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INTRODUCTION 2005 
 
The expanding membership of NASS, the North American Sundial Society, has created several 
requests from new members and from teachers for introductory level materials about sundials.  
When Fred Sawyer asked me if my book The Sundial and Geometry could be updated and 
reprinted, I was delighted to say yes. 
 
However, the book had been out of print for some years and needed some dusting off and 
recharging.  I asked Mr. Sawyer to do this, and he has done a magnificent job getting the history 
into proper order and updating where newer information has become available.  He has improved 
the nomogram in section 8 with a new computer generated version which greatly improves the 
precision. 
 
 

INTRODUCTION 1979 
 
The genesis of this booklet goes back quite a few years to my early teaching days when I wrote 
out steps to make a sundial for a class that was learning to use a protractor.  During succeeding 
years, as youngsters responded, my interest in sundials grew, and applications to all levels of 
classes began to present themselves.  
 
The earliest attempts to use the sun for indicating time are lost in history. The use of the sundial 
for regulating time reached its zenith during the seventeenth and eighteenth centuries.  Hundreds 
of texts were written on the subject, and every aspect of sundial theory was explored.  Some of 
the books available today are listed in the bibliography. These books are essentially modern 
renditions of the old texts, and this booklet is drawn from them.  No originality is claimed by this 
writer other than an occasional expression of a point of view or a variation in the sequence of 
presentation.  
 
The heart of this booklet is Chapter II, "Delineation Of The Horizontal Sundial."  Applications 
from this chapter require only minimal mathematical understanding. The material collectively is 
well within the reach of high-school mathematics. No effort has been made to list specific 
applications to schoolroom use; in this I follow the principle that self-discovery and personalized 
presentation are fundamental to good teaching.  
 
Particular thanks are due my colleagues Mr. Jack Allen for the drawings of the historic sundials 
and Mrs. Elizabeth Meigs for her help with the details of the manuscript. 
 
I sincerely hope this material will find its way, through devoted teachers, to students in 
classrooms and that from it, their understanding of mathematics and life itself may be 
enlightened even a little.  
 

 

QUI DOCET DISCIT 
(He who teaches, learns) 
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I 

 
The earth obeys two rules of motion. It rotates on its axis to give us day and night. It orbits the sun to give 

us the seasons. 
 
 

HISTORY OF THE SUNDIAL  
 
Section 1 The Classsical Period  
 
A sundial, in its broadest sense, is any device that uses the motion of the apparent∗ 
sun to cause a shadow or a spot of light to fall on a reference scale indicating the 
passage of time. The invention of the sundial is lost in the obscurity of ancient 
times.  But we can imagine some of the factors that led up to its invention.  
 
Very early in our history, humans must have observed the shadows cast by trees 
and noticed that the shadows grew shorter as the morning wore on and then grew 
longer again after midday.  Thus, if a shadow a little after sunup was twice as long 
as the height of a stick, then, in the afternoon, when the shadow was again twice as 
long as the height of the stick, there would be that same amount of time left before 
sundown (see Figure 1).  
 

                                                      
∗ It seems to us, as it did to the ancients, that the earth is stationary and the sun moves across the sky.  
Actually, the sun is stationary (as shown by Nicolaus Copernicus, A.D. 1543) and the earth is in motion, 
spinning on its axis as it orbits around the sun. However, the shadows would be the same no matter which 
heavenly body was in motion.  The "apparent" sun is understood to be the actual sun we see – that does 
indeed ‘appear’ to us - as opposed to the fictional mean sun that we will discuss later. 
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Fig.l   The length of the shadow is a crude indication of the passage of time. A morning shadow 
of given length (direction not considered) and an afternoon shadow of the same length would 
represent equal periods of time before or after noon.  
 
 
The shadow of a vertical object like the spear, or in later times a tall obelisk, can be 
used in two ways to indicate the passing of time.  The first method, which uses the 
changing length of the shadow, is illustrated above.  The second method uses the 
changing direction of the shadow.  In the morning as the sun rises in the east, the 
shadow points west.  Then, as the day advances, the shadow first swings to the 
north and then to the east, where it points when the sun sets in the west. 
 
The direction method has been preferred historically over the length of shadow 
method.  The problem with the latter is that shadows are shorter in the summer 
than in the winter because the earth is tilted toward the sun in summer and away 
from the sun in the winter.  
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Fig.2  The length of the 
noon shadow in summer is 
GS, and in winter it 
stretches to GW.  The same 
is true for any other hour of 
the day.  
 
 
 
 
 
 
 
 

The summer and winter paths of the sun can easily be traced out by experiment. 
With a gnomon∗ secured firmly in place, simply set a stone at the various positions 
of the tip of the shadow five or six times each day, then connect these positions. 
The result is a graphic illustration of the relationship of the sun to the seasons. The 
shortest shadow is traced about June 21, and the longest about December 22. The 
straight-line shadow occurs about March 21 and again about September 23. Such a 
basic knowledge of the seasons was essential to the earliest agricultural societies, 
so we might assume that their need gave rise to the first primitive sundials. The 
Greek historian Herodotus (484-425 B.C.) stated in his writings that the sundial 
originated in Babylonia in the fertile valleys of the Tigris and Euphrates rivers.   
 
As time went on, people’s needs grew more complex and so did the design of the 
sundial.  A major change was that markings were introduced to show the passage 
of the hours of the day.  The oldest sundial in existence falls into this latter 
category.  It is of Egyptian origin and dates to the time of Thutmose III (fifteenth 
century B.C.). This portable stone device, housed today in the Berlin Museum, is 
L-shaped and may have been topped by another straight piece as shown in the 
figure (see Figure 3).  Different versions of how this dial was used have been 
offered.  According to one view, the cross piece was placed facing east before 
noon and facing west after noon, and the shadow of the top bar indicated the time 
among the markings on the lower bar.  Another view is that the dial (perhaps 
without the top bar but with some other sort of capstone) was always placed 
directly towards the sun, so that the shadow of the elevated portion indicated the 
time by where it fell among the hour markings.   

                                                      
∗ The object that casts the shadow, such as a pole or obelisk, is generally called the "gnomon," a word of 
Greek origin meaning "one who knows."  
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A number of simple sundial designs 
were developed in the Greek classical 
period. Aristarchus of Samos (3rd 
century B.C.) is said to have designed 
the sundial called a "hemispherium" 
(see Figure 4). A stone hemisphere 
was hollowed out; then the gnomon, 
a vertical pin, was set in the center 
point.  The tip of the pin traced, in 
reverse, the path of the sun as it 
moved across the sky.  Vertical 
markings on the surface divided the 
daylight period into twelve temporary 
hours∗, and horizontal lines 
delineated the seasons or months. A 

similar type of sundial was found at the base of Cleopatra's Needle in Alexandria 
when that site was excavated in 1852 (see Figure 5).  It is now in the British 
Museum.  
 

 
Fig. 4: The hemispherium of Aristarchus.                Fig. 5: The hemicyclium of Berossos  
 
The pelekinon is another sundial of the Greek period. The word ‘pelekinon’ comes 
from the Greek word for a double-headed axe, which perfectly describes the 
appearance of the temporary hour lines on this sundial. A perpendicular pole 
served as the gnomon, and the dial face showed not only the seasonal lines but also 
the hour lines. This sundial could be drawn on vertical as well as horizontal 
surfaces (see Figure 7). 
                                                      
∗ A temporary hour is 1/12th the time that the sun is above the horizon on any given day.  Temporary 
hours are longer in the summer and shorter in the winter.  They were the common measure of time until 
about the end of the 14th century. 

Fig. 3.  The oldest sundial extant.  c1500 B.C. 
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Although mathematical knowledge, such as astronomy, the geometry of Euclid 
(300 B.C.), and the foundations of trigonometry of Hipparchus (160-125 B.C.) was 
growing, there is simply no evidence to suppose that any methods other than 
empirical ones were used to construct hour lines.  However, the seasonal lines, 
hyperbolic in shape, could by this period be accurately calculated mathematically 
for any latitude.  

 
Though each of the new designs had brought improvements, all of the early 
sundials indicated the time as measured in temporary hours; that is, they were 
based on a division of daylight into twelve equal periods.  Since the sun's position 
in the sky changes every day, the length of the day, sunup to sundown, changes 
too.  Therefore, each of the twelve periods in a summer day was much longer than 
each in a winter day.  In addition to this seasonal change, there was a change 
between day and night. For example, each period in a summer "day" was much 
longer than each period in a summer "night."  
 
This arrangement may seem strange to us today, but it was the way time was 
reckoned for over 2500 years.  This method of timekeeping based on temporary 
hours remained in use until about the fourteenth century, when mechanical clocks 
became popular.  They were less ‘versatile’ than sundials and could not indicate 
hours of varying length; their unit of time had to be one of equal length throughout 
the year.  As the popular notion of timekeeping changed, so did the design of 
sundials, and sundials were developed that can also measure time in equal hours.  

