astronomies had the same scope and the same 
methodological homogeneity in Hipparchus's time as the original Babylonian sys- 
tems on the one hand and Ptolemy's system on the other. The harmonious pairing 
of a theoretical process from observations to quantitative models and a practical 
process back from the models to predictive schemes or tables is such a prominent 
feature in the Almagest and its modern successors that one is tempted to take it 
as a pattern for the astronomies of earlier times. It does apply to the period when 
the Babylonian schemes evolved, probably the fifth and fourth centuries B.c., 

through the discovery of mathematical models that reproduced the observed dis- 
tribution of astronomical phenomena. l7 Here theory was the servant of predic- 
tion, and we have little reason to believe that the Babylonian astronomers made 
any important theoretical advances after their computational schemes had at- 
tained the more or less canonical forms exhibited in the cuneiform texts of the 
last three centuries B.C. Once the predictions had attained an accuracy at least as 
good as that of the observations, there was little motive for deeper investigation. 
The astronomy that the Hellenistic Greeks received from the hands of the Baby- 
lonians was by then more a skill than a science: the quality of the predictions was 

l4 In Egyptian astronomical papyri, Greek and Demotic Egyptian are used indiscriminately. 
l5 See 0. Neugebauer, "Problems and Methods in Babylonian Mathematical Astronomy, Henry 

Norris Russell Lecture, 1967," Astronomical Journal, 1967, 72:964-972, on p. 972. 
l6  Toomer, "Hipparchus and Babylonian Astronomy" (cit. n. 7), p. 361. 
l7 For the principles involved see A. Aaboe, "Observation and Theory in Babylonian Astronomy," 

Centaurus, 1980, 24:14-35. 
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proverbial, but in all likelihood the practitioners knew little or nothing of the 
origins of their schemes in theory and observations. 

Meanwhile, Greek geometrical astronomy had developed as a "philosophical" 
science devoted to reconciling eternally valid theoretical models with continually 
verified observational facts. The date of a particular appearance of Venus as 
morning star, the magnitude of a particular eclipse, the longitude of Jupiter on a 
particular date were events the prediction of which possessed no scientific inter- 
est. This state of affairs changed with Hipparchus, but less than one might ex- 
pect. 

Hipparchus's use of small numbers of carefully selected observations to deter- 
mine the parameters of his models had no precedent, so far as we know, in either 
Greek or Babylonian astronomy. But the resemblance of these procedures to 
those of Ptolemy in the Almagest should not seduce us into thinking that Hippar- 
chus and Ptolemy had the same goals. Ptolemy carefully designed the Almagest 
to give the deduction of his models an apparently ineluctable logical sequence. 
The solar theory is established first, and purely from observations of solstices and 
equinoxes; he next works out the lunar theory using the solar theory, then the 
star catalogue and theory of precession using the solar and lunar theories, and 
finally the planetary theory using all the preceding work. The plan of each part is 
itself determined by a chain of cumulative dependence. Ptolemy's treatment of 
the solar and preliminary lunar models in Almagest 3-4 is characteristic. He must 
first get at least an approximation of the periods of uniform circular motion in his 
model from a selection of observations over long intervals. Second, he has to 
measure the ratio of radii of the circular components by applying these mean 
motions to a selection of observations over short intervals. Third, he determines 
the instantaneous configuration of the model for an epoch date, from which all 
subsequent configurations can be extrapolated using the mean motions. Last, he 
computes tables by which the apparent position of the body can be predicted for 
a given date. Each step depends on the steps that preceded. If any subsequent 
corrections are made to the parameters (as happens with the lunar mean mo- 
tions), Ptolemy takes care to show that his initial assumption of less accurate data 
introduced no significant errors. 

The order of deduction in the Almagest is logical but not necessarily chrono- 
logical, and Ptolemy makes no claim that he actually worked out the stages of his 
system in exactly the order that he presents. In fact, the notorious solstices and 
equinoxes that he adduces to confirm the length of the tropical year and the 
long-term constancy of the lengths of the seasons in Almagest 3.1 were allegedly 
observed in 4 . ~ .1391140, so that the observations on which his solar theory (and 
therefore the whole system) rests are among the very latest he recorded." What 
is essential is that the subordinate theories could not be published until Ptolemy 
had empirically justified all the data assumed in their derivation. 

