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Price is expected discounted payoff. This fundamental relation under-
lies all asset pricing. The discount factor is an index of “bad
times”. Because investors are willing to pay more for assets that do
well in bad times, the risk premium on any asset is determined by
how it co-varies with the discount factor. All of asset pricing comes
down to techniques for measuring a discount factor in a way that
is useful for specific applications. We first survey the theoretically
pure consumption-based discount factor model and some of its
practical counterparts, including the capital asset pricing model
(CAPM) and intertemporal CAPM. We also survey recent literature
that points to recession and distress-related components of a
discount factor to supplement the traditional market portfolio/
beta component. As an important practical implication, we show
how asset pricing concepts can help investors and hedgers distin-
- guish properly between “systematic” and “idiosyncratic” risk. We
also explain how a little bit of thinking about the fundamental
determinants of discount factors can go a long way towards
evaluating market price of risks that bedevil practical application
of derivative pricing theories. Finally, we emphasise where the
pure theory requires various stages of equilibrium -and market
completeness, and where the theory can still be used out of such
equilibrium or in the presence of incomplete markets.
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INTRODUCTION
All of asset pricing comes down to one central idea: the value of an
asset is equal to its expected discounted payoff. The rest is elabor-
at1on special cases, a closet full of clever tricks, and, above all, a set
“of specifications for the discount factor that make this central idea
useful for one or another application.

There are two fundamental and polar approaches to applying the
central idea: absolute and relative asset pricing. In absolute pricing, we

- value a bundle of cashflows (dividends, coupons and prmc1p1e,

option payoffs, firm profits, etc) based on its exposure to funda-
mental sources of macroeconomic risk. Equivalently, we find a
discount factor by thinking about what macroeconomic states are of
particular concern to investors. The CAPM is a paradigm example
of this approach. Virtually all such models are based on some notion
of general equilibrium in order to use aggregate rather than indi-
vidual risks, or to substitute an easily measured index such as the
market return (CAPM) for poorly measured consumption. They are
therefore often called equilibrium asset pricing models.

In relative pricing, by contrast, we ask what we can learn about
one asset’s value given the prices of some other assets. We do not
ask from where the prices of the other assets came, and we use as
little information about macroeconomic risk factors as posSible.
Modigliani and Miller (1958) pioneered this approach in valuing a
firm given prices for its equity and debt, and Black and Scholes
(1976) famously used this approach to value options and corporate
liabilities given stock and bond prices.

Absolute pricing offers generality — it can be applied to anything —
at the cost of precision in many applications. Relative pricing offers
simplicity and tractability — it can be done easily, at least to a first
approximation — at the cost of often-limited practical applicability.!
Most good applications do not use one extreme or the other, but
rather a blend of absolute and relative approaches appropriate for
the problem at hand. Even the most die-hard applications of the
CAPM, for example, usually take the market risk premium as given.
Conversely, most realistic option pricing exercises implicitly use
some absolute pricing model to characterise pesky “market prices of
risk” that cannot be perfectly hedged.

Why should you care? Study of the “assumptions” behind theo-
retical models is often viewed as about the driest subject in finance.
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But understanding these models and the assumptions under which
they hold is vital before modern ideas can be correctly and
creatively applied to actual financial problems. To value a potential
investment, for example, you have to know what discount rate to
use. Does the famed CAPM “beta” give the right discount rate?
Even if the investor holds a portfolio different than the market
portfolio, such as owning a small business? Even if other investors
do not hold the market portfolio as the CAPM assumes? Or,
suppose you want to set up a hedging program, but a perfect
hedge is impossible. How should you value the residual risks or
tracking errors? How do you know when you should take more of
those residual risks in order to profit from their premia? Only by
really understanding where absolute equilibrium asset pricing
models come from can you begin to confidently answer these sorts
of questions.

The theory we survey here is at the foundatlon of everything in
asset pricing. It may look simple in hindsight, but this theory led
directly to five Nobel Prize presentations in economic sciences, and
to at least another five indirectly.? This chapter is longer than the
others in this book, but it is so because our contribution is unifying:
rather than devoting a separate chapter in this section to each
application of the single fundamental value equation, we survey
them all and show how they are each applications of the same
simple idea.

THE ECONOMIC INTUITION FOR VALUING

UNCERTAIN CASHFLOW STREAMS

The basic objective of asset pricing is to determine the value of any
stream of uncertain cashflows. Consider an asset with a single
cashflow or payoff x,,; at time ¢ + 1. (This payoff can be the price at
t+1 plus any dividend, so we have not abandoned the real world.)
We find the value of this payoff by asking what the stream is worth
to an investor.® The answer is:

[B uc(Cm) 1:|‘ : m

u.(c;)

where B is the investor’s discount rate, E[-] denotes an expected
value conditional on information available at time ¢, and u.(c;) is the
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benefit to the investor of a small additional unit of consumption
received at time period t (ie, the “marginal utility” of time ¢
consumption).

This is the basic equation underlying all of asset pricing, so it
is worth understanding carefully. (The appendix presents a
mathematical derivation.) Investors do not value money directly.
The theory adopts a more sophisticated approach and recognises
that the pleasure or “utility” of the consumption that money can
buy is what really matters. That is why u, and B enter Equation (1).
Specifically, people value money more if it comes sooner, and if
it comes in bad times when they really need it rather than good
times when they are already doing well. A  slightly less than one
and a marginal utility function u, that declines as ¢ increases
capture these important considerations. If the economist’s “utility
function” sounds strange, just think of u/(c,) as an index of
“bad times”, or a measure of how painful it is to give up a dollar at
date ¢.

Equation (1) then describes the investor’s optimal portfolio
decision as marginal cost of investment equals marginal benefit.
The true cost of an extra dollar invested is the price of the asset p,
(how many dollars the investor had to give up) times the value of
a dollar (utility cost to the investor) u.(c,) at time t. The true benefit
is the expectation E,; of the dollar payoff x,,; times the value of a
dollar u.(c;,;) at time ¢+ 1, times B which discounts future value
(utility) back to time ¢.

The logic of Equation (1) is often confused. Equation (1) is
usually used to describe a ‘market “in equilibrium”, after the
investor has reached his or her optimum portfolio. But to get to that

‘optimum, the investor had to know the price p;. What’s going on?

In watching a market “in equilibrium”, we are like scientists,
watching over the market in white lab coats and trying to under-
stand what it does. Equation (1) holds once the investor has found
the optimal portfolio, but it does not describe causes on the right
and effects on the left. If we observe consumption and payoff, we
can use this equation to determine what the price must be. If we
observe consumption and prices (a common case), we can use the
equation to learn what the expected payoff (eg, expected return in
the case of stocks) must be. If we observe price, consumption, and
payoff (the entire distribution of payoffs, mind you, not just how it
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happened to come out a few times), then we can use Equation (1)
to decide that the world really does make sense after all.

