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1. Abstract
NOR Flash normally does not need ECC (Error-Correcting Code). On the other hand, NAND requires ECC to 
ensure data integrity. NAND Flash includes extra storage on each page to store ECC code as well as other 
information for wear-leveling, logical to physical block mapping, and other software overhead functions. The 
size of extra storage (spare area) is normally 16 byte per 512 byte sector but other sizes are also used. ECC 
algorithm correction strength (number of bit errors that can be corrected) depends on the ECC algorithm used 
to correct the errors (these algorithms may be implemented in either hardware or software). Simple Hamming 
codes can only correct single bit errors. Reed-Solomon code can correct more errors and is used on many of 
the current controllers. BCH (Bose, Ray-Chaudhuri, Hocquenghem) codes can also correct multiple bit errors 
and are becoming popular because of their improved efficiency over Reed-Solomon.

2. ECC Usage with Spansion's MS NAND Flash
Spansion® has created the industry's first charge-trapping 1.8V, 4-gigabit SLC NAND flash memory. This 
NAND memory is based on Spansion's MirrorBit® charge-trapping technology. The MS NAND flash 
guarantees that the first block is valid at factory shipment time and ensures an endurance of 100,000 Write/
Erase cycles with 1 bit ECC handling a partial page (528 bytes). It also guarantees a consistent 10-year data 
retention cycle.

It's important to note that since the MS NAND flash supports the Copy back function, some important 
considerations have to be taken into account by the host in order to avoid any possible accumulation of single 
bit errors. The host should make sure to implement either of the following scenarios:

 Readout of data to compute ECC (and modify data if needed) before writing it back. Actually, the data read 
from the source page can be read out by the host in order to compute error detection. Before copying back 
data to the device page, the host may perform data correction if needed. Since the data to be written is still 
in the page register, the host is required to upload only the corrected bytes using the “Change Write 
Column” command, making the sequence faster.

 Implement an ECC scheme that exceeds the minimum required ECC.

On the other hand, in order to ensure that the data is stored properly over the life of the MS NAND flash 
device, it is highly recommended that the following additional precautions be taken:

 Always check status after executing Write, Erase and Copyback operations.

 Implement bad-block management, garbage collection and wear-leveling algorithms.

3. Most Commonly Used ECC Algorithms
This section provides details of the three most commonly used ECC algorithms.

 Hamming Algorithm

 Reed-Solomon Algorithm

 Bose-Chaudhuri-Hocquenghem (BCH) algorithm
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3.1 The Hamming Algorithm
The Hamming algorithm is relatively straightforward and easy to be implemented in software or hardware. 
The limitation of Hamming algorithm is its limited error correction abilities. Hamming code is able to correct 
single bit errors and detect two bits errors. As to the S33MS NAND flash, the Hamming algorithm for ECC 
computation should be used only in case the host system would make sure to read back the source page to 
be copied using the Copy Back function and make all necessary bit corrections prior to writing it back, as 
explained in the previous section. A Hamming code is usually defined as (2n-1, 2n-n-1), where:

 n = the number of overhead bits

 2n-1 = the block size

 2n-n-1 = the number of data bits in the block

All Hamming codes can detect two errors and correct one error. Common Hamming code sizes are (7, 4), 
(15, 11), and (31, 26). Meaning in a 7-bit block only 4 bits are data, the other 3 bits are correction code; the 
same goes for (15,11) and (31,26).

For example, a NAND flash with 2 kB pages that uses a Hamming code algorithm may look like Figure 3.1.

Figure 3.1  NAND Storage of Hamming Code

In this configuration the Hamming code requires 3 bytes of ECC information for each 512-bytes sector, or 
12 bytes (96 bits) of ECC encoding information is required per 2 kB page.

3.2 The Reed-Solomon Algorithm
The Reed-Solomon algorithm is often used on outer encoding while convolutional code is used on inner 
encoding (The inner code takes the result of the pre-coding operation and generates a sequence of encoding 
symbols. Each encoding symbol is the XOR of a randomly chosen set of symbols from the pre-code output). 
The convolutional code allows the correction of widely scattered errors but is not able to correct highly 
concentration errors. Reed-Solomon algorithm is often used in NAND flash memory interfaces. 
Reed-Solomon codes are often used to handle NAND flash bit-flipping phenomenon. As to the S33MS NAND 
flash, Spansion recommends the implementation of the Reed-Solomon Algorithm. Reed-Solomon encoder 
uses Galois Field arithmetic operations to add parity symbols. Parameters are listed below:

 n = the number of code symbols

 s = gives the size of symbols (s-bit symbols). n=2s-1

 t = number of correctable errors, 2*t is the number of parity check symbols 

 k = number of message symbols (k=n-2t)

A Reed-Solomon code is specified as RS(n,k) with S-bit symbols.
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The decode process takes several stages to get error location and correct the error. The first decoding stage 
is syndrome computation; this stage transfers symbols to data syndrome. The decoder tells if errors are 
detected at this stage. After that, the algorithm computes error polynomial based on syndromes in the finite 
Galois field. Following stages find the roots of error polynomial to locate errors and correct them.