Fig. 6: Pelekinon dial.  Fig. 7: Modern Pelekinon Cube Dial.  Bloomfield CT 
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Section 2 The Beginnings of Modern Dialing  
 

Over the centuries, many types of clepsydra (water clock, literally 
water thief) and clepsammia (sandglass or hourglass) were popular 
as timekeeping instruments, but they were all subordinate to the 
sundial.  However, very little is known about exactly how and 
when sundials made the transition from indicating temporary 
hours to indicating equal hours, i.e., hours that are each one 
twenty-fourth of an average day.  
 

By the end of the 10th century, Arab astronomers certainly were aware of ‘the great 
discovery’ (see Figure 8) of modern gnomonics – that using a gnomon that is 
parallel to the earth’s axis will produce sundials whose hour lines indicate equal 
hours on any day of the year.  A dial of this type was made by the astronomer Ibn 
al-Shatir for the Umayyad Mosque in Damascus in 1371.  It is the oldest polar-axis 
sundial still in existence.  
 

 
Fig. 8.  The great discovery 

 

It took much longer for the idea of a polar-axis sundial to make its appearance in 
Europe.  The oldest extant examples are probably a 1446 dial in Germany and 
several Austrian dials from the period 1447 - 1457.  However, none of the many 
14th and 15th century European texts on sundial construction mentions the idea of a 
polar-axis gnomon to indicate equal hours. 
 
The first books to deal with modern dialing, using equal hours, appeared in the 16th 
century.  Sebastian Münster published Compositio Horologiorum in Basel in 1531, 
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and Oronce Finé published Protomathesis in Paris in the following year.  
Münster’s book was the first treatise on the new form of sundials; for this reason, 
he is sometimes referred to as the ‘Father of Modern Gnomonics’.  However, 
almost nothing in his book is claimed as original, and he clearly wrote it more as a 
comprehensive summary of contemporary techniques than as the introduction of a 
revolutionary new idea. 
 

After the 16th century, everyone in Europe, it would seem, was conversant with the 
art of dialing. Visitors to the birthplace of Sir Isaac Newton are dutifully shown the 
ceiling dial made by young Isaac.  He used a mirror on the windowsill to reflect the 
sun’s rays onto the ceiling where hour lines had been drawn. The art of dialing, or 
gnomonics, held an honored place in the school curriculum. Every mathematics 
book had chapters on dialing, and many books were devoted entirely to the subject.  
 

The earliest mechanical clocks were woefully inaccurate. Even the pendulum 
clocks of the 1700’s needed a standard for setting and checking. The sundial 
served that purpose. By the time of the American Revolution, however, mechanical 
clocks had greatly improved and had begun to replace the sundial as the timepiece 
of choice.  
 
 
Section 3 The Colonial Period  
 
In early America a sundial was a luxury and, therefore, rare. By 
the 1820s, Eli Terry, with waterpower and mass-production 
methods, had placed an inexpensive wooden-works clock in 
nearly everyone's home.  The sundial was more or less driven 
into retirement as a garden ornament.  Nevertheless, dialing had its enthusiasts well 
after its decline in popularity. 
  
The earliest sundial to reach the continent was probably the one erected by 
Champlain in 1608.  It was placed on the building of the Habitation, which marked 
the founding of Quebec City.1 The earliest sundial in the U.S. arrived in 1638 (see 
Figure 9). It accompanied a clock commissioned by Governor John Endicott of 
Massachusetts.  The clock and the sundial were made in London, but the sundial 
was calibrated for Boston and was used as the standard by which to set and 
regulate the clock.2  
                                                      
1 Malcolm M. Thomson, "Sundials," The Physics Teacher Journal, Volume 10, Number 3.  
 
2 Leonard V. Short, Jr. "The Endicott Sundial," Sundials and More (booklet), New Ipswich, New 
Hampshire.  
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Fig. 9.  The Endicott sundial.  This sundial is on exhibit at the Peabody Essex Museum in Salem, 
Massachusetts.  (Drawing by Jack Allen, from a photograph by Leonard V. Short.) 
 

Another historic sundial was placed on the State House in Boston when it was built 
in 1713.  That wood dial was lost long ago, but when the building was refurbished 
in 1957, a new one was made from an old engraving showing the original dial (see 
Figure 10).  This replica dial has since been removed. 

      
Fig. 11.  A slate dial, 1722.  Found in Nova Scotia. 
 
 

A slate sundial, dated 1722, was recovered during excavations and restoration of 
the Fortress of Louisbourg, in Nova Scotia (see Figure 11).  The motto, incomplete 
because of a missing piece, probably read Sum Sine Sole Nihil, which means 
“Without the Sun I am Nothing.” ∗ 
                                                      
∗ Thomson, “Sundials”. 

Fig. 10.  Replica of 1713 Dial on the 
Old State House, Boston, MA. 
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Fig. 12.  Dial at Quebec Seminary, 1773.  Motto is I Chronicles 29:15. Our Days on Earth Are 
Like a Shadow.  
  

Benjamin Franklin was an enthusiastic student of the sundial. It was through his 
influence that the first U.S. coin, the Fugio Cent, was cast with a sundial design 
and the motto "Mind Your Business." It was minted in 1787 under the authority of 
the Continental Congress.  Franklin did not originate the motto; he brought it  

        
Fig. 13.  The Fugio Cent, 1787.  
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back from London where he had spent considerable time studying the English 
postal service. On the Post Office building there was a sundial with a similar 
motto.  
 
Alice Morse Earle explains the origin of this motto in her book, Sun-Dials and 
Roses of Yesterday: 
  
Legend has it that when the dial was first put up, the dial maker enquired if he 
should paint a motto under it as was customary. The Benchers assented and 
instructed him to call at the library on a certain day and hour, at . which time they 
would have agreed upon the motto. It appears, however, that they had totally 
forgotten to do this, and when the dial maker appeared at the appointed time and 
enquired for the motto, the lone librarian, who knew nothing about it, replied with 
some irritation, 'Be Gone About Your Business." The dial maker, by design, or 
mistake, chose to take this curt reply as an answer to his enquiry and the dial was 
accordingly painted. The Benchers, when they saw it, decided that it was very 
appropriate and that they would let it stand, chance having done their work for 
them as well as they could have done it for themselves.  
 
George Washington is known to have carried a pocket dial in preference to a watch 
in the American Revolution.  In 1811 Thomas Jefferson, in a letter to Charles Clay, 
tells how he amused himself during an illness by calculating a sundial scaled for 
each five minutes of time.  He sent his directions along so that Mr. Clay's young 
son could make the sundial.  
 
In France, as late as the beginning of the twentieth century, one of the leading 
railroads used the sundial to regulate the watches of its trainmen. This dial was a 
precisely machined sun clock called a heliochronometer.  
 
There is a common but erroneous belief that a sundial is not very accurate. The 
sundial indicates local time (also called sun time), while our watches indicate Civil 
time, known in the United States as Standard Time.  The inaccuracy is not in the 
sundial, but in the translation from local time to Civil time. Most persons are not 
aware that these two times can differ by fifteen minutes or more, and so, 
unfortunately, the casual observer declares the sundial inaccurate. How this easy 
translation is done will be presented in later chapters.    
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II 

 
Charles Leadbetter, Mechanick Dialling, London, 1737  

 
DELINEATION OF THE HORIZONTAL SUNDIAL 

 
Section 4 The Classroom Sundial  
 
A sundial consists of two parts. The Dialface is a flat surface on which are drawn 
the lines that label the hours of time.  The Gnomon is a triangular shape that rises 
perpendicular above the dial face with its slanted edge equal in degrees to the local 
latitude.  When the sun shines, the gnomon casts a shadow on the dialface.  The 
time is read from the scale on the hour lines at the point indicated by the shadow of 
the gnomon.  
 
The hour lines drawn on the dialface are calculated from the sundial formula 
 

( )n15tansinarctan βα =  
 
where n is the number of hours before or past noon, β is the local latitude, and α is 
the angle value that determines where to draw the hour lines.  Before making the 
classroom sundial, a table giving the α values must be consulted, or a formula 
should be used to determine the α values for your exact latitude.∗   
 

                                                      
∗ Latitude and longitude can be found from a map of your local area in the Rand McNally Road Atlas.  On 
the Internet, such sites as www.multimap.com or www.multimap.com also provide this information. 
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Fig. 14.  Dialface layout and cutout for gnomon. 
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Directions for Making a Classroom Sundial (see Figure 14)  
 

1.  On a 3 x 5 card, lay out line DC perpendicular to IJ.  
 

2. Place a protractor on D along DC and measure each hour angle for your latitude.  
Indicate each measure around the edge of the protractor with a dot. The morning 
hour angles are measured to the left of the noon line DC, and the afternoon hour 
angles, which are symmetric to those of the morning, are measured to the nght of 
the noon line.  
 