We can also use Equation (1) to think of the value of payoff x;,;
to an investor who has not yet bought any of that asset - ie, who has
not found the optimum portfolio or when the market is “out of
equilibrium”. This interpretation is especially important in think-
ing about the potential value of securities that have not been
created or are not traded or in giving portfolio advice. Now the
value p; need not correspond to the market price (there might not
be one), and the investor need not know what the price is. Still, we
can compute the value of a small incremental investment in this
uncertain cashflow to this particular investor by Equation (1). If there
is a market price, and the value to the investor is greater than that
price, we can recommend a buy. Similarly, we can compare our
private valuation with market prices of derivatives to evaluate the
desirability and cost of various hedging opportunities.

THE FUNDAMENTAL VALUE EQUATION ‘

We commonly split the fundamental value Equation (1) into
two parts, one that expresses price as an expected discounted
payoff k

P = Edmyg xp4] 2)

and one that relates the stochastic discount factor m,,; to the intertem-
poral marginal rate of substitution, the rate at which the investor is
willing to substitute one unit of consumption now for one unit of
consumption later:

DY 3
) 3)

The term m,,, is called a stochastic discount factor by -analogy with
simple present value rules. We are used to discounting a payoff by
some discount factor or required rate of return R - if x,,; is known:

1

py = R Xt41
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The term m,,,; acts exactly as such a discount factor in Equation (2).
The discount factor term m,,; is stochastic because nobody at time ¢
knows what consumption will be at time ¢ + 1 (Whether ¢ + 1 will be
a good or bad time), and hence nobody knows what u(c,,;) will
turn out to be. It is random, in the same way stock returns are
random.

This randomness of the discount factor is crucial. As the index of
good and bad times, the stochastic discount factor is high if time
t+1 turns out to be a bad time (ie, consumption is low). Assets that
pay off well in bad times are particularly valuable, and Equation (2)
will give them an appropriately high price. .

In finance, we commonly do not think too much about
consumption and utility functions. The stochastic discount factor
remains an index of bad times (strictly speaking, growth in bad
times). Finance theorists tend to think directly about discount
factor models in which data such as the market return are used as
indicators of bad vs good times.

The fundamental valuation equation in different guises

The stochastic discount factor representation of the fundamental
value equation, Equation (2), can be expressed in a number of
different and equivalent ways depending on the nature of the
particular financial problem being solved, and the history and
traditions of different fields. (As usual, unification came after the
fact.) '

If we use required returns to value a project or compute a capital
budget, we typically use a different, risk-adjusted required return
for each project. The beauty of Equations (1) or (2) is that the same
discount factor can be used for all assets, simply by putting it inside
the expectation — m is a universal discount factor. Capital budgeting
thus can be undertaken using Equation (2) directly. For a project
that costs I, in initial investment and generates X,,; in revenue at
time ¢ + 1, the usual net present value criterion tells us to undertake

. the investment if its value is greater than its cost,

Efmyy Xl 21

In applications to stocks and portfolios, it is often convenient to
think about rates of return rather than prices. To do so, we divide
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both sides of Equation (2) by p; (or recognise that a return is a
payoff with price equal to one):

1=E[my; Rp] C))

where R, is the gross return on the asset (x; divided by p;). Thus,
simply use “return” for the payoff x and one for price to apply the
equation to stocks and portfolio problems. Similarly, if we want to
work with returns in excess of the risk-free rate r,,; = R,,; — R then
Equation (4) becomes® \

0= E{my 114] ‘ ‘ 3

In equity analysis, we are used to a slight transformation of
Equation (5). Using a superscript i to remind us that there are
many assets, writing out the definition of covariance E(mr)) =
E(m)E(r') + cov(m, r) and the definition of a regression coefficient
B; = cov(m, r')/var(m) and then defining \ = —var(m)/E(m), we can
write Equation (5) in classic form as

Ei(r') =B 6)

The expected excess return of each asset should be proportional to
its beta. '

This is not the CAPM - it is petfectly general. The beta here is
calculated relative to the discount factor, not the market return. All
the assumptions of the CAPM (or other models) come in substitut-
ing the market portfolio return or some other index for the
discount factor.

To determine the fixed price in a forward purchase contract or
swap, we look for the fixed price or rate K that equates the initial
discounted expected value of the transaction to zero. Otherwise,
one of the two parties would walk away from the deal. If a forward
purchase contract calls for the future delivery of one unit of an
asset at time f + 1 whose value on that date is P,,;, then the fixed
* price in the forward is found as®

Efmsy (P —K)]=0 =K= E{[Py] + covy(myy, Pr)R
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In other words, the forward price K is the expected future spot
price of the asset to be purchased at time t+1 plus a term
that reflects how the discount factor co-varies with the underlying
spot price — as we shall see later, a “risk premium”. The second
term is grossed up by the risk-free rate to reflect the fact that the
terms of the contract are set at time ¢ but the contract is settled at
time £+ 1. '

In option pricing and fixed income applications, the discount
factor my,, is often used to define a set of “risk-neutral probabili-
ties”. Equation (2) is written simply as

1 ~ *
b= R_f E, [xt+1]

where the * reminds us to take the expectation with an artificial set
of probabilities that are scaled by m,,;. We can either use the dis-
count factor to make good payments in bad states more important
in determining the price, or we can boost up the probabilities of
those states to the same effect. Risk aversion is the same thing as
overestimating the probability of bad events.

All these formulations are just different ways of writing the
same thing. Continuous-time asset pricing models also all reduce
to the analogue to Equation (2) in continuous time.”

UNDERSTANDING “SYSTEMATIC” RISK
Asset pricing is about risk and reward. Ident1fy1ng rlsks and assess-
ing the premium one earns for bearing risks are the central questions
for asset pricing, and the point of theory is to provide necessary
quantitative tools to answer these questions. Risk managers tend
to classify risk as market, credit, liquidity, operational, or legal.
Portfolio managers tend to think of market risk, and the risks associ-
ated with certain styles such as size, value, and growth, as well as
risks associated with industry and country portfolios. ,
Financial economists tend instead to distinguish between
“systematic” and “idiosyncratic” risk. And of course, not all risk is
bad - you only earn a premium over risk-free interest rates by
taking on some risk! What risks should we pay attention to? And
how are these concepts related?
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“Systematic” vs “Idiosyncratic” risk
A central and classic idea in asset pricing is that only systematic risk
generates a premium. Idiosyncratic risks are “not priced”, meaning
that you earn no more than the interest rate for holding them. That
is why we employ risk managers to get rid of idiosyncratic risks.®
Plausible, but a theory proves its worth by helping us to understand
what “systematic” and “idiosyncratic” mean in this context.