Although Hipparchus solved many of the individual problems of establishing 
parameters of the solar and lunar models in essentially the same way as Ptolemy, 

Is Ptolemy records his own observations from A.D. 127 to 141. For my argument the genuineness of 
Ptolemy's solstice and equinox observations is irrelevant; this vexed topic is expertly investigated by 
J. P. Britton, "On the Quality of Solar and Lunar Observations and Parameters in Ptolemy's 
Almagest" (Ph.D. diss., Yale Univ., 1967). 
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Table 1. Hipparchus's writings on solar and lunar theory, and their counterparts in 
the Almagest 

Almagest Hipparchus 

Solar theory 
Length of the year 3.1 "On the Shifting of the Solsticial 

and Equinoctial Points," 
"On the Length of the Year" 

Eccentricity and apogee 3.4 Determination of eccentricity and apogee 
Epoch and tables 3.2, 6-8 No known work 

Lunar theory 
Periods of mean motion 4.2-3 Confirmation of Babylonian System B 

period relations 
Size of epicycle 4.6 Measurement using eccentric model 

Measurement using epicyclic model 
Epoch and tables 4.4, 8, 10 No known work 

his researches manifestly had no such broad plan. In the first place, Hipparchus 
did not write a single comprehensive treatise on astronomy; his contributions to 
the theory of the sun's and moon's motions were made in several monographs, 
each devoted to a specific topic. Table 1 correlates the relevant chapters of 
Books 3 and 4 of the Almagest with Hipparchus's writings, identified either by 
title (where this is known) or by content. The chronology of these monographs is 
not certain, but it is possible to deduce an approximate sequence from their 
relation to each other and to the Hipparchian observations reported by 
~ to1emy. l~The work on the solar model, corresponding to Almagest 3.4, was 
published probably not long after the vernal equinox of 146 B.C.  but before the 
first measurement of the lunar anomaly, and the second measurement of the lunar 
anomaly was made before 128 B.C.  The works on the length of the year and 
precession, however, were written later than the vernal equinox of 128 B.C.  This 
means that Hipparchus did not establish the primary element of the solar theory, 
the period of the sun's mean motion, until near the end of his career, and hence 
his published researches on the lunar theory cannot have relied on a completely 
worked out solar model. 

Another glaring difference between the Hipparchian and Ptolemaic programs is 
the apparent absence of predictive tables in Hipparchus's work. Only one author, 
the astrologer Vettius Valens (late second century), speaks of Hipparchian tables 
for the sun, and lunar tables published by Hipparchus are nowhere menti~ned.~'  
If the solar tables that Vettius Valens knew were truly Hipparchus's, and not a 
later fabrication based perhaps on Hipparchus's solar theory, the point still re- 
mains that Hipparchus could scarcely have composed them when he wrote his 
treatises on the lunar theory; for at this stage he had no confirmed value for any 
of the fundamental periods (the sidereal, tropical, and anomalistic years) of the 
solar model. 

l9 For the details see Jones, "Models and Tables," sect. 4; and Toomer, "Hipparchus" (both cit. 
n. 3). 

20 Vettius Valens, Vettii Valentis Antiocheni Anthologiarum Libri Novem, ed. D. Pingree (Leipzig: 
Teubner, 1986), p. 339. In the context it seems unlikely that Valens would have omitted a reference to 
Hipparchian lunar tables if he had known of any. 
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But if Hipparchus did not make tables, how did he find the computed positions 
of the sun and moon that he needed for his theoretical investigations? Consider- 
ing how generous Ptolemy is with information about other aspects of Hippar- 
chus's theoretical work, he is oddly taciturn whenever reference has to be made 
to Hipparchus's methods of calculating these positions. I suspect, indeed, that 
Hipparchus often merely stated the results without discussing how he got them. 
Only through recent analyses of certain passages of the Almagest has the surpris- 
ing fact emerged that Hipparchus used Babylonian arithmetical schemes to com- 
pute both solar and lunar longitude^.^' 