3.  Connect D with each dot.  These are the hour lines, which are labeled from 6 
A.M. at point I, through 12 noon at point C, and on to 6 P.M. at point J (see Figure 
14a).  
 

4. Measure angle CDB equal to your latitude (see Figure 14b, which is the same as 
Figure 14a but with the hour marks left out for clarity). Draw XY perpendicular to 
DC and in line with point B.  Connect B with some point Z on line DC.  Draw a 
semicircle using XY as its diameter.  
 

5.  With a sharp blade, cut along lines BD and BZ, and around the semicircle.  Also 
cut a one-quarter inch slit at W into the semicircle flap.  
 

6. Crease the semicircle and the triangle so they stand up along the lines XY and 
DZ respectively.  The slit in the semicircle will fit on the triangle to hold the 
gnomon erect.  
 

7.  Place the sundial in the sun.  The dialface must be perfectly level and the noon 
line DC point to true north.  D is the south end and C is the north end. (Procedure 
for finding true north is in Section 5.)  
 

8.  As a final step, the sundial should be adorned with an appropriate motto (see 
Figure 15).  
 

In summer, Daylight Saving 
Time is in use, so it would be 
desirable to have the sundial 
scaled accordingly.  To do so, 
each hour label is increased by 
one.  Thus the DI line becomes 
7 A.M., the DC line becomes 1 
P.M., and the DJ line becomes 
7 P.M. (see Figure 15).  
 Fig. 15.  Motto – The Shadow Teaches.  The hours are 

labeled for Daylight Saving Time. 
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Section 5 On Finding True North  
 
Use of the magnetic compass is not a reliable way of 
establishing a meridian line, i.e., finding the north-south line. 
The compass points to the magnetic pole, which (in 2004) is just 
to the west of Ellesmere Island, Nunavut, Canada, considerably 
distant from the actual north pole. In the eastern United States 
this causes the compass to decline towards the west by as much as 20 or more 
degrees, while in the western United States the compass can decline towards the 
east by as much.  A line of near zero declination runs west of the Great Lakes, 
through the western portions of Wisconsin and Illinois, splitting Mississippi in half 
and entering the Gulf of Mexico around New Orleans.  The pole and this line are 
constantly shifting.  So, unless the exact current declination for your area is known 
and compensated for, the compass does not indicate true north.  
 

The sun rises in the east and sets in the west and must, therefore, cross the north-
south line. This crossing occurs at midday. The following method for finding true 
north is based on this principle.  
 

Draw two concentric circles on a flat board and place a nail at the center of the 
circles. The nail must be absolutely erect. Place the board perfectly level and locate 
it so that the sun will fall on it from mid-morning to mid-afternoon.  
 

As the morning shadow shortens, mark the spot where the tip of the shadow 
touches the outer circle. When the afternoon shadow lengthens, mark where the   

 

 
Fig. 16.  Find true north. 
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tip of the shadow touches the outer circle again.  Make two similar marks on the 
inner circle as a check or in case the sun goes behind a cloud at the critical time.  
 
Connect the two points on each circle with the center point, and bisect each angle.  
The composite of these two bisectors will be a true north-south line (see Figure 
16).  
  
 
Section 6 The Geometric Method  
 
Historically, geometric methods preceded trigonometric methods 
for finding the hour lines. Indeed, the geometric methods 
remained the more popular of the two.  Each writer apparently 
felt obliged to devise his or her own method.  Originality seemed 
more important than simplicity, for many of the old methods are very difficult to 
follow.  The mathematical foundations for these methods were frequently omitted.  
 
The method presented here is reasonable and easily followed. The necessary tools 
are protractor, straightedge, and compass.  
 

 
Fig. 17.  Geometric layout for latitude 42°.  
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Geometric Layout for the Sundial Hour lines (see Figure 17)  
 

1.  Draw line AB and erect a perpendicular from B. 
2.  At A, draw AC, making angle BAC equal to your latitude. 
3.  Measure CD equal to CA.  
4.  Draw EF perpendicular at D with DE and DF equal to DB.  
5.  Connect B with E, and B with F.  
6.  Make GH perpendicular at C, and drop GI and HJ perpendicular to EF.  
7.  At E, B, and F, draw arcs of radius BC.  
8. Divide these arcs into 15-degree sectors, and extend each radius until it meets a 
side of the rectangle GHIJ. 
9.  The lines drawn from D to these points of intersection are the hour lines for a 
sundial at your latitude.  
10.  The dialface may be circular, elliptic, pentagonal, hexagonal, or as you please.  
The desired shape is placed symmetrically on the DC line.  If you are making a 
sundial of material heavier than cardboard, you must allow for the thickness of the 
gnomon (as explained on page 29).  
  

Section 7 The Sundial Formula  
 

The above construction, and also the table of hour angles in an 
earlier paragraph, are based on the sundial formula:  
 

n15tansintan βα = . 
 

This formula will generate the hour angles for the garden-type horizontal sundial. 
The value α is the angle measure for each hour line, the value β is the local latitude, 
and the value n is the number of hours from noon.  The formula is necessary 
because the angles for the hour lines are all different. 
  

To understand the derivation of this formula, it is helpful first to consider a simpler 
type of sundial on which all the hour shadow lines are uniformly spaced at 15 
degrees. Such a dial is called an equatorial dial, taking its name from the equator of 
the earth. Suppose the earth to be hollow and the outside globe to be transparent. 
Suppose also that the equator is a plane through the center of the earth, and the axis 
that connects the north and south poles is a long straight rod. Suppose further that 
there is a fictitious sun that rotates around the earth at a uniform speed and that it 
stays within the extended plane of the equator. This fictitious sun is often called the 
mean sun. It requires twenty-four hours for the mean sun to travel one revolution, 
through the 360 degrees of the equator. If lines were drawn radiating from the 
center of the earth and spaced every 15 ( 24360 ÷ ) degrees, each line would 
represent one hour of time. Any particular hour of the day would be indicated by 
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the shadow cast by the axis rod. The illustration of this, in Figure 18, is an 
equatorial sundial.  
 

 
Fig. 18.  The sun revolving around the earth’s axis casts a shadow on the equatorial plane. 
 

Actually the earth is not hollow, nor is it transparent, but if an equatorial dial were 
made and placed on the surface of the earth at the equator, with its circular dialface 
in line with the equatorial plane and its 
rod parallel to the earth's axis, it would 
indicate each hour in exactly the same 
way.  In fact this equatorial dial could 
be placed anywhere on earth, as long 
as the circular dial face remained 
parallel to the earth's equatorial plane, 
and its rod (gnomon) was parallel to 
the earth's north-south axis (see Figure 
19).  
 

The earth is inclined at 23.4 degrees 
with respect to the real sun, and 
because of this, the shadow appears on 
the top side of the equatorial dialface 
in summer, and on the underside of the 
dial face in winter.  Thus, for year 
round use, the equatorial sundial 
requires the hour lines to be drawn on 
both surfaces.  
 

Fig. 19: The equatorial dial, when moved away 
from the equator, will be slanted to a person 
viewing it.  
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An equatorial sundial at some northern latitude will appear tilted because we view 
it from the perspective of our local horizon.  It is desirable, however, that a sundial 
face be parallel to the local horizon.  The solution, then, is to translate the hour 
lines from the equatorial dial to a horizontal dialface.  Notice in Figure 20 that the 
angle between the gnomon and the horizontal dialface must be equal to the local 
latitude angle. 
 

The plane of the local horizon, shown oblique (inclined) in Figure 20, is shown 
level, as we experience it, in Figure 21.  A vertical plane has been added.  The 
equatorial dial gnomon, although still parallel to the earth's axis, becomes oblique 
in perspective to a person standing on the earth's surface at some distance from the 
equator. 
 

 
Fig. 20: The equatorial dial is oblique to the horizon at an angle equal to the latitude. 
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Fig. 21 The equatorial dial in relation to the horizontal and vertical dials. 

 

Derivation of the Sundial Formula 
 

Observe in Figure 21 that:  
 

∠DCP = ∠BCN = ∠DCN = ∠DBC = right angle  
Let ∠CDN = α = hour angle 
Let ∠CDB = β = latitude  
Let BN = extension of hour line from the equatorial dial  

For 1 o'clock, ∠CBN = 15°  
For n o'clock, ∠ = 15n°  

In ∆DBC: DCBC=βsin , so βsinDCBC =  
In ∆CBN:  Let ∠CBN = 15n°  

BCCNn =15tan   
nDCnBCCN 15tansin15tan β==   

In ∆DCN:  nDCCN 15tansintan βα ==  
 
Horizontal sundial formula:  
     n15tansintan βα =  
 

The formula for the vertical sundial can be found in similar manner to be:  
 

n15tancostan βα =′  



 

Page 20                                                                                                                                          Lawrence E. Jones 

Section 8 The Alignment Chart Method  
 

Geometric constructions and trigonometric formulae have 
been presented.  There is a third technique by which a sundial 
may be delineated called dialing scales. The alignment chart 
or nomogram presented here (Figure 23) is original to this writer, but there is no 
question that others have also created the same or similar scales.∗  Mine is based on 
the basic sundial formula n15tansintan βα =  and is, therefore, a convenient way 
to determine the hour angles for any latitude. 
 