By using the definition of covariance E(mx)= E(m)E(x) +
cov(m, x) we can re-write the fundamental value Equation (2) as

E |x
p = —LEQ;_H] +CoV (M1, Xpy) ’ ?

This equation says that asset prices are equal to the expected
cashflow discounted at the risk-free rate, plus a risk premium. The
risk premium depends on the covariance of the payoff with the
discount factor. This covariance is typically a negative number, so
most assets have a lower price than otherwise (or a higher average
return) as compensation for risk.

Here’s why. Recall that the discount factor is an indicator of bad
times. Most assets pay off well in good times. Thus, most asset
returns and payoffs co-vary negatively with the discount factor.
The converse case drives home the intuition. Insurance is a terrible
investment. The average return is negative — you pay more in
premiums than you receive, on average, in settlements. Yet people
willingly buy insurance. Why? Because insurance pays off well in
bad times — just as the house stops smouldering, a cheque arrives
in the post. The value of insurance is higher than predicted by the
standard present value formula, because the covariance term is
positive. Financial assets are “anti-insurance”, and it is this feature,
and only this feature, that generates a risk premium and allows
risky assets to pay more than the interest rate.

Equation (7) has a dramatic implication: a risk may be very large
in the sense of having a high variance, but if it is uncorrelated
-with the discount factor, its covariance is zero, and it generates no
premium. Its price is just the expected payoff discounted atthe
risk-free rate. The volatility of the asset’s cashflow per se is completely
irrelevant to its risk premium. '
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To see why in more detail, consider an investor who adds a small
fraction ¥ of the asset to their portfolio. Her consumption at time
t+1is now ¢,y + Wx,,. As always, the investor cares about the
variance of consumption and the variance of the utility that
consumption generates, not any characteristics of single assets that,
in a portfolio, determine the wealth from which they draw con-
sumption. For a.small asset purchase, the variance of the investor’s
new time ¢ + 1 consumption is

Var(ctﬂ) + 2WCOV(Ct+lr xt+1j + P2 Var(xt+1)

The covariance with consumption, and hence with marginal utility
m, enters with a coefficient ¥, while the variance is a second-order
effect. For a small (marginal) investment ¥, the covariance of the
cashflows on the asset with consumption is much more important
to how buying the asset affects consumption — what investors care
about in the end - than the volatility of the asset’s cashflows.

Now we can really understand and precisely define “system-
atic” vs “idiosyncratic” risk. The systematic part of any risk is that part

that is petfectly correlated with the discount factor. It is the part that

generates a risk premium. The idiosyncratic part of any risk is that
part that is uncorrelated with the discount factor; it generates no
premium.

We can divide any payoff into systematic and idiosyncratic
components by simply runmng a regression of the payoff on the
discount factor:

Xe1 = Py + €4 ®)

ipayoff = systematic part + idiosyncratic part
ai

Regression residuals ,,; are, by constructlon uncorrelated with the
right hand variable. : Ty

Once again, this modern version of the theory is perfectly
general. Systematic means correlated with the investor’s marginal
utility — full stop. This is true no matter what “asset pricing model”
- no matter what specification of the discount factor - is correct.
The CAPM, for example is one special case of the general theory.

It specifies that the discount factor is linearly related to the market
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return m,, =a— bR, (more on this below). Hence, it defines
systematic risk for every asset by regressions of returns on to the
market portfolio return. ;

In many portfolio management applications, “systematic” and
“diversifiable” components are defined with multiple regressions
on style portfolios, including size, book to market value, and
industry groupings as well as the market portfolio. Implicitly, these
definitions correspond to models that the discount factor is a func-
tion of these portfolio groupings. These specifications are fine, but
they are special cases and they reflect lots of hidden assumptions.
Other specifications may be useful.

When variance does matter

The proposition that variance does not matter for risk premia does
not mean “ignore variance in setting up your portfolio”. Again,
Equations (2) and (7) refer only to marginal valuations. That is
appropriate after the investor has already set up an optimal portfo-
lio, or for deciding which asset to start buying. For very little port-
folio changes, covariance matters more than variance.

For big asset purchases and sales of the sort one considers while
setting up the optimal portfolio to begin with, however, variance
can matter a lot. If an investor buys a big part of a payoff, the vari-
ance will start to affect the properties of consumption, marginal
utility, and hence the investor’s discount factor. So, by all means do
consider variance in making the big changes required to set up a
portfolio! '

Diversification, hedging, and special investors

We often think of “idiosyncratic” risks as those risks that affect a par-
ticular security only, leaving all others untouched. Such idiosyncratic
risks include firm-specific risks like operational and liquidity risk, as
well as those components of market and credit risk that are unique
to the firm in question. This is a good apprdximation in many cases,
but understanding the correct definition we can quickly see how it is
only an approximation.

A risk that moves many securities, but is uncorrelated with the
discount factor, is also “idiosyncratic”. The market as a whole is
built of individual securities, so each “idiosyncratic” risk is in fact
a small part of the “total” risk. Many apparently “firm-specific”
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risks — a drop in sales, an accounting fiasco, etc — also hit many
other firms in the market, and thus become “market risks”. We often
call “idiosyncratic” risks “diversifiable” because they largely dis-
appear in well-diversified portfolios. This too is a good approxi-
mation, but specific to the CAPM world that the market portfolio
return captures the discount factor and thus defines “systematic”
risk.

A good counterexample for all these cases is to think of an
investor who must hold a large part of some risk. Consider, for
example, the owner of a business who must hold a large amount
of one company’s stock. Risks correlated with the business or
company stock will be “systematic” for this investor, albeit not
necessarily for the market as a whole. The investor thus must

- require a premium to hold such risks, even though the market as a

whole would not require suchv a premium. The CAPM is only an
appropriate cost of capital for investment decisions if the investor
holds the market portfolio, and thus his or her discount factor
depends only on the market portfolio. For the vast majority of
investors, this is not the case.

Although idiosyncratic risk does not matter for pricing, it is not
necessarily easy to avoid it. Much of the art of risk management
and corporate finance consists of just how to shed oneself of idio-

_syncratic or residual, non-priced, risk. The fact that risk managers

focus on market, credit, liquidity, operational, or legal risk rather
than systematic vs unsystematic risk reflects the different
techniques needed to hedge different varieties of idiosyncratic risk.
Risk managers, however, need to understand the real distinction
between systematic and idiosyncratic risk so that they do not
hedge good.risks, ones that bring rewards, as well.