The evidence for Hipparchus's method of computing solar positions comes 
from Ptolemy's account of Hipparchus's measurements of the ratio of radii be- 
tween the circles in his lunar model, in which the initial data were the intervals of 
time and longitude separating three observed lunar eclipses. The intervals of time 
could be deduced from the observation reports, but the longitudes had to be 
calculated because parallax interferes with the observed positions. When 
Ptolemy adopts Hipparchus's procedure in Almagest 4.6, he uses his already 
established solar theory and tables to compute the sun's longitude for the three 
times of mid-eclipse; the moon's longitude is of course exactly 180" from the 
sun's. Ptolemy elsewhere (Almagest 4.1 1) quotes the intervals of longitude that 
Hipparchus assumed in his two measurements of the lunar radial ratio, and it is 
easy to confirm that these numbers cannot have resulted from a correct trigono- 
metric calculation based on Hipparchus's solar model, with or without tables. 
The Babylonian System A lunar scheme (with some slight modifications to be 
discussed presently) furnished him with a much easier approach. In this scheme 
the synodic arc, that is, the progress in longitude from one opposition (or con- 
junction) to the next, is determined solely by the sun's longitude at the former 
date: the ecliptic is divided into two zones, and a constant synodic arc is associ- 
ated with each zone. Given an initial solar longitude for the first eclipse (possibly 
estimated from proximity to a solstice or equinox), Hipparchus was able to find 
the longitudes for the other two eclipses by simple arithmetic. 

For Hipparchus's lunar computations, we must turn to the measurements of 
positions of fixed stars that he is known to have made at various stages of his 
career. Two conditions determined how he had to find stellar positions: he could 
easily observe a star's location relative to the moon when the moon passes 
nearby, but unfortunately the lunar theory was still too insecure to permit an 
accurate direct computation of the moon's own position at the time of the obser- 
vation. In exceptional instances, Hipparchus was able to sight the relative posi- 
tions of the moon and stars during lunar eclipses. For such observations the solar 
longitude, and hence also the true lunar longitude, could be estimated from the 
interval of time between the eclipse and the nearest equinox or solstice; the lunar 
position would then be corrected for parallax. But Ptolemy describes in Almagest 
7.2 a more general procedure that could be used on any night. During the day 
before or after the stellar observation, one observes the apparent elongation be- 

'' A. Jones, "Hipparchus's Computations of Solar Longitudes," Journal for the History of Astron- 
omy, 1991, 22:lOl-125; and Jones, "The Development and Transmission of 248-Day Schemes for 
Lunar Motion in Ancient Astronomy," Archive for History of Exact Sciences, 1983, 29: 1-36, on pp. 
23-27. 
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tween the sun and moon. The solar longitude itself is either calculated or mea- 
sured using an instrument such as Ptolemy's armillary sphere. The apparent lunar 
longitude resulting from adding the observed elongation to the sun's longitude 
must then be corrected for parallax to obtain the moon's true longitude at the 
time of the diurnal sighting. To this one adds (or subtracts) the product of the 
moon's current daily motion in longitude by the fraction of a day separating the 
diurnal and nocturnal sightings to get the true longitude at the time of nocturnal 
sighting, which must be corrected again for parallax to obtain the apparent posi- 
tion. Since only a few degrees in this final result are contributed by the lunar 
theory, the error due to the imperfections of this theory can be counted on to be 
small. 

Although Ptolemy does not tell us so, it is very probable that this procedure too 
goes back to Hipparchus. Ptolemy actually quotes (Almagest 4.3 and 5)  three 
diurnal observations of the elongation between the sun and moon that Hippar- 
chus made in 1281127 B.C.  Because Ptolemy uses these observations to measure 
the second anomaly of the moon, modern historians have suggested that Hippar- 
chus too suspected the existence of a second anomaly and was attempting to 
investigate it.22 However, it is doubtful whether Hipparchus had actually refined 
his lunar model to the point where he could have detected the second anomaly. 
What confirms that these three sightings were associated with stellar observa- 
tions is the fact that Ptolemy has preserved (unnecessarily, for his own purposes) 
Hipparchus's citation of the moon's daily motion for one of the ~ightings.~' The 
way that this is expressed is critical. Hipparchus writes that the moon's "course" 
(6poyo<) was the 241st, an expression that long eluded explanation until Toomer 
recognized that it referred to the index number of the day in question in a table of 
daily motion over a 248-day lunar anomalistic period.24 his table originally 
formed part of a Babylonian arithmetical scheme for predicting lunar longitudes 
for a sequence of consecutive days, associated with the lunar System B . ~ ~  The 
exact pattern of the Babylonian daily motion table (a linear zigzag function) is 
described by Geminus in the first century, while adaptations of it are well attested 
in the Roman period. Without further information it seems safest to assume that 
Hipparchus used the unmodified Babylonian table. 