The alignment chart is used by holding a string taut across the chart (see Figure 
22). The string (or ruler!) must cross the appropriate latitude on the left scale 
labeled "Latitude", and the other end of the string must cross the desired hour on 
the right scale marked "Hour".  The reading where the string crosses the inner scale 
marked "Degree" will be the correct angle to use on the sundial face. The afternoon 
hours are measured to the right of the 12 o'clock noon line, and the morning hours, 
which are symmetric to those of the afternoon, are measured to the left. The 6 
o'clock line is perpendicular to the noon line. 
  

 
Fig. 22.  Nomogram for sundial hour angles (latitude 42°). 

                                                      
∗ Frank Cousins (see Bibliography) presents a dialing scale that is triangular in pattern. This scale, 
invented in 1638 by Samuel Foster, has the further advantage that, instead of simply calculating the 
required angle, it allows you to lay the angle out on the dial face. 
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Fig. 23.  Nomogram for sundial hour angles (as redrawn by F.W. Sawyer) 
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III 
 

 
Etched dialface c1920. The month is read from the inside circular scale of the declination of the 
sun. With the date known, the equation of time chart is consulted, and the sundial reading is 
converted to clock time.  

 

CORRECTIONS TO THE SUNDIAL READING 
 

Section 9 Conversion from Sun Time to Clock Time  
 

The natural phenomenon of the earth's varying speed in its elliptic orbit and the 
manner in which the earth's axis tilts away from or towards the sun as the seasons 
change make the hours from the real sun irregular and uneven, whereas the mean 
sun assumes a uniform speed and equal hours.  Clocks also operate at a uniform 
speed, with equal hours, giving mean time. Although the difference between sun 
time and clock time may vary by as much as seventeen minutes, neither time 
should be thought of as less accurate than the other.  It is simply a matter of 
translation. This difference is known as the equation of time,∗ which is shown in 
Figure 24 as a graph. During the months when the sundial is ‘slow’, the correction 
is added to the sundial reading; during the months when the sundial is ‘fast’, the 
correction is subtracted from the sundial reading. The derivation of the equation of 
time will be investigated in the following section.  
                                                      
∗ In astronomy, the word ‘equation’ refers to an amount which must be added to or subtracted from the 
result of an observation or calculation in order to compensate for a known cause of error or irregularity.  
Do not confuse this use of the word with the more familiar mathematical equation. 
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A second correction of 
sundial time first became 
necessary in the 1880s 
as the rai1roads, 
figuratively speaking, 
brought cities closer 
together.  To understand 
this, it is necessary to 
define noon as that time 
in the day when the sun 
is at its highest point and 
crosses the local 
meridian. This time is 
assigned 12 o'clock. 
When people lived 

pretty much in their own areas, it didn't matter that when it was noon in Boston it 
was only 11:14 in Cleveland, and when the sun traveled westward to cross the 
meridian at Cleveland it was 12:44 in Boston.  However, this was a great 
inconvenience to the railroad in making timetables for its trains.  
 

The solution came with the invention of zone time, also called standard time. 
Starting at Greenwich, England, time zones were laid around the earth roughly 
every 15 degrees of longitude. This 
placed four time zones across the 
United States (see Figure 25).  
Meridians 75, 90, 115, and 120 are at 
the center of the Eastern time zone, the 
Central time zone, the Mountain time 
zone, and the Pacific time zone 
respectively. The lines separating time 
zones are very irregular because they 
follow geographic and population 
clusters for convenience. The Eastern 
Standard Time zone, for instance, 
extends eastward from the 75th 
meridian to include Boston and 
westward to include Cleveland, and all 
clocks in the zone will be set at the 
same time, based on 12 noon when the 
sun crosses the 75th meridian.  

Fig. 25.  The time zones of North America 

Fig. 24 
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The sundial will still indicate the local time, even though all clocks will indicate 
the same standard time.  In Boston (71st meridian) the sundial will indicate noon 
when the sun is on the meridian, but Eastern Standard Time (EST) won't indicate 
noon until the sun reaches the 75th meridian.  Since the sun requires 4 minutes to 
travel one degree westward, it will require 16 minutes to travel 4 degrees of 
longitude from Boston to the central meridian of the time zone.  Therefore, in 
Boston the sundial will always be 16 minutes fast.  At 12 noon EST the sundial at 
Cleveland (83rd meridian) is 8 degrees of longitude away, so the sun will require 
32 (8 x 4) minutes to reach there, and, therefore, a sundial in Cleveland will always 
be 32 minutes slow. This is called longitude correction, and once it is determined 
for any area, it remains the same through the year.  
 
RULE: To find the longitude correction, find the difference between the local 
longitude and the appropriate central meridian.  Multiply this difference by four to 
get the minutes of correction.  For areas east of the central meridian, the sundial is 
fast, so subtract this correction from the sundial reading to get standard time.  For 
areas west of the central meridian the sundial is slow, so add this correction to the 
sundial reading to get standard time.  
 
These two corrections can be combined into a single correction by adding the 
longitude correction to the equation of time correction and writing the combined 
values as the scale on the right side of the chart in Figure 24. For example, 
Hartford (72nd meridian) is 3 degrees from the central meridian, so it is 12 minutes 
fast.  The correction is made by subtracting 12 from the scale on the left, giving the 
values: +3, -2, -7, -12, -22, -27. These numbers are written on the right side of 
Figure 24. Using this new scale, the graph will translate sundial time in Hartford to 
standard time within one to two minutes of accuracy.  
 
Section 10 The Equation of Time  
 

Just as one can drive a car without understanding how the engine 
works, one can also use the equation of time graph (Figure 24) 
without understanding the details of its derivation.  In a similar 
manner, casual readers may omit this section without 
jeopardizing their understanding of the following sections.  
 
There are two factors that enter into the equation of time. The real sun moves with 
irregular speed relative to the earth, and its orbit is oblique to the equatorial plane 
of the earth.  These two factors should first be considered separately and then 
together. 
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The irregular speed of the real sun westward through the heavens is caused by the 
eccentricity of the earth's orbit.  Kepler long ago discovered that the earth's orbit is 

elliptical rather than circular.  He also 
showed that the earth will sweep equal 
area in equal time, as shown in Figure 26. 
The sun is at one focal point of the 
ellipse; thus, the radius in winter (in the 
northern hemisphere) is less than in 
summer; hence, the earth's speed along 
the orbit must be faster in winter and 
slower in summer. This change in speed 
effects a change in the length of the 
average day.  A day is caused by the 
earth's rotation on its own axis 360 
degrees from noon to noon.  But as it 
rotates on its axis, the earth is also in 

orbital motion, and must, therefore, rotate more than 360 degrees to complete one 
day (see Figure 27).  In winter, when the earth orbits faster than average, it travels 
farther, so it requires additional rotation to complete the day.  In summer, the 
slower speed of orbit requires less than average rotation to complete the day. 
 

This factor alone would cause the equation of time (the difference between sun 
time and clock time) to be zero on January 1 and July 1, and the values between 
would reach approximately eight minutes. 
 

Perhaps this phenomenon can be more readily visualized if we let the average 
excess beyond the 360 degrees rotation be identified with the fictitious mean sun in 
orbit at a uniform speed and let the change to more or less than average be 
identified with the real sun in apparent orbit at speeds sometimes faster and 
sometimes slower than the mean sun.  Both suns will complete one full orbit in one 
year, but their relative positions will vary back and forth.  
 

The equation of time is identified by 
the distance the two suns are apart.  
When the real sun is at its slower-than-
average speed, it trails the mean sun.  
It will slowly accelerate and begin to 
catch up, which it does when at its 
fastest speed.  At the moment it passes 
the mean sun, it starts to decelerate; 
however, it is still moving faster than 

Fig. 26.  Equal area in equal time. 
(Ellipticity greatly exaggerated.) 

 
Fig. 27.  Angle AA’ is the additional rotation 
beyond 360° required to complete a day. 
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the mean sun, so it pulls ahead. As it continues to slow down, it will reach speeds 
less than that of the mean sun. The mean sun, at its constant speed, begins to catch 
up, doing so when the real sun is at its minimum speed; one year is completed, and 
the process begins again.  
 

The fastest and the slowest speeds occur on January 1 and July 1, so the two suns 
are coincident on those dates, making the equation of time zero on those dates. 
 