THE CAPITAL ASSET PRICING MODEL AND THE CONSUMPTION
CAPITAL ASSET PRICING MODEL

A critical question for practical application remains: what data do
we use for the discount factor m? The search to populate m with
actual data has led to the many “named” asset pricing models. All
of these models are just special cases of the fundamental value
equation. They add additional structure, usually from simple
general equilibrium modelling, to substitute some other variable
for consumption in the discount factor.
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The consumption CAPM
Armed with our presentation of the theory so far, the simple, obvi-
ous approach is to assume some reasonable utility function (power
or quadratic forms are popular), use the easily available aggregate
consumption data, and apply pricing Equations (2) or (7) directly.
This is the famous approach of Lucas (1978) and Hansen and
Singleton (1982).

A little less directly, but more popular in finance, we can linearly
approximate the discount factor as a function of consumption:

My = 4 = YACy

where Ac;,; denotes consumption growth and v is a constant of pro-
portionality.” This specification for the discount factor together
with our fundamental value equation, Equation (2), is equivalent to
the statement more popular in finance in terms of average returns
and betas:

E(RY) = Rf + Biac Mac )

where E(R’) denotes the average return on the ith asset, B, 5 is the
regression beta of the asset return on consumption growth, and A\,
is a market risk premium. Equation (9) predicts that assets with
higher consumption betas will have higher average returns, with
the market risk premium as constant of proportionality. This is the
form of Breeden’s (1979) famous statement of the consumption
capital asset pricing model (CCAPM).

The basic idea is really natural. We need an indicator of bad and
good times. If you really want to know how people feel, don’t listen
to them whine, watch where they go out to dinner. Consumption
reveals everything we need to know about current wealth, future
wealth, investment opportunities, and so on. Compared to many of
the models discussed later, the CCAPM in all its simplicity avoids
the theoretical problems associated with restrictive and unrealistic
assumptions. (Historically, the CCAPM came last, in order to repair
those problems.) :

Although a complete answer to most absolute asset pricing
questions in principle, this consumption-based approach does not
(yet) work well in practice. As one might imagine from even a
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rudimentary experience with the data, running regressions of
returns on the Government’s consumption growth numbers does
not reveal much. Instead, financial economists use a wide variety of
tricks of the trade that, while requiring heroic “assumptions” to
derive them as perfect truth, nonetheless have great intuitive appeal
and have performed well in a variety of applications. At heart,
they all involve substituting or prdxying some other variables for
hard-to-measures consumption. °

The CAPM

The simplest and probably still the most popular model is the
single-factor CAPM developed by Sharpe (1964) and Lintner
(1965), and later extended by Black (1972). In the usual statement of
the CAPM, the expected return of asset j is higher as its beta is
higher, with the expected return on the market portfolio as a
constant of proportionality:

E(R) = R+ B[ER™ - ] (10)

where R/ and R™ denote one-period arithmetic returns on asset j
and the market, Rf denotes the risk-free interest rate, and where B;
is the regression coefficient of the return on the market, or

_ Cov(R/,R™)
T Var(R™)
The CAPM is mathematically identical to a specification of the
discount factor that is linear in the market return, rather than linear
in consumption growth

e

My =a- bRZ-l (11y

a and b are free parameters that can be determined by the risk-free
rate and market premium which are taken as given values in
Equation (10). (See Equation (6) to make the connection between
Equation (10) and a discount factor.)
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The CAPM was a huge empirical success for a generation.
Categories of assets have now been identified, however, whose
average returns bear no relation to betas calculated against
traditional proxy indices for the market portfolio. (Efforts to find
theoretically purer proxies for the market portfolio of world
invested wealth (Roll, 1977) do not help.) In addition, the betas
calculated against several new risk factors apart from the market
have been empirically shown to help explain why some average
returns are higher than others. Prominent examples include the
“small firm” and “value” effects (Banz, 1981, and Fama and French,
1993).

The CAPM discount factor model is a sensible approximation.
When the market tanks, most people are unhappy! But it is clearly
only an approximation. To derive the CAPM formally, you need to
state assumptions under which a linear function of the market
return is a completely sufficient indicator of good and bad times. The
essence of the various formal derivations of the CAPM is to
get every investor’s consumption growth to depend only on the
market return.'

The CAPM (and all following models) is not an alternative to the
consumption-based model, it is a special case. Now, consumption
surely goes down when the market return goes down, but, in the
real world, other things matter as well. For the CAPM to hold,
people cannot think that market fluctuations are temporary, and
hence ignore a bad day and go out to dinner anyway. Instead, we
must have returns that are independent over time. People cannot
have jobs, houses, cars, businesses, or other sources of income that
sustain them through market crashes, or these other things will
start to matter to consumption and the discount factor. In addition,
all investors in a CAPM world must hold the same portfolio of
assets — the market portfolio.

'~ Having seen how the sausage is made, we should be sur-
prised, if anything, that the CAPM lasted as long as it did.
We should not be surprised that it ultimately proved a first
approximation.

MULTI-FACTOR MODELS
Linear factor models dominate empirical asset pricing in the post-
CAPM world. Linear factor pricing models measure the discount
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factor - ie, specify indices of bad times — with a model of the form

U (Ct+1 )

My = Bm = a-!-blﬂli»l +hyfia +L+byfih 12)
(4 t

where g, by, ..., by are free parameters and where f is the jth “risk
factor”.

What exactly does one use for factors f,,;? In general, factor
models look for variables that are plausible proxies for aggregate
consumption or marginal utility growth (measures of whether
times are getting better or worse). This is just like the CAPM, with
additional indicators of good and bad times.

Intertemporal capital asset pricing model
Merton’s (1973) multi-factor intertempdral CAPM (ICAPM) model
was the first theoretical implementation of this idea. The ICAPM
recognises that investors care about the market return, so that is the
first risk factor. The extra factors are innovations to “state vari-
ables” that describe an investor’s consumption-portfolio decision.
Other things being equal, investors prefer assets that pay off well
when there is news that future returns will be bad. Such assets pro-
vide insurance; they help to reduce the risk of long-term invest-
ments. Covariance with this kind of news thus will drive risk
premia as well as the market return. - -
In the traditional statement of the model, corresponding to the
expected-return statement of the CAPM in Equation (10),

E(R) - Rf =y Cov(R/, R™) + \,Cov(R/, Az)

where vy and \, are constants (the same for all assets), R™ denotes
the market (wealth) return and Az indicates the news or the return
on a “factor-mimicking portfolio” of returns correlated with that
news." Technically, this model generalises the CAPM assumption
that the market return is independent over time. ‘

Equivalently, for a given value of the market return, investors
will feel poorer and will lower consumption if there is bad news
about subsequent investment opportunities.”> News about sub-
sequent returns thus should drive our discount factor, as well as
current market returns.
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The ICAPM does not tell us the precise identity of the state vari-
ables, and, as a result, it is only after 30 years of theoretical fame
that the ICAPM has received its first serious tests — tests that do not
just cite it as inspiration for ad-hoc multifactor models, but actually
check whether the factors do forecast returns as the theory says
they should (see Ferson and Harvey, 1999). It is not yet common in
applications. .