The debt of Hipparchus's theoretical researches to Babylonian astronomy thus 
extends beyond his use of Babylonian observations and period relations, justifi- 
able from Ptolemy's point of view, to a reliance on predictive schemes that were 
not derived from his assumed theoretical models. For Ptolemy such practices 
would have been utterly irreconcilable with the apodictic and didactic purpose of 
the Almagest. Hipparchus apparently was satisfied to have recourse to the al- 
ready existing schemes on the grounds that they yielded sufficiently accurate 

ZZ E.g., 0.Neugebauer, A History of Ancient Mathematical Astronomy (Berlin: Springer, 1975), p. 
309; and Toomer, Ptolemy's "Almagest" (cit. n. 2), p. 217 n. 2. 

23 The only dated Hipparchian stellar observation in the Almagest is one of Regulus in 128 B.C. 
(Almagest 7.2), and this is also the year that Ptolemy uses for the epoch of Hipparchus's stellar 
observations in general. G. Grasshoff, The History of Ptolemy's Star Catalogue (New York: Springer, 
1990), p. 154, concludes on statistical grounds that the bulk of Hipparchus's stellar observations were 
made about ten years earlier, in the early 130s. 

24 Toomer, Ptolemy's "Almagest," p. 224 n. 14. 
2S Jones, "248-Day Schemes" (cit. n. 21), pp. 2-1 1. 
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predictions (or so he believed). For his immediate needs, correct numbers were 
all that mattered. 

Hipparchus put the Babylonian schemes to use in still another way. In the 
absence of direct observations, he could resort to the schemes to argue for the 
existence or nonexistence of various astronomical phenomena. It would not be 
surprising if the prominence of the zodiacal anomaly in the Babylonian planetary 
schemes provided Hipparchus with ammunition in his polemic against the Greek 
planetary models hypothesized in his time, since by Ptolemy's account (Almagest 
9.2) these models generated a constant synodic anomaly. The eclipse schemes 
were still more useful because they analyzed the solar and lunar motions into 
factors that could be interpreted in the light of geometrical models. We have one 
elegant instance of this principle in Hipparchus's extant Commentary on Aratus, 
where he uses it to refute Eudoxus's hypothesis of a solar motion in latitude.26 
Hipparchus argues that if the sun exhibited a noticeable latitudinal deviation from 
the ecliptic, then the earth's shadow would also deviate from the ecliptic. Yet, he 
goes on, the eclipse predictions of the "astrologers" ( ~ ( T T ~ O A O ~ O Z )assume no 
such deviation, and lead to calculated eclipse magnitudes in error by never more 
than two digits, which is insignificant. At the date he was writing, the only meth- 
ods of prediction that could fit this description were the Babylonian schemes. 

If the arithmetical methods offered themselves as ready-made substitutes for 
missing components in the new Hipparchian astronomy, the geometrical theory 
might in turn be the source of improvements in schemes that had been cut off 
from their empirical origins. Probably no Greek astronomer had the faintest no- 
tion of why the particular structures that occurred in the Babylonian schemes had 
been chosen, but this was no obstacle to tinkering superficially with the numeri- 
cal parameters associated with these structures. The phenomenon can already be 
seen in Hipparchus's calculations of the solar longitudes for the eclipses used in 
his two measurements of the lunar radial ratio.27 When making his first measure- 
ment he was not content to take over the rules of the System A lunar scheme as 
he found it. Without altering the constant synodic arcs associated with the two 
zones of the ecliptic, he changed the definition of the zones so that they were 
exactly equal and centered on the apsidal line that he had determined theoreti- 
cally for his solar model. Making the zones equal was a mistake, because it 
introduced a systematic error in the predicted longitudes that was large enough to 
throw his first measurement of the lunar model seriously off. For his second 
measurement, Hipparchus also changed the synodic arcs, probably to conform 
with the maximum and minimum apparent velocities resulting from the eccentric- 
ity in his solar model. This correction brought about a considerable improvement 
in the accuracy of the ensuing calculations. If Hipparchus did eventually publish 
solar tables for the prediction of the sun's longitude on given dates, they could 
have used a similar zone structure with the constant increments scaled to corre- 
spond to days instead of synodic months.28 