The plane in which the real sun orbits around the earth is oblique by 23.44 degrees 
to the equatorial plane of the earth.  This oblique orbit is called the ecliptic and is 
caused by the earth's axis being tilted 23.44 degrees to the plane of its own orbit  
around the sun.  This is what causes the sun to reach 23.44 degrees above the 
earth's equatorial plane on June 21 (summer solstice), and to dip 23.44 degrees 
below the earth's equatorial plane on December 21 (winter solstice). This angle of 
declination of the sun is zero on March 21 and September 22 (the equinoxes) when 
the sun crosses the equatorial plane. 
 

To study the effect of the inclination of the earth, the two suns may again be used. 
The real sun will follow the ecliptic around the earth, traveling at a uniform rate. 
The mean sun will orbit in the equatorial plane at the same uniform rate as the real 
sun.  Let the two suns be together at the vernal equinox, as shown in Figure 28. 
  

In a given length of time, the mean sun will travel along the equator as vector M. 
In the same given time, the real sun follows the ecliptic along vector R for the 
same distance, but its horizontal component R', projected onto the equator, is less 
than M. Here the mean sun is ahead of the real sun, and will continue to gain until 
the real sun has climbed to its maximum latitude, 23.44 degrees, where its 
direction becomes parallel to the equator and its honzontal component equals R 
and equals M. However, as the real sun approaches its maximum height, its 
projection has grown larger than the vector M, and therefore the real sun, by the 
time it reaches its solstice, has caught up to the mean sun so that they are both at 
the same meridian.  
 

By this factor alone, the equation of 
time (the difference) will be zero four 
times a year: the two equinoxes and 
the two solstices, or about the 21st of 
March, June, September, and 
December. Its greatest difference, 
about ten minutes, will fall in between 
these dates. 
 

Fig. 28. This chart shows the effect of the 23½° 
inclination of the earth to the equatorial plane. 
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To find the complete equation of time, these two factors must be combined (see 
Figure 29). The value of the eccentricity factor is plotted as a dotted line. The 
value of the inclination factor is plotted as a dashed line. The combination is the 
solid line, which is determined by adding the ordinates of the two factors for each 
abscissa value. The actual equation of time will be zero four times a year, about 
April 25, June 14, September 1, and December 25. Notice that the equation never 
differs by more than seventeen minutes.  
One further point should be mentioned. If the equation of time is plotted on a 
horizontal scale of minutes, and the months are plotted on a vertical scale 

according to their declination values of the sun, the resulting graph is the 
analemma, the large figure-eight shaped diagram found on globes of the world.  
  
 
 

Section 11 Adjusting the Dial for Exact Longitude  
 

The longitude correction, once determined for a given location, remains the same 
throughout the year. This correction can, therefore, be 
incorporated into the delineation of the hour lines. 
 

To adjust the geometric construction given in Figure 17 to 
include this correction, subtract the local longitude from the 
central meridian longitude of the appropriate time zone (as 
detailed in the previous section). The longitude in Figure 30, for 
example, is 72 degrees, and the central meridian is 75, so the 

 
Fig. 29.  The equation of time is a composite of the additions of the 
ordinates of the two sine-like graphs. 
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correction is 3 degrees. Since the location is east of the central meridian, the 
correction is positive, so it is added to the right of the BC line, creating a BC' line 
that is then used as the base line for measuring the 15-degree arcs. A negative 
correction is called for if the location is west of the central meridian, and the 
correction would be measured to the left of the BC line. The correction in Figure 
30 is positive 3 and is, therefore, measured counterclockwise.  
 

 
Fig. 30.  Layout for latitude 42° longitude 72°. 
 
 

To alter the sundial formula to include this correction, first determine the 
correction in degrees and then convert to minutes of time.  Each degree of 
longitude represents 4 minutes of time.  For Figure 30 the correction is 12 (3 x 4) 
minutes.  The number of minutes is next converted to a decimal fraction of the 
hour, which for the example is 0.2 hours (12 min./60 min. per hour).  The 
correction of 0.2 is added to the n in the formula, which becomes: 
 

)2.0(15tan42sintan += nα  
 
 

To express the corrected formula in general, let f be the decimal factor (a positive 
or negative value), which is added algebraically to n:    )(15tansintan fn += βα  
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In making the cardboard classroom sundial, no allowance is necessary for the 
thickness of the gnomon.  
 

However, if a dial of heavier material is desired, say one-quarter or one-half inch 
plywood, pine wood, or metal, an allowance must be made for the thickness of the 
gnomon.  Instead of one line DC (as 
in Figures 14a and 17), there must be 
two parallel lines DC the same 
distance apart as the thickness of the 
gnomon (see Figure 33). The A.M. 
hours would be measured from the 
left parallel DC line, and the P.M. 
hours would be measured from the 
right parallel DC line. Note, however, 
the hours before 6 A.M. and after 6 
P.M. are measured from the opposite 
DC line; e.g., the 7 P.M. line is an 
extension of the 7 A.M. line. 

Fig. 33: Allowance for gnomon thickness.  

 Fig. 31. Completed dialface for 12 minutes 
longitude correction.  Light rules me. 

 
Fig. 32.  An elaborate classroom cardboard 
sundial.  Motto: Time flies.  The picture of 
the fly is a pun on the motto. 
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IV 

 
 

SOME CLASSICAL CONSIDERATIONS 
 
 
 
 

Section 12 Mottoes and Meditations  
 

Like the weather, time is a popular subject for discourse, ranging from casual 
conversation about its fleeting nature to profound interpretation of time as a fourth 
dimension.  Perhaps it would be well to pause a moment to meditate on time. 
 
 

Time is: Too slow for those who wait,  
 Too swift for those who fear, 

Too long for those who grieve,  
Too short for those who rejoice.  

 But for those who love-time is eternity. – Henry Van Dyke 
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Lost, yesterday, somewhere between sunrise and sunset, two golden hours, each set 
with sixty diamond minutes. No reward is offered, for they are gone forever! 
    - Horace Mann  
 

Time is the most undefinable yet paradoxical of things; the past is gone, the future 
is not come, and the present becomes the past, even while we attempt to define it, 
and, like the flash of the lightning, at once exists and expires. - John Cotton  
 

To every thing there is a season, and a time to every purpose under the heaven; A 
time to be born, and a time to die….A time to plant, and a time to pluck up that 
which is planted….-Ecc. 3:1-8  
 

...he drew a dial from his poke, and looking on it with lack-luster eye, Says, very 
wisely, 'It is ten o'clock'. - William Shakespeare  
 

O God! methinks it were a happy life  
To be no better than a homely swain;  
To sit upon a hill, as I do now,  
To carve out dials quaintly, point by point,  
Thereby to see the minutes how they run,  
How many make the hour full complete; 
How many hours bring about the day;  
How many days will finish up the year;  
How many years a mortal man may live. - William Shakespeare  
 

Hide not your talents. They for use were made.  
What's a sundial in the shade ?   -Benjamin Franklin  
 

Much of the charm of sundials is in the mottoes they display. Some are crude 
witticisms, some reflect on life, some admonish or warn not to linger, some are 
hopeful, some are philosophical, some are religious, all are fascinating.  
 

Inanimate objects often seem to develop a personality of their own.  We look at 
them as almost human. For instance, craftspersons often personify their tools, and 
musicians treat their instruments like friends. Computer operators frequently think 
their machines are human - they receive information, make decisions, and 
communicate back in words. 
  

The sundial, too, becomes to many a friend to admire. For a sundial is a sentinel, 
always ready to give its knowledge to any viewer. Not only does it give the time on 
a sunny day, but it tirelessly waits out the cloudy sky, ready to give its truth even if 
only for the instant or two when the sun is able to break a slight path through the 
clouds. 
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Many are the lessons the silent sundial teaches.  And we learn so much more when 
a sundial speaks to us in mottoes.  Its messages are succinct, yet often cryptic; they 
always speak some good advice. 
 

The Clock and the Dial 
 

A Clock happened to fall mto conversatIon with a Dial. One cloudy forenoon, 
when the sun did not shine, the Clock said to the Dial, “what a mean slavery do 
you undergo; you cannot tell the hour unless the sun pleases to inform you.  I can 
tell the hour at any time, and would not be in such a dependent state as you are in 
for the world: night and day are both alike to me: it is just now twelve O clock.  
Upon this the sun shone forth under the cloud, and shewed the exact time of the 
day: it was half an hour past twelve. The Dial then replied to the Clock, "You may 
now perceive that boasting is not good: for you see you are wrong: it is better to be 
under direction and follow truth, than to be eye to one’s self and go wrong. 
 -Bewick's Fables, 1820  
 
 

All in good time.     Time on my hands.  
 

As time goes by.     A time to live.  
 

A little at a time.     A stitch in time saves nine. 
 

Time marches on.     Remember the time. ..  
 

Today is the tomorrow   A clock the time may wrongly tell;  
You worried about yesterday.   I, never, if the sun shine well. 
 

As a thief in the night   Taken Idly Motivates Evil. 
 