One of the most popular current multi-factor models is the
Fama-French three-factor model (Fama and French, 1993, 1996).
The Fama-French model includes the market portfolio, a portfolio
of small minus big stocks (SMB), and a portfolio of high book/
market minus low book /market stocks (HML). In expected return
language, average returns on all assets are linearly related to their
regression betas on these three portfolios. In discount factor lan-
guage, the discount factor is a linear function of these three port-
folios, as the CAPM discount factor is a linear function of the
market return.

This model is popular because the betas on the additional factors
do explain the variation of average returns across the size and book-
to-market portfolios, and market betas do not. The model is not
a tautology. Size and book-to-market sorted portfolios do not have
to move together, and move more as their average returns rise. Size
and book to market betas also explain the variation of average
returns across additional portfolio sorts, beyond those that they
were constructed to explain (Fama and French, 1996). This kind of
more general good performance is the hallmark of an empirically
useful model.

The open question for the Fama-French model is: “what are the
additional sources of risk about which investors are economically
concerned?” It is well and good to say that investors fear “value”
risk uncorrelated with the market, but why? Put another way, the
sales talk for “value” portfolios is that, since other investors are so
afraid of this risk, you, the remaining mean-variance investor,
should load up on the “value” portfolio that provides high reward
for small market beta. Fine, but if the average investor is really scared
of this value risk, maybe you should be, too. If value risk turns out
to be risk of poor performance during a financial crisis, for example,
are you sure you want to take that risk? To answer this question, we
really need to understand what fundamental macroeconomic risks
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are behind the value effect, not just understand a set of mimicking
portfolios that capture them for empirical work.

An empirical counterpart to this worry is that the Fama-French
model found its limitations as well. Namely, average returns on
“momentum” portfolios go in the opposite direction predicted by
Fama-French betas (see Fama and French, 1996). This can be cured
by adding a fourth “momentum” factor, the return on a portfolio
long recent winners and short recent losers. For all purposes except
performance attribution (where it is exactly the right thing to do),
however, this fix smells of such ad-hockery that nobody wants to
take it seriously. We do not want to add a new factor for every
anomaly. On the other hand, multifactor models used in many
industry applications suffer no such compunction and proudly
use 50 or 60 portfolios as factors, picked purely on the basis of
in-sample empirical performance.

Macroeconomic multifactor models

The alternative to finding essentially ad-hoc portfolio factors that
perform well for a given sample is to sit back and think about risk
factors that make sense given the fundamental economic intuition.
What variables are good indicators of bad vs good times for
a large number of investors? The market return obviously still
belongs. Following ICAPM intuition, variables that forecast future
investment opportunities such as price/earnings ratios, the level of
interest rates, etc, make sense. Indicators of recessions may belong
as well, such as proprietary and labour income, the value of hous-
ing or other non-marketed assets, business investment, and so
forth. The CAPM and ICAPM exclude these variables (ie, they
derive relations in which the discount factor is only a function of
the market return and state variables) by presuming that investors
have no jobs or other assets; they simply live off their portfolios of
financial assets. Because investors do have jobs and other assets,
bad times for these will spill over into market premia.

With this intuition, a wide variety of asset pricing models
have been used that tie average returns to macroeconomic risks. The
grandfather of all of these is the Chen, Roll, and Ross (1986) multi-
factor model. They used interest rates, industrial production, infla-
tion, and bond spreads to measure “bad times” in the discount
factor. More recently, multi-factor models have used macroeconomic
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risk factors such as labour income (Jagannathan and Wang, 1996)
and investment growth (Cochrane, 1991a, 1996) to explain expected
stock returns.

Conditional factor models in which factors at time  + 1 are scaled
by information variables at time ¢ are also increasingly popular
ways to allow betas and factor risk premia to vary over time (see
Cochrane, 1996 and Lettau and Ludvigson, 2001).

All the special cases of the fundamental value equation that we
have discussed so far impose the simplifying but very unrealistic
assumption that markets are “complete”, ie, investors have insured
or hedged away all personal risks, and the only risks that affect their
inter-temporal marginal rates of substitution (IMRS) are aggregate,
market-wide or economy-wide risks. This too is- obviously an
extreme simplification, so it is worth seeing if removing the simpli-
fication works. Duffie and Constantinides (1996), for example,
investigate a model in which the cross-sectiona] dispersion of labour
income growth matters. Given that the overall income is what it is, it
is a “bad time” if there is a lot of cross-sectional risk; you might
become very rich, but you might also become very poor.

In addition, researchers such as Pastor and Stambaugh (2001) are
finally documenting the importance of liquidity. Once dismissed as
an institutional friction that is “assumed away” in complete mar-.
kets, it seems that assets paying off poorly in times of poor market
liquidity must pay higher average returns, viz, the discount factor
is affected by liquidity. The marginal utility of a US dollar, deliv-
ered in the middle of a market meltdown such as after the Russian
bond default and LTCM collapse, may well have been very high.

AN

The current state of affairs — better than it looks

Unfortunately, no single empirical representation “wins”, and the
quest for a.simple, reliable and commonly accepted implement-
ation of the fundamental value equation continues. Models that are
theoretically purer or that work over a wider range of applications
tend to do worse in any given application and sample than models
which are motivated by a specific application and sample. The
“right” model, even if we had it, would talge a long time to emerge
relative to the large number of spurious fish in each pond.

This survey looks maddeningly tangled, with a long (and yet
woefully incomplete!) list of approaches. But this appearance hides

75



MODERN RISK MANAGEMENT: A HISTORY

an exciting common theoretical and empirical consensus that
has emerged from all this work: in addition to the market return
specified by the CAPM, there are a few additional important
dimensions of risk that drive premia in asset markets. If you take
on assets with high betas on these risks, you will get higher returns
on average, but these assets will all collapse together at times that
many investors find very inconvenient. Those “times” are some-
times related to recessions — when peoples’ job prospects are risky,
wages are doing poorly, investment and new business formation
are at a standstill - and at other times related to financial distress,
poor market liquidity, and the like — when a US dollar in your
pocket or an easily-liquidatable investment with a high price
would be’ particularly convenient. The long list of empirical
approaches mentioned above really only disagree about which
particular data series to use to construct the best indicators of these
two kinds of “bad times” unrelated to overall market returns.
FIXED INCOME AND COMMODITIES

The models used to price fixed income assets, commodities,
and derivatives often simply amount to fairly ad hoc discount factor
models. Consider first the factor models or affine models that
dominate bond pricing, following Vasicek (1977), Brennan and
Schwartz (1979), and Cox, Ingersoll and Ross (1985). In principle,
valuing a bond is easier than valuing other securities, because the
payoft is fixed. A one-year discount bond that will definitely pay one
US dollar in one year’s time has a value today of simply

PO =E,[m,,] 3)

where the superscript denotes maturity. To generate a bond-pricing
model, you write down some model for the discount factor and
then take expectations.