26 Hipparchus, Hipparchi in Arati et Eudoxi Phenomena Commentarium, ed. K .  Manitius (Leipzig: 
Teubner, 1894), pp. 88-90. 
''Jones, "Hipparchus's Computations" (cit. n. 21). 
28 A pre-Ptolemaic solar table has now turned up in an unpublished papyrus, P. Oxy. Inv. 32 

4B.l/E(1-2) a. A zone scheme much more refined than Hipparchus's two-zone scheme apparently 
underlies the table, but the associated speeds are derived from Hipparchus's model. 
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Figure 2. Part of an auxiliary table (P.  Mich. 151) belonging to a Greek adaptation of the 
System A Mars scheme. By permission of the Department of Rare Books and Special 
Collections, University of Michigan Library. 

A papyrus dating from the third century of our era, P. Heid. Znv. 4144 + P. 
Mich.151 (cf. Figure 2), testifies to the existence of a scheme for Mars related to 
the Babylonian System A scheme in much the same way as Hipparchus's solar 
schemes were related to their Babylonian ancestor.29 Like other schemes from 
Greco-Egyptian papyri that will be discussed below, this scheme cannot be dated 
precisely or attributed to any particular astronomer, although we are obviously 
dealing with developments after Hipparchus but uninfluenced by Ptolemy. 
Mars's pronounced orbital eccentricity results in a very uneven distribution of 
occurrences of the planet's phases over the ecliptic. The Babylonian scheme 
reproduced this distribution very successfully by dividing the ecliptic into six 
equal zones, with associated synodic arcs varying from a minimum of 30" to an 
ideal maximum of 90". Through B. L. van der Waerden's analysis of the data for 
Mars in Egyptian astronomical "Almanacs," we know that the original Babylo- 
nian scheme, employing these synodic arcs, was known in Roman ~ g y p t . ~ '  In 
this papyrus, however, a new set of values for the synodic arcs are associated 
with the six Babylonian zones, exhibiting a much smaller range of variation, from 
40:" to 57". The modified scheme generates such poor predictions of the longi- 
tudes of Mars's phases that it clearly cannot have been based on, or even con- 
fronted with, systematic observations of the phases. On the other hand, the num- 
bers agree closely with the synodic arcs that one would get from a geometrical 

29 A. Jones, "Babylonian and Greek Astronomy in a Papyrus Concerning Mars," Centaurus, 1991, 
34 (in press). Earlier discussions: 0. Neugebauer, "A New Greek Astronomical Table (P. Heid. Inv. 
4144 + P. Mich. 151)," Historisk-jilosojiske Meddelelser: Danske Videnskabernes Selskab, 1960, 
39(1); and Neugebauer, History of  Ancient Mathematical Astronomy (cit. n. 22), pp. 946-948. 

30 Van der Waerden, "Aegyptische Planetenrechnung" (cit. n. 13), pp. 77-87. 
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model in which Mars travels on an epicycle revolving around an eccentric defer- 
ent, with eccentricity of or less. The astronomer who devised the papyrus 
scheme, I conclude, had settled on this excessively small eccentricity for Mars's 
orbit, used it to calculate synodic arcs for six initial longitudes at 60' intervals, 
and imposed these values on the System A zones. 