Example: A popular Reed-Solomon code is RS (255, 223) with 8-bit symbols. Each code word contains 255 
code word bytes, of which 223 bytes are data and 32 bytes are parity. For this code:

n=255, k =223, s=8

2t=32, t=16

The decoder can correct any 16 symbol errors in the code word: i.e. errors up to 16 bits anywhere in the code 
word can be automatically corrected.

Currently, there are only a few micro-controllers that implement Reed-Solomon encoding, most of which are 
targeted to the USB or memory card applications, using a 4-byte-on-512-byte-page encoding specifically for 
MLC (Multi-Level Cell) NAND flash devices.

3.3 The BCH Algorithm
Hamming code provides the easiest hardware or software implementation; but it only corrects single bit 
errors. Reed-Solomon algorithm provides more robust error correction ability; but requires a large amount of 
system resources (CPU cycles or logic cells) to implement. Bose-Chaudhuri-Hocquenghem (BCH) algorithm 
is becoming popular because of its improved efficiency over Reed-Solomon algorithm. BCH code is a large 
class of multiple errors correcting codes. One advantage of BCH is that both highly concentrated and widely 
scattered errors are detected. Another advantage is that the encoding and decoding techniques are relatively 
simple compared to Reed-Solomon code. BCH codes belong to the class of linear block codes, to be more 
specific, the subclass of cyclic codes.

A block code consists of a set of vectors with N elements, where the vectors are called code word and N is 
called the length of the code word; q symbols are the elements of a code word. If the elements consist of the 
two symbols 1 and 0, the code is a binary code. A block code maps k information bit into a code word with 
length of N, and the ratio r = k/N is defined to be the rate of the code. As stated before, the elements of a code 
word are selected from an alphabet of q symbols. Codes are constructed from fields with q elements. In 
coding, q is usually a finite number, so the field is a finite field or a so called Galois field.

The main difference between Reed-Solomon and binary BCH is the underlying structures. Reed-Solomon 
algorithm is symbol-based and BCH algorithm is binary.

Reed-Solomon algorithm (Symbol base code)

Symbol 1 Symbol 2 Symbol 3 Symbol 4 Symbol 5

Symbol length = 4; code length = 5 symbols

BCH algorithm (binary base code)

Symbol length = 1; code length = 20 symbols

Both Reed-Solomon algorithm and BCH algorithm are common ECC choices for MLC NAND flash. Micro-
controllers specially designed for SD Cards, SPI, eMMC and embedded NAND are becoming more common 
that use built-in hardware 6/9/12-bit BCH ECC circuits. Moreover, some MLC NAND flash devices have an 

n= k+2t = 2s-1

Data (k) Parity (2t)
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internal BCH ECC (Error Correction Code) generation engine, which can speed up data integrity checking. 
Extra command functions concerning embedded ECC are also provided in software drivers.

4. Conclusion
Hamming based block codes are the most commonly used ECC for SLC. Hamming codes are relatively 
straightforward and simple to be implemented in either software or hardware. The disadvantage of Hamming 
codes is its limited error correction capabilities, with two bit errors detection and only one bit error correction. 
Therefore, it is mainly used on SLC NAND flash application. As to the S33MS NAND flash, the Hamming 
algorithm for ECC computation should be used to some extent. For instance, this technique should be 
considered only in the case where the host system would make sure to read back the source page to be 
copied using the Copy Back function and make all necessary bit corrections prior to writing it back.

On the contrary, both Reed-Solomon and BCH are able to handle multiple errors and are widely used on MLC 
flash. It is also recommended to use these algorithms with the S33MS NAND flash since they ensure a 
reliable usage of the Copy Back function. Both codes are powerful and able to handle both random and burst 
errors. Reed-Solomon code is a subset of the BCH. However, BCH is simpler than Reed-Solomon to decode 
and implement. On the other hand, Reed-Solomon code is more suitable for concatenated codes.
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5. Revision History

Section Description

Revision 01 (November 27, 2007)

Initial release

Revision 02 (March 30, 2011)

Global Updated this document with references to Spansion's MS NAND flash
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Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without 
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as 
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the 
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, 
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for 
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to 
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor 
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design 
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal 
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under 
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, 
the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under 
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this 
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, 
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any 
damages of any kind arising out of the use of the information in this document.

Copyright © 2007-2011 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, 
EcoRAM™ and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. 
Other names used are for informational purposes only and may be trademarks of their respective owners.
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