What makes bond pricing interesting and techmcally challeng-
ing is the presence of many maturities. For example, you can think
of a two-period bond as a security whose payoff is a one-period
bond, or as a two-period security directly. Its price is

Piz) =E, [mt+1 28 ] =E, [mt+1 mt+2] (14)
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Pursuing the first equality in Equation (14), you can see an inter-
esting recursion developing, leading to differential equations for
prices (across maturity). Pursuing the second equality, you can see
interesting expectations or integrals to take.

Still, we need a discount factor model to value bonds; so bond-
pricing models all come down to discount factor models. The
simplest example with which to show this point concretely is the
discrete-time Vasicek model.’> We write the following time series
model for the discount factor:

In(my.1) = =x; + £
X1 = (1 = d)p + bx; + 8yq

where ¢ and . -are parameters and e and & are shock/error terms.
We then find the prices and yields of one and two period bonds
from the fundamental value equation, Equation (13), and Equation
(14).* The result is’a “one-factor model” for yields:

y=Q1- b, + Y 8,
@ = const + 1 (1+ )y +1 cov(3, £)
Y z Yi

The short rate P evolves on its own as an autoregressive order one
process (AR(1)). The two-period bond yield, and all other yields,
are then linear functions of the one-year yield. All yields move in
lockstep. “Two-factor” and “multi-factor” models work in the same
way. For example, the Brennan and Schwartz (1979) two factor model
has a long rate as well as a short rate moving autonomously and then
all other yields following as functions of these two.

This model is not composed of an AR (1) for the short rate plus
“arbitrage.” The fly in the ointment is the third term in the last equa-
tion cov(3, ¢); this is the “market price of interest rate risk”. It is the
covariance of interest rate shocks with the discount factor. From
Equation (7), we recognise it as the risk premium that an asset must
pay whose payoff goes up and down with the interest rate. As this
term varies, the two-year bond yield can take on any value. Term
structure models typically just estimate this term as a free parameter
— ie, the models pick this term to fit bond yields as well as possible.
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That’s fine as far as it goes, but it does not obviate what we are
doing here. Just as before, cov(3, &) specifies the “systematic” part
of interest rate risk. It specifies whether the marginal utility of
consumption is higher or lower when interest rates rise unexpect-
edly. It specifies whether higher interest rates correspond to “good
times” or “bad times”, and how much so. Term structure models
are no more immune from assumptions about consumption,
macroeconomic risks, and so forth than anywhere else. Current
term structure models are much like financial multi-factor models,
discussed in the last section. The discount factor depends on rather
arbitrary portfolio returns, selected for empirical fit (in sample)
rather than even armchair theorising about good and bad states.

Often the discount factor modelling is implicit in a transform-
ation to “risk-neutral probabilities”. Recall that we can write the
fundamental value equation as - -

<7 1 *
b= Et[mt+1xt‘+l ] = '1'27— E, [xt+1]

where the * indicates a expectation under altered “risk-neutral”
probabilities. The transformation from E; to E} is called a “change
of measure”, and m,,; is the transformation function. Algebraic
manipulations can be much easier after the change of measure, but
the economic content and implicit discount factor modelling are
not changed. Exactly the same information must go in to forming
the change of measure that goes into specifying the discount factor
or market price of risk. In the same way, bond price authors often
do not present the discount factor, but go directly to assumptions
about the market price of risk, which we have labelled cov(s, €).
Similarly, the Gibson and Schwartz (1990) model for valuing
long-term oil derivatives is based on oil price movements and
changes in the convenience yield. Their model requires a “market
price of oil price risk” and the “market price of convenience yield
risk”. These parameters are usually estimated to make the model fit
well. Again, they are equivalent to specifying a discount factor.
The Keynesian risk premium on forward contracts is a third
example of a commonly discussed “risk premium” equivalent to a
statement about discount factors. In his Treastise on Money (Keynes,
1930), Keynes argued that speculators demand a risk premium
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from hedgers in order to accept a risk that hedgers want to “insure
away”. Keynes further argued that because hedgers tend to be long
the underlying asset on average, they tend to be short forwards on
average. The risk premium thus indicates a systematic bias of for-
ward prices to be above expected future spot prices, so that for a for-
ward purchase contract with fixed price K requiring the future
delivery on an asset worth P;,;,

( K=E[P]+0
where 0 is the Keynesian risk premium, such that ® > 0.
Surprisingly, many people still adopt the Keynesian view that
futures and forwards are biased predictors of future spot prices
because speculators require a risk premium from hedgers. Yet, we
saw earlier that the fixed price in a forward should just be

- - K=E|[Pu] + covy(my,y, Pry)R

The Keynesian risk premium amounts to an assumption about
discount factors just like any other risk premium. The idea that
hedgers’ specific exposure drives the risk premium is an interesting
one. It implies that both hedgers and investors at large are not
perfectly diversified - that hedger’s marginal utility drives risk
- premia in this market, even though aggregate marginal utility
might produce no risk premium at all.

ARBITRAGE AND NEAR-ARBITRAGE PRICING

So far, we have only discussed “absolute” pricing methods. These
methods specify a discount factor that can in principle price any asset,
using orfly fundamental information (ie, the source of aggregate
risks). In many applications, that is a far more powerful tool than is
called for. Usually, we do not need to value every asset; we only want
to value one asset, and we are happy to use the information about the
prices of similar assets in order to do so. In this case a relative pricing
approach is useful. To find the value of a McDonald’s hamburger,
absolute pricing starts thinking about how much it costs to feed a
cow. Relative pricing looks at the price of a hamburger at Burger
King. For many purposes, such as deciding where to eat, this is good
enough. In finance, option valuation and corporate finance (the use of

79



MODERN RISK MANAGEMENT: A HISTORY

comparable investments to determine required rates of return) are the
prime applications of relative pricing methods.

The central question is, as always, how to construct a discount
factor. The relative pricing approach uses information from other
asset prices in order to construct a discount factor useful for pricing
a given asset.

Arbitrage pricing

Arbitrage pricing is the purest case of relative pricing, as it makes
the least assumptioné about investors, utility functions, and so
forth in specifying the discount factor. When it works, this
approach neatly cuts short the endless discussion over what are the
true risk factors, market price of risk, and so on. Black-Scholes
option pricing is the canonical example. The Black-Scholes formula
expresses the option price given the stock and bond prices.