The Babylonian schemes were directed primarily at the prediction of planetary 
phases, eclipses, and other lunar phenomena connected with syzygies, but even 
before their transmission into Greek they had been extended to address the prob- 
lems of predicting day-to-day positions and the dates when a planet entered a 
new zodiacal sign. The growth of Hellenistic horoscopic astrology undoubtedly 
encouraged the development of more handy, if not always more accurate, meth- 
ods. Daily motion in Babylonian astronomy was characteristically handled by 
interpolation between phases. The simplest hypothesis, linear motion, gave rise 
to "velocity schemes" that broke up a planet's synodic period into a sequence of 
intervals of constant speed; the patterns varied through the ecliptic in order to 
account for the effects of zodiacal anomaly. There is little evidence for velocity 
schemes in the extant Greek documents, but they do turn up in early Indian texts 
that depend on Greek source^.^' In most cases the Indian velocity schemes are 
intended to apply throughout the ecliptic; thus all attempt to describe the zodiacal 
anomaly is abandoned in the interest of simplicity. In other respects these 
schemes seem to have been modeled on Babylonian patterns without interference 
from Greek kinematic theory; a possible exception is an elaborate (and fragmen- 
tarily preserved) velocity scheme for Venus that, as van der Waerden has shown, 
gives a good approximation of epicyclic motion.32 

A more refined treatment of daily motion attested in cuneiform texts is to 
interpolate between phases using higher-order difference sequences, that is, to 
assume that the daily motion, or even the daily change in motion, increases or 
decreases by constant difference^.^^ Bridging the interval in time and longitude 
between two given phases with a second- or third-order sequence of terminating 
sexagesimal numerals is not a trivial problem, and the two surviving examples, 
for Jupiter and Mercury, may be scribal exercises rather than specimens of nor- 
mal Babylonian astronomical practice. Nevertheless we have two second-century 
papyri, P. Dem. Carlsberg 32 and P.S.Z.1492, that show similar methods applied 
to the daily motion of Mercury and atu urn.^^ Algebraic difficulties are eliminated 
in these "templates" by tabulating a single standard mean synodic cycle com- 
posed of stretches of second-order and linear motion. The template was used in 
conjunction with a list of epoch longitudes corresponding to the beginning of each 
synodic period; one obtained the longitude for the day in question by reading off 
from the template the progress in longitude corresponding to the number of days 

31 For summaries and references see D. Pingree, "History of Mathematical Astronomy in India," in 
DSB, Vol. XV, pp. 533-633, on pp. 540-542. 

32 B. L. van der Waerden, "The Motion of Venus in Greek, Egyptian and Indian Texts," Centau-
rus, 1988, 31:105-113. 

33 P. Huber, "Zur taglichen Bewegung des Jupiter nach babylonischen Texten," Zeitschrift fur 
Assyriologie, 1957, N.S.,  18:265-303. 

34 0. Neugebauer and R. Parker, Egyptian Astronomical Texts, 3 vols. (Providence, R.I.: Brown 
Univ. Press, 1969), Vol. 111, pp. 240-241 and pl. 79B; and A. Jones, "A Greek Saturn Table," 
Centaurus, 1984, 27:311-317. 
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since epoch, and adding it to the epoch longitude. There may have been a sepa- 
rate correction for zodiacal anomaly, but we have no evidence for it. The numer- 
ical patterns of the two preserved templates seem to be uninfluenced by geomet- 
rical models. 

New theoretical considerations did find their way into a similar template 
scheme for lunar motion.35 This lunar scheme seems to have been very popular 
during the first three centuries of our era, and enough relevant texts survive to 
permit an almost complete reconstruction. The template is a descendant of the 
Babylonian table of lunar daily motion over a 248-day anomalistic period, which 
we have already met in connection with Hipparchus. In both the Greek scheme 
and its Babylonian ancestor the lunar daily motion is described as a linear zigzag 
function, alternately increasing and decreasing by constant differences between 
fixed maxima and minima. The assumed periods of longitude and anomaly are 
more accurate in the template scheme than in the Babylonian version, and the 
difference between maximum and minimum daily motion has been reduced to 
about of the Babylonian value. The last change results in a pattern of longitu- 
dinal motion that closely fits a simple epicyclic model with a radial ratio of about 
5;:60, which is very near Ptolemy's ratio of the epicycle radius, 5::60. This sug- 
gests that the Babylonian function was adapted to bring it into accord with a 
post-Hipparchian model correctly describing the moon's longitudes at syzygies 
(when the second anomaly vanishes), that is, a model based on eclipse observa- 
tions. 