As time and hours do pass away,  
So doth the life of man decay.  
 

So teach us to number our days that we may apply our hearts unto wisdom.  
 
 

CARPE DIEM     Use well the day.  
COELI ENARRANT GLORIAM DEI     The heavens declare the glory of God.  
DEFICIT SOL, NEMO RESPICIT   When the sun sinks, of the dial no one thinks.  
DISCE DIES NUMERARE TUOS     Learn to number thy days.  
DOCEO HORAS     I teach the time.  
DUM LICET UTERE     While time is given, use it.  
EX IIS UNAM CAVE     Beware of one of them.  
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FELICIBUS BREVIS,    The hour is short to the happy,  
MISERIS HORA LONGA        Long to the miserable.  
FESTINA LENTE     Make haste slowly.  
FIAT LUX     Let there be light.  
GOA BOU TYO URB US IN ESS     Go about your business.  
HORAM SOLE NOLENTE NEGO     I tell not the hour when the sun will not.  
HORAS NON NUMERO NISI SERENAS     I count the bright hours only.  
IN COELO QUIES     In heaven is rest.  
LAUS DEO     Praise be to God.  
LEX DEI LUX DIEI     God’s law may be read in the light of the sun.  
OMNES VULNERANT, ULTIMA NECAT     Each one wounds, the last one kills.  
OMNIA FALCE METIT TEMPUS     Time reaps all things with a scythe.   
PEREUNT ET IMPUTANTUR  They (the hours) pass and are placed to our account.  
QUI DOCET DISCIT     One who teaches, learns.  
SERIUS EST QUAM COGITAS     It is later than you think.  
SIC TRANSIT HORA     Thus passes the hour. 
SOL EST REGULA     The sun is the rule.  
SOL OMNIBUS LUCET     The sun shines for all.  
STA PROMISSIS     Stand by your promises.   
TEMPUS VINCIT OMNIA     Time conquers all.  
TRANSIT HORA, MANENT OPERA     Time passes, deeds remain.  
ULTIMA LATET UT OBSERVENTUR OMNES    The last is hidden so we have to  
                                                                          watch them all !  
UTERE NON REDITURA     Use it, it won't come back.  
VERA LOQUI AUT SILERE     Speak the truth or be silent.  
VITA UMBRA     Life is a shadow.  
 
Let not the sun go down upon your wrath. Now is yesterday's tomorrow. 
Time waits for no man (gnomon).   I also am under authority. 
 
Life’s but a shadow, man’s but dust 
This diall says: dy all we must. 
 
As true as the dial to the sun 
Although it be not shone upon. 
 
The light of the sun is too bright for our eyes;  
By its shadow then the time we derive.  
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Section 13 The Classical Sundials  
 

The three dials considered in previous sections are the equatorial 
dial, the horizontal dial, and the vertical dial facing south. These 
sundials are part of a family of sundials for which the gnomon is 
parallel to the polar axis of the earth. Sundials based on this 
property are collectively referred to as the classical sundials. 
Several more of this group are of interest.  
 

The North-Facing Vertical Dial 
 
The dialface of a vertical dial facing north is the same as the south-facing dial, 
except that the hour lines are viewed from the north side.  The gnomon on the 
north side is a continuation of the gnomon on the south side. The diagrams in 
Figure 34 show this relationship more clearly. Suppose that the dial faces are 
painted onto the two sides of a transparent dial. 
 

 
Fig. 34. Vertical dials facing south and north.  
 

When the sun is shining on the south face, it 
cannot also be shining on the north face. In 
general, the south vertical dial receives 
sunlight from 6 A.M. to 6 P.M., and the north 
vertical dial receives sunlight from sunrise to 
6 A.M. and again from 6 P.M. to sunset.  
 

The north vertical dial is seldom used by 
itself; it usually appears on cube dials and 
pillar dials in combination with sundials 
facing the other three cardinal directions (see Figure 35).∗  
                                                      
∗ The North face of this cube dial is not visible in the photograph.  For over 30 years the gnomon on the 
north face has been upside-down – so the dial does not work in the early morning or late afternoon. 

Fig. 35. Classical Cube Dial at Woods Hole 
Oceanographic Institution, Woods Hole, 
Cape Cod, MA.  
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The East and West Vertical Dials 
 

As the south and north dials on the previous page have the same hour lines, so also 
do the east and west dials. The gnomon on both the east and west dials will be 
parallel to the dialface but rotated to equal the latitude angle (see Figure 35). The 
mean sun rotates around the gnomon in a circular plane that is perpendicular to the 
gnomon, so every 15 degrees of rotation represents one hour of time. The 
construction layout is shown in Figure 36.  The radius of the generating circle must 
equal the height that the gnomon is above the dial face.  

 
Fig. 36. Geometric layout for vertical dial facing east. 

 

The distance that each hour line is from the base of the gnomon can easily be 
found. The formula is:  nhd 15tan=    where n, as before, is the number of hours 
away from noon; h is the height the gnomon is above the dial face. The sun will 
shine on the east dial during the morning hours, and on the west dial during the 
afternoon hours.  

The Polar Dial 
 

The polar dial is neither horizontal nor vertical but is raised at the north end by 
rotation around the west-east axis to an angle equal to the local latitude. The 
geometric construction is shown in Figure 37.  The construction and the formula 
are the same as used for the east and west dials.  The only difference is the period 
of sunlight. The polar dial should show the hours after 6am and before 6pm.  
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Fig. 37.  Geometric layout for a polar dial. Motto: The sun shines for everyone .  
 
 

Section 14 A Pseudo-Universal Sundial 
 

When the derivation of a sundial formula does not use a specific 
latitude angle, that dial is known as a universal dial and may be 
used at any latitude. Such a dial must, however, be oriented so that 
the gnomon is parallel to the polar axis of the earth. Of the dials 
discussed so far, the equatorial dial, the armillary dial, and the 
polar dial are universal dials. 
 

The horizontal sundial, on the other hand, is 
made for a specific latitude. It will not indicate 
time correctly unless it is used at the latitude 
for which it was calculated. But there might be 
a time when a horizontal dial must be used at 
some other latitude.  Fortunately, there is a way 
to devise a pseudo-universal dial. Simply 
wedge the dial face on its west-east axis until 
the shadow-casting edge of the gnomon 
becomes parallel to the earth's axis.  For 
instance, a sundial made for a latitude of 40 
degrees and used at latitude 20 degrees will 
have to be wedged 20 degrees from the south 
end; or, the same dial used at 60 degrees 
latitude would be wedged 20 degrees from the 
north end. The wedge angle is found as 
follows: 

Fig. 38.  Wedging can be used to 
adjust a sundial for a different latitude.
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wedge angle = new latitude - dial latitude 
 

When the wedge angle is negative, the wedge is applied from the south end. When 
the wedge angle is positive, the wedge is applied from the north end (see Figure 
38).  
 
A similar technique will allow a south vertical dial to be used on a wall that does 
not face true south; i.e., on a declining wall.  In this instance, however, the wedge 
is applied from the west side or the east side. In Figure 40 the wall declines 9 
degrees to the east of south, so the wedges are applied from the east side.  
          

        
 
 
 
 
Fig. 40: A vertical line south dial wedged 
9 degrees to accommodate a west 
declining wall. The vertical line west dial 
is also wedged 9 degrees.  
 

Fig. 39 . 
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V 
 

   
Students using the analemmatic sundial (be your own gnomon). 

 
FOUR SPECIAL SUNDIALS 

 
 
Section 15 The Largest Sundial 
 

People invariably seek information regarding the largest sundial. Two large 
sundials come to mind.  
 

Possibly the largest sundial in North America is located at Carefree, Arizona (see 
Figure 41).  Certainly it offers aesthetic enrichment, and perhaps it also serves as 
an identifying symbol for sunny Arizona.  This sundial is of the classic horizontal 
type. The gnomon rises 35 feet, and the edge of the gnomon is 62 feet long. 
Besides serving its main function of casting a shadow, the gnomon's 4-foot width 
contains solar cells that utilize the sun's heat to supply a nearby building with hot 
water. The scale of hours on the dialface requires a circle that is 90 feet in 
diameter; the scale is graduated at ten-minute intervals. 
  

  
 
 
 
 
 
 
 
 
 

Fig. 41  Possibly the largest sundial in North 
America.  Carefree, Arizona.
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The largest sundial in the 
world was built in 1724 at 
Jaipur, India, by the Maharaja 
Sawai Jai Singh II (See Figure 
42). This sundial is of the 
armillary type but with a 
traditional triangular gnomon 
that rises 90 feet above the 
earth. The slanted edge is 118 
feet long and 12 feet wide with 
stairs leading to a small gazebo 
at the top. The scale of hours is 
marked on two quadrants of 
90-foot radius that serve as the 
periphery of an equatorial-type 
dial. The shadow moves across 
the curved surface about a foot 
in five minutes with 
graduations marked for each 
minute of time.  