The only assumption we need to derive an arbitrage pricing rela-
tion such as the Black-Scholes formula is that there is some discount
factor that generates the price of the focus asset (option) and the
basis assets (stock, bond). As long as there is some discount factor,
then the “Law of One Price” must hold: two ways of generating the
same payoff must have the same value.’® If payoffs x, y, z are
related by z = x +y, then their prices prices must obey p(z) = p(x)
+p(y).* The key insight in' the Black-Scholes formula is that you
can dynamically hedge an option with a stock and a bond. The
payoff of the option is the same as the payoff of the hedge portfo-
lio. Hence, the price of the option must be the same as the value of
the hedge portfolio. (Arbltrage pricing should really be called
“Law of One Price pricing”, and probably would be if the latter
were not such an ugly a name.)

Another way to look at the same thing paves the way for more
complex relative pricing. Because the existence of any discount
factor implies the Law of One Price, any discount factor that prices
the basis assets (stock and bond) must give the same result for the
focus asset (option). Following this insight, we can price options by
simply constructing any discount factor that prices the stock and
bond. This task is easy. For example, once you know p,, the choice

Y r y—1
M1 = X Ef(%y X0q) ™ pt
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does a pretty good job of satisfying p; = E{(xy; m')! (The primes
denote transpose and allow for vectors of prices and payoffs in the
formula.) Then we can simply use the discount factor m" to value
the option.!”

The discount factor m" is not unique. There are many discount
factors that price the stock and bond. For example, a new discount
factor i, = M}, + &4, where g, is any random variable uncorre-
lated with payoffs E,(e;,; x.1) = 0 will do. But with arbitrage pricing
it does not matter which one you use. They all give the same option
value. '

Arbitrage pricing is still technically challenging, because these
trivial-sounding statements hold at every point in time, and you
have to chain it all back from expiration to find the actual option
price. This means solving a differential equation or an integral.
But technical challenges are a lot easier to solve than economic
challenges - ie, finding the right absolute asset pricing model.

You can see the attraction of arbitrage pricing. Rather than learn
about discount factors from mac.roeconomics, introspection,
philosophy, or oversimplified economic theories, we can simply
construct useful discount factors from available assets and use
them to price detivatives. Put another way, every asset pricing
model posits that there is some discount factor, so implications that
derive from the mere existence of a discount factor are common to
every asset pricing model; we do not have to choose which asset
pricing model to use if all discount factors give the same answer.
Arbitrage pricing seems so pure that option pricing theorists,
financial engineers, and risk managers often sneer at the models
we have presented above.

Arb1trage pricing, however is not completely assumption-free.
It assumes that there is some discount factor. In turn, this assump-
tion requires that there is at least one unconstrained investor out
there forming an optimal portfolio. We need to know nothing
about the utility function and consumption stream (ie, what states
of nature the investor fears) — we will learn all we need to know
about that from stock and bond prices — but we do need something.
The Law of One Price is routinely violated in retail stores — the
price of a 907.2 gram bottle of ketchup is.not twice the price of a
453.6 gram bottle — so it does reflect some assumptions. It is not a
law of nature.
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Much more seriously, application of relative pricing techniques
to real-world problems is not nearly as straightforward as the
Black-Scholes example suggests. The lost car keys are usually not
right under the streetlight. In practically every interesting applic-
ation, even a textbook-perfect hedge is exposed to some risk arising
from institutional frictions, transactions costs, illiquidity, and
so forth. More often, there is no textbook-perfect hedge, due to
non-marketed risks such as changing volatility, shifting interest
rates, asset specific liquidity premia, non-marketed fundamental
securities, etc. And when there is no way to perfectly replicate the
payoff of the focus asset with some portfolio of other assets, there
is no way to perfectly “arbitrage price” the focus asset. The premia
for market prices of the unavoidable basis risks will matter.
Different, and apparently arbitrary, choices among the many
discount factors that price hedge assets (different choices of ¢ in
m=m"+ g) produce different valuations for the derivatives. We

' cannot avoid the questions: “how big are the extra risks” and

“what is the premium for those extra risks?”

At this point, we could simply return to the beginning and try to
answer these questions using some implementation of the funda-
mental value equation. But we usually want to avoid an extended
discussion of CAPM versus ICAPM and consumption in every
little application. Many option-pricing exercises leave “market
price of risk” assumptions as free parameters, as we discussed
above for term structure and commodity models. But in many
cases, the market price of risk assumptions matter a lot, and pulling
them out of thin air is very unsatisfactory. Instead, we can add a
little “absolute” information to wirinow down the range of possible
discount factors, while still using the information in hedge assets
(stock and bond) as much as possible. This works because in most
options pricing applications, the residual or tracking error risks are
small. It only takes a little discount factor economics to make sure
that small residuals have small effects on values.

Arbitrage bounds

What can we say about discount factors? The weakest thing we can
say in general (beyond existence) is that investors always like more
over less.!® Marginal utility is positive, and this implies that the
discount factor is positive. Keep in mind that the discount factor is
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random, so “positive” means “positive in every state of the world
at time t + 1, no matter what happens”.

As the existence of a discount factor implies the Law of One
Price, a positive discount factor has a nice portfolio interpretation:
the “principle of no arbitrage”. If a payoff x cannot be negative and
might be positive, then it gets a positive price. (Multiplying two
positive things in Ey(1m,,; X;.1) and taking the average, we must get
a positive result. In finance terminology, this stronger property is
called ”arbitrage’} . Colloquial use of “arbitrage” usually refers to
the Law of One Price).

Positive discount factors lead to “arbitrage bounds” on option
prices when we cannot completely hedge the option payoff. We
solve the problem: “what are the largest and smallest option prices
we can generate, searching over all positive discount factors that
price stock and bond?” More formally, we solve

option .
max Et(mt+1 X1 )

(1)
’ tock __ stock
st. p: —Et(mt+1 Xin )
bond _ bond
o stopy —Et(mm Xin ) (15)
st m, >0

Most textbooks solve this problem more simply for a simple
European call option. For example, we note that the call option
payoff is always positive, so its price must always be positive.
In more complex situations, this discount factor search (a linear
program) is the only way to make sure you have not forgotten
some clever domihating portfolio, and it can provide useful
arbitrage bounds even in dynamic applications (see Ritchken,
1985).

BEYOND ARBITRAGE: A LITTLE BIT OF ABSOLUTE PRICING
GOES A LONG WAY

Alas, arbitrage bounds are too wide for many applications. They
still allow us to generate weird option prices, because there are
weird positive discount factors that nonetheless price the stock and
bond. For example, we generate the lower arbitrage bound on
a European call option C(f) >0 by imagining a discount factor
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arbitrarily close to zero any time the option finishes in-the-money.
Now we are all happy when the stock market goes up, but so
wildly happy that more money has become worthless? Surely we
can sensibly restrict the discount factor more than that without
getting back into the messy model business.