Entirely without precedent in the Babylonian sources is the treatment of lunar 
latitude in the Greek template scheme. The epoch list and the template tabulate 
not only the moon's progress in longitude but also its argument of latitude, that 
is, its elongation from the northern limit of its orbit. The coordinated variation in 
the argument of latitude and the daily motion shows that the inventors of the 
template scheme were fully aware of the interdependence of lunar anomaly and 
latitude, an effect that has no counterpart in the Babylonian lunar schemes but 
follows directly from consideration of a kinematic model. From an obscure pas- 
sage in Pliny's Natural History (2.68-76) it appears that planetary template 
schemes existed in the first century that described latitudinal motion in a similar 
way; the extant papyrus templates concern only longitudinal motion.36 

The pre-Ptolemaic astronomy that emerges from the study of the fragmentary 
contemporary documents is a strange symbiosis of arithmetical and geometrical 
methods that will be sure to disconcert anyone who expects to find a record of 
steady scientific progress from the Babylonians through Hipparchus to Ptolemy. 
Theoretical work operated with geometrical hypotheses but did not disdain to 
employ initial data derived from arithmetical schemes; the predictive schemes, 
for their part, readily absorbed new parameters from geometrical theory without 
casting off their arithmetical structures. For Hipparchus the availability of the 
Babylonian predictive methods was, on the whole, a boon. It must be remem- 
bered that, unlike Ptolemy, Hipparchus could not use his Greek predecessors' 
work as a first approximation in determining the parameters of his models; with- 
out the arithmetical schemes he would have had to invent new ways of dealing 

35 Jones, "248-Day Schemes" (cit. n. 21), pp. 14-23. 

36 A. Jones, "Pliny on the Planetary Cycles," Phoenix, 1991, 45 (in press) 
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with subsidiary problems that were only incidental to the topics of his researches. 
On the other side, the efforts of Hellenistic astronomers to accommodate Baby- 
lonian schemes to their models at first gave valuable experience in astronomical 
table making; the lunar template scheme is an especially successful fusion of 
Babylonian and Greek concepts that well deserved its wide reception in antiq- 
uity. The attempts to tamper with the planetary schemes were less happy and 
mark a step backward, both in accuracy of prediction and in theoretical sophis- 
tication, from the Babylonian originals. 

During this same period, methods of astronomical prediction were developed 
that actually described, rather than merely being fitted to, geometrical models, 
using mean motions and equation tables calculated by the correct trigonometrical 
formulas. These methods are known to us primarily through the Indian astronom- 
ical traditions, which are practically silent about the empirical basis of the param- 
eters of their models. To date, comparable tables have not turned up in any 
papyrus; but an astronomical inscription discovered at Keskinto on Rhodes, 
probably dating from about 100 B.c . ,  evinces the use of huge compound periods 
of planetary anomaly characteristic of the Indian system^.^' Perhaps the "aeon- 
tables" mentioned in various ancient sources belonged to this tradition.38 The 
Indian tables already approach Ptolemy's ideal of "exhibiting the uniform circular 
motion,"39 but Ptolemy seems to have been the first to understand the impor- 
tance of working out the entire system of the heavenly bodies according to a 
logical deductive plan and a consistent methodology. The Almagest was so suc- 
cessful in this respect that it is only with much difficulty that we are coming to 
appreciate its originality. 

37 Neugebauer, History of Ancient Mathematical Astronomy (cit. n. 22), pp. 698-705. 
38 B. L. van der Waerden, "Ewige Tafeln," in Arithmos-Arrythmos: Skizzen aus der Wissen- 

schaftsgeschichte: Festschrift fur Joachim Fleckenstein zum 65. Geburtstag, ed. K .  Figala and E .  H .  
Berninger (Munich: Minerva, 1979), pp. 285-293; and Toomer, Ptolemy's "Almagest" (cit. n. 2), p. 
422 n. 12. 

39 The phrase is quoted from Almagest 9.2; Ptolemy describes the concept as one of his goals in 
tabular presentation near the end of 3.1. 