 

This massive structure covers almost an acre, and neither words nor picture can 
adequately convey the awesome grandeur of its reality .  
 

But on the surrealistic side, the giant gnomon with its staircase does suggest a 
loading ramp to a fueled and ready moon rocket. The shadow moves across the 
great arc indicating the countdown. One can easily imagine hearing the flight 
engineer saying, "All systems are go. Four inches and counting." 
 
 
Section 16 The Pelekinon Sundial 
 

The pelekinon dial was discussed in a preceding section because 
it represented an advance in the history of the sundial. The 
caveman realized that a vertical gnomon casts a shadow of 
varying length during the day; therefore, he could use the length 
of the shadow as a gauge of the passing of the daylight hours.  
 
By the time of the Egyptians, it was known that the length of the noon shadow in 
the summer was shorter than the length of the noon shadow in the winter, thus the 
passing of the seasons could also be recorded.  

 
Fig. 42.  The largest sundial in the world.  Jaipur, India.
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The Greeks, in addition, 
realized that the path 
traced by the tip of the 
vertical gnomon traced 
the path of a hyperbola 
except at the equinoxes 
when the path was a 
straight line.  
 

By Roman times more 
lines were added that 
could show the hours of 
the day using the 
direction as well as the 
length of the shadow 
(see Figure 43). But 

these were all traced out by empirical methods. During the Golden Age, the 
astronomers and mathematicians caught up with this early sundial and provided 
geometric constructions and formulae which allowed the pelekinon to be 
determined exactly.   
 

But the construction and 
calculation methods for finding the 
hour lines of the horizontal sundial 
have been fully detailed in earlier 
sections. These same hour lines are 
used for the pelekinon.  The 
calculation of the hyperbolic arcs 
showing the seasons, however, 
requires advanced understanding of 
both astronomy and spherical 
trigonometry.  Therefore, with its 
proof omitted, a construction 
method will be outlined to draw the 
seasonal lines: the greatest 
hyperbolic arc occurs about 
December 21, and is called the 
winter solstice; the shortest 
hyperbolic arc occurs about June 
21, and is called the summer 
solstice; about March 21 and September 21, the equinox occurs, which is the time 

Fig. 44.  Geometric construction of the zodiac lines. 

Fig. 43.  The zodiac lines are drawn over the hour lines to create 
the Pelekinon sundial. 
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of equal day and night, and it plots as a straight line. These lines are often called 
the zodiac lines.  
 

To Construct the Zodiac Lines 
 

Refer to Figure 44:  
 

1. Draw a line DC, running North-South.  
 

2. At D, measure the latitude angle, ∠CDL, in degrees.  
 

3. From L, drop a perpendicular line to CD at K. The length LK is the height of the 
gnomon, but the pin is shown lying flat. In use, it is rotated to straight-up position.  
 

4. At L, draw a line perpendicular to LD, cutting DC at M.  
 

5. From LM, measure ∠MLW = 23.5 degrees, cutting DC at W.  
    From LM, measure ∠MLS = 23.5 degrees, cutting DC at S.  
    (lines LW, LM, LS are known in the old dialing books as a Trigon)  
 

6. Draw a line through M that is perpendicular to DC. This is the required 
equinoctial line of the pelekinon. (The branches of the hyperbola will pass through 
points Wand S.)  
 

7. From D, draw an hour line. This illustration uses the regular 2 o'clock hour line 
of the horizontal dial. This line cuts the equinoctial line at Q.  
 

8. Using a compass, swing an arc of radius DQ to cut line LM at N. Extend the line 
DN, which cuts line LW at T and lines LS at V.  
 

9. Using the compass again, swing an arc of radius DV cutting line DQ at R. Swing 
another arc of radius DT cutting line DQ at P.  
 

10. Point P is a point of the desired upper hyperbola branch. Point R is a point of 
the desired lower hyperbola branch.  
 

11. Repeat steps 7 through 10 with the other hour lines.  
 

12. Connect these points with a smooth line to complete each branch of the 
hyperbola.  
 

The pelekinon is now completed as shown in Figure 43. The original triangular 
gnomon of the horizontal dial is now replaced by a pin at point K.  The height of 
the pin must equal the length LK. The time is indicated by the shadow of the tip of 
the pin. Because the shadow always stays between the branches of the hyperbola, 
the hour lines above and below the branches may be removed (see Figure 45). 
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The hyperbola for the other months can be drawn in a similar manner. The 
appropriate angles of declination of the sun are given in table form in the appendix. 
It is effective to place a mark on the noon line for each month where the shadow 
will fall.  
 
 

 
Fig. 45.  Completed Pelekinon sundial. The pin, drawn flat, must be erect to the dialface for use.  
 
 
 
Section 17 The South Vertical Declining Sundial 
 

To place a south vertical dial directly onto the side of a building 
would require that the building wall face true south. This usually 
is not the case. Therefore, it is necessary to adjust the hour lines 
of the sundial to the declination of the wall. Declination is the 
number of degrees the wall differs from exact south (see Figure 
46).  A wall that faces easterly, in a counter-clockwise rotation from exact south, is 
said to have an east declination.  A wall that faces westerly, in a clockwise rotation 
from exact south, is said to have a west declination.  
 

The first step is to determine the angle of declination of the wall.  Two practical 
ways are at hand: (1) Attach a small shelf to the wall, and make it exactly level.   
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Fig. 46.  20° declination westward.  30° declination eastward. 
  
Determine true south by the pin and concentric circle 
method described earlier (in Section 5). (2) Attach a 
small shelf as in the first case, and then arrange a 
plumb line above it (see Figure 47). Combine the 
equation of time correction with the longitude 
adjustment for the exact time of solar noon.   
 

For instance, if the sun is eight minutes fast, record 
where the shadow of the plumb line falls exactly eight 

minutes before noon.  Use a 
good watch that has been set 
by radio time.  On the other 
hand, if the sun is five 
minutes slow, record the 
shadow of the plumb line 
exactly five minutes after 
noon.  The recorded shadow 

Fig. 47.  To determine the 
declination of a wall, the
shadow is cast at exact noon. 

Fig.48. Geometric layout for south vertical declining 
sundial. 
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line is the true south-north line.  The angle this line makes with a horizontal line 
perpendicular to the wall is the angle of declination. 
  

A perspective view is seen in Figure 48, in which a regular horizontal sundial is 
resting on a horizontal plane and is properly aligned on the north-south line.  The 
wall is declined from the proper direction.  The construction to be described will 
translate the hour lines from the horizontal dial to the vertical declined surface. The 
right triangle DCP is the gnomon triangle, with the edge DP (not drawn in Figure 
48) parallel to the earth's axis.  
 

Geometric Construction for South Vertical Declining Sundial (Figure 48) 
 

1. HGIJ is a regular horizontal sundial.  
2. The declination (westerly in this illustration) is measured from the line GCH at 
C.  
3. From C, draw CP perpendicular to 
WM. The length CP is determined from 
the gnomon triangle DCP (see Figure 
49a).  
4. Extend the hour lines of the horizontal 
dial until they meet the declination line 
WM.  
5. Connect each of the points of step 4 
with point P. These lines are the hour 
lines for the vertical declining dial. To see 
this in perspective, fold the drawing along 
the declination line bringing the flap up to 
a vertical position. In this folded position, 
the gnomon triangle DCP is oblique to the 
face of the vertical dial. A gnomon 
perpendicular to the vertical dial is 
preferred.  
6. From D, construct a line perpendicular 
to the declination line WM at the point Q. 
Connect PQ. In the folded position, the 
triangle DQP becomes the gnomon 
triangle that is perpendicular to the 
vertical dialface. (Notice that the shadow-
casting hypotenuse DP is the same line in 
both gnomon triangles.)  
 

Fig. 50.  Completed vertical sundial with 17° 
west declination.  Motto: Only the sun can 
prove me useful. 

Fig. 49. 
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7. To construct the gnomon triangle DQP it is necessary to construct a right 
triangle with sides DQ and PQ (see Figure 49b).  
8. A completed drawing is shown in Figure 50.  
 

For the reader who enjoys a formula approach, the following formula, based on the 
steps on the prior page, is offered.  
 

ddn sinsincos15cot
costan

β
βα
+

=′  

  

Derivation of the South Vertical 
Declining Dial Formula  
 

In Figure 51, ∠CDN = ∠α is the hour angle 
of the horizontal dial. ∠CPN = ∠α’ is the 
desired hour angle of the south vertical 
declining dial.  Let DC = unit length = 1.  
 

1) In oblique ∆DCN, 

)90sin(sinsin αα −+
=

∠
=

d
DC

CND
DCCN , so 

)90sin(sin αα −+= dDCCN . 
           

[ αα −+=−−−=∠ ddCND 90)90(180 ] 
 
2) In right ∆PCD, DCPC=βtan , so βtanDCPC =  
 
3) In right ∆PCN, ∠CPN = ∠α’.  

)90sin(tan
sin

tan
1

)90sin(
sintan

αβ
α

βα
αα

−+
=⋅

−+
==′

dDCd
DCPCCN  

 

Recall that ααα costansin =  
 

[ ]

[ ])90cos(tan)90sin(cos
cos
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)90cos(costancos)90sin(tan

costantan

dd

dd

+−+
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+−+
=′
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β
β

αα
αααβ
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Recalling the standard horizontal sundial formula, n15tansintan βα = , 

 
Fig. 51.  A horizontal dial in relation with a 
vertical declined dial. 
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=
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which is the desired formula giving the required hour angle α’ in terms of the 
latitude β, and the declination d of the wall.  The number of hours from noon, n, is 
negative for the morning hours and positive for the afternoon hours.  Now, two 
angles are needed.  One for the gnomon, and one for placing the gnomon. 
 

∠QPD is the angle at which the new gnomon will rise from the vertical dialface. 
 

In right ∆DCP: DPDPDC 1cos ==β .  In right ∆DQC: DQDCDQd ==cos . 
 

In right ∆DQP: βcoscossin dDPDQDPQ ==∠  
 

∠CPQ is the angle the gnomon is rotated from the vertical line PC. 
 

In right ∆DCP: PCPCDCPC === 1tanβ . 
In right ∆DQC: CQCQDCCQd === 1sin . 
 

In right ∆PCQ: ββ cotsintansintan ddPCCQCPQ ===∠ . 
 
 
Section 18 “Be Your Own Gnomon” 
 

The classical sundials presented above utilize the motion of the 
sun relative to its path around the earth's polar axis. Two other 
perspectives can also be utilized for indicating time.  The altitude 
of the sun is a measure of how high the sun is above the horizontal plane, such as 
the caveman's pole dial where the length of the shadow changed according to the 
height of the sun during the day. There are many modern (Golden Age and later) 
portable dials based on the sun's altitude.  These dials do not require orienting to 
true north; they are used by pointing the sundial towards the sun.  
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The azimuth of the sun is a measure of rotation of the sun around the pole of the 
horizontal plane; i.e., around an obelisk or vertical gnomon of our horizon. The 
analemmatic dial is an azimuth-type dial (see Figure 52).  It consists of an elllpse 
on which the hour markings are placed and a vertical gnomon that can be 
positioned on a scale of months.  The time is indicated on the ellipse at the point 
crossed by the shadow of the gnomon.  
 

 

The derivation of the formulae necessary for constructing an analemmatic dial is 
somewhat involved.  Although the formulae require a knowledge of astronomy and 
solid geometry, they are convenient to use in their completed form. Let a north-
south line, and an east-west line be taken as axes. The hour points on the ellipse are 
given by the equations:   
 

nx 15sin=  ny 15cossin β= , 
 

where n is the number of hours 
away from noon (thus n = 1 for 
both 11 A.M. and 1 P.M.), and β is 
the local latitude. Suppose an 
analemmatic dial is desired for 
Winnipeg, which has a latitude of β 
= 50°.  Repeated applications of 
these formulae are summarized in 
Table A.  
 

The scale of months must next be 
calculated, and the formula for this 
is:  
 

βcostan dM =   
 

Fig. 52.  Analemmatic sundial by plotting 
abscissas and ordinates. 

Fig. 53.  Analemmatic Dial.  Motto: The Light 
and Shadow of God 
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where β is the local latitude and d 
is the declination, or degrees by 
which the sun is above or below the 
equatorial plane of the earth. Table 
B gives the declinations for the first 
day of each month and the values 
of M, the measure above or below 
the x-axis that corresponds to each 
month. While the declination 
values are independent of any 
specific location, the M values are 
different for each latitude. The 
scale of months is marked on the y-
axis; the width of the scale is 
optional. The movable gnomon is 
placed over the current month on 
the y-axis.  
 

An alternate method of delineating 
the analemmatic dial is of interest. Draw the ellipse first, then locate the hour 
marks by rays radiating from the center. To do this, use the coordinate formulae 
above. By letting n = 6, the point (1,0) is on the x-axis and marks off the length of 

the major axis 
of the ellipse. 
Let this be of 
unit length.  By 
letting n = 0, 
the point (0, sin 
β) is on the y-
axis and marks 
off the minor 
axis of the 
ellipse. The 
equation of the 
ellipse becomes  
 

1
sin1 2

2

2

2

=+
β

yx  

 
 

Fig. 54. Analemmatic sundial by central angle and ray. The scale of months 
is enlarged for clarity.  It would be placed on line OY as shown in Figure 
52. 
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After sketching the graph, the hour marks are found by a ray from the center 
cutting the ellipse.  The angle α of the ray is measured to the right or left from OY 
and is found by the formula  
 

β
α

sin
15tantan n

=  

 
Table C shows the values of α for each hour.  
 

 
 
Joseph Jérome De Lalande, a French astronomer and dialist of the eighteenth 
century, suggested that an analemmatic dial be laid out on a garden plot or patio, 
duly proportioned to about a 20-foot diameter, and the scale of months also 
properly proportioned but with the gnomon missing. Then the viewer can become 
the gnomon.  By standing appropriately on the month scale, with back to the sun, 
the viewer will see his or her own shadow stretch across the ellipse and indicate the 
correct time.  
 



 

Page 50                                                                                                                                          Lawrence E. Jones 

Bibliography – 1979 
 

1. Cousins, Frank W., Sundials. London: John Baker Publishers limited, 
1972.  
 
2. Dolan, Winthrop W., A Choice of Sundials. Brattleboro, Vermont: 
Stephen Green Press, 1975.  
 
3. Earle, Alice Morse. Sun-Dials and Roses of Yesterday. Rutland, 
Vermont: Charles E. Tuttle Company, 1971 (orig. 1901).  
 
4. Lynch, Kenneth. Sundials and Spheres. Canterbury, Connecticut: The Canterbury Publishing 
Company, 1971 (A catalog of sundials.) 
  
5. Marshall, Roy K. Sundials. New York: The Macmillan Company, 1967.  
 
6. Mayall, R. N. and Mayall, M. L. Sundials - How to Know, Use, and Make Them. Cambridge, 
Massachusetts: Sky Publishing Company, 1973.  Third edition, 2000, Dover Publications, NY. 
 
7. Rohr, Rene R. J. Sundials, History Theory and Practice. University of Toronto Press, 1970.  Reprinted 
in 1996, Dover Publications, NY. 
 
8. Short, Leonard V. Sundials and More. New Ipswich, New Hampshire (A catalog of sundials.)  
 
9. Waugh, Albert E. Sundials, Their Theory and Construction. New York: Dover Publications, Inc., 1973.  
 
 

Bibliography – 2005 
 

Since the original edition of this booklet, many new books on dialing have appeared.  This is a sampling 
of introductory texts written in English. 
 
10.  Brandmaier, Harold E., A Sundial For Your Garden, Highland Park NJ, 1995. 
 
11.  Daniel, Christopher St. J. H., Sundials, Shire Publications, 1986 & 2004.   
 
12.  Drinkwater, Peter, The Art Of Sundial Construction, Shipston-on-Stour, 1985 & 1996. 
 
13.  Wheaton-Smith, Simon, Illustrating Shadows, Silver City NM, 2005. 
 
The North American Sundial Society has also published on CD several facsimile reproductions of old 
dialing texts as well as a quarterly journal of (technical) developments in the field of gnomonics. 
 
 
 
 
 
 
 
 
 



The Sundial And Geometry                                                                                                                            Page 51 

 
 
 
 
 
 



 

Page 52                                                                                                                                          Lawrence E. Jones 

 
 
 
 
 
 
 



The Sundial And Geometry                                                                                                                            Page 53 

 
 
 
 



 

Page 54                                                                                                                                          Lawrence E. Jones 

 
 



The Sundial And Geometry                                                                                                                            Page 55 

 



 

 
 



 

 
 



 

 
 


	The Sundial And Geometry
	Contents
	Introduction
	History of the Sundial
	Classical Period
	Beginnings of Modern Dialing
	Colonial Period

	Delineation of the Horizontal Sundial
	Classroom Sundial
	Directions For Making A Classroom Sundial
	On Finding True North
	Geometric Method
	Sundial Formula
	Alignment Chart Method

	Corrections To The Sundial Reading
	Conversion From Sun Time To Clock Time
	Equation Of Time
	Adjusting The Dial For Exact Longitude

	Some Classical Considerations
	Mottoes And Meditations
	Classical Sundials
	A Pseudo-Universal Sundial

	Four Special Sundials
	Largest Sundial
	Pelekinon Sundial
	South Vertical Declining Sundial
	Be Your Own Gnomon

	Bibliography
	Appendix - Equation of Time
	Appendix - Solar Declination
	Appendix - Latitude & Longitude