Following this insight, a number of approaches suggest how
to use 4 little absolute pricing even in traditional relative pricing
situations in order to at least bound the effects of un-hedgeable
residual risks. Equivalently, we can combine information about the
discount factor from basis assets (stock, bond) whose prices we do
not want to question with relatively weak but hence robust infor-
mation about the discount factor available from economic theory
and practical experience in many markets.

The arbitrage pricing theory
Ross’s (1976b) arbitrage pricing theory (APT) is the first such
mixture of a little absolute pricing into a fundamentally relative-
prlcmg problem. His APT is also a second source of inspiration for
the factors in multi-factor models. : ,
Ross pointed out that many portfolios of stocks can be reasonably
approximated as linear combinations of the return on a few basic
or “factor” portfolios. In equations, we can run a regression of the
focus portfolio on factor portfolios,

i i 1 i £2 o i
R;+l =a+ Bllft+1 + Blzfm ek 81t+1

and the error term will be small. For exa;hnple, most of the thou-
sands of mutual funds’ returns can be quite well approximated
once we know the funds’ style in terms of market, size, value, and
a few industry groupings. If the actual, ex-post, returns on these
portfolios can be approximated in this way, it stands to reason that
the expected returns can also be so approximated. If not, one could
buy the focus portfolio, short the right hand side combination
of the factor portfolio returns, and earn a high return with little
risk, As a result we derive a multi-factor representation in which
average returns depend on the betas on the factor portfolios.

E(R,,;) =R’ +BA +BA, +-- (16)
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Equivalently, a discount factor that is a linear function of the factor
returns will do a good job of pricing the focus portfolios. Of course,
like any relative pricing approach, the APT’s applicability is limited.
You cannot apply it to assets whose returns are poorly approxi-
mated by the returns of the few basic portfolios — assets with large
residuals £',;.

Unfortunately, if you are willing to say nothing at all about
absolute pricing — utility functions, risk aversion, macroeconomic
states, etc, — then any residual risk &,; can have an arbitrarily large
price or risk premium, and the hoped for APT approximation can
be arbitrarily wrong. With any error, the Law of One Price alone
says nothing about the focus portfolio. For stock portfolios, arbi-
trage (positive discount factors) does not help, as no portfolio of
stocks does better than another portfolio always. |

Ross realised a way out of this dilemma. If the risk premium
associated with a residual &',; were very large, it would be a very
attractive investment in terms of its Sharpe ratio (ratio of mean
return to standard deviation). A high Sharpe ratio is not an
arbitrage opportunity or a violation of the Law of One Price, but
extremely high Sharpe ratios are nonetheless unlikely to persist.
If we rule out very high Sharpe ratios in addition to the Law of One
Price and principle of no arbitrage, we do obtain a well-behaved
approximate APT. Small errors &},; now must mean small risk
premia, so Equation (16) will hold as a good approximation.

Ruling out high Sharpe ratios is another little bit of absolute pric-
ing. It is equivalent to the assumption that discount factors are not
too volatile. Precfsely, Hansen and Jagannathan (1991) show that the
maximum possible Sharpe ratio attained by all assets priced by a
particular discount factor is given by 1

o(m) =

—  max ER)-R
R Rs.t1=E(mR)} a(R) .

Limiting volatility is an additional but plausible and mild restric-
tion on marginal utility. Does marginal utility growth — growth in
the pleasure we get from an extra US dollar’s consumption ~ really
vary by more than, say, 50% per year? The historical market Sharpe
ratio is 0.5 (8% mean, 16% standard deviation), so even such a high
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bound on discount factor volatility is enough to restrict market
prices of risk to CAPM values.

In more economic terms, the volatility of the discount factor
is given by the volatility of consumption growth times the risk
aversion coefficient. If we know that at least one marginal investors’
consumption growth varies less than, say, 5% per year, and risk
aversion is sensible — say, less than 10 - then we know that the
discount factor varies by less than 0.5 per year, and the maximum
Sharpe ratio should be less than 0.5. Equivalently, we might be
willing to assume that “traders will take any Sharpe ratio more than
twice the Sharpe ratio of the market as a whole” and impose that
maximum Sharpe ratio in evaluating the premium for residual risks.

Derivatives valuation bounds

Cochrane and Saa-Requejo (2001) apply Ross’s idea to option
pricing, when either market frictions (eg, you cannot trade contin-
uously) or non-marketed risks (eg, stochastic volatility or interest
rates) break simple arbitrage pricing and require us to evaluate
market prices of risks. Cochrane and Saé-Requejo find that the
upper. and lower bounds on option prices (searching over all
discount factors that price stock and bond) are positive and have
limited volatility. This amounts to adding an additional restriction
to arbitrage bound Equation (15):

option
max E, (mm Xt )
(M1} .

k ock
s.t. Pftock =Et(mt+1‘ o )
bond bond
st. p>" ;vEt(mt+1 Xt )
st om,, >0
st. o(m)<R K

17)

‘The last restriction is the novelty over arbitrage bounds. # is the
upper limit on discount factor volatility; the extra assumption is
that investors would want to take any bet with a Sharpe ratio
greater than h. Cochrane and Sad-Requejo (2001) find that the result-
ing bounds on option prices are much tighter than the arbitrage
bounds that result from ignoring the last term ~ ie, the bounds that
result from arbitrary assignment of the market price of residual risk.
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For option pricing, both positive discount factors and a limit on
discount factor volatility are important. So far, the discount factor
interpretation has been a matter of aesthetics. You could solve
problems (for example) imposing a positive discount factor or by
checking that all positive payoffs had positive prices. The restric-
tions in Equation (17) have no pure portfolio interpretation. The
only way to put all these ideas together is to add restrictions on the
discount factor, tightening the bounds on option pricing. They
have to be posed and solved with discount factor methods.

This is only the beginning. Bernardo and Ledoit (2000) add the
restriction that discount factors cannot be too small or too large,
a<m<b. This is a sensible tightening of the arbitrage restriction
m=20. It also produces usefully tight option pricing bounds.

- Constantinides and Zariphopoulou (1999) consider the sensible
restriction that higher index values must make investors happier.
The discount factor m thus must be a monotonically decreasing
function of the stock index. The beauty of a discount factor frame-
work is that it is easy to add all these restrictions and more
together. |

CONCLUSION

All of asset pricing comes down to one simple idea: price equals

expected discounted payoff. The art is in what one should use for

a discount factor. ‘

We surveyed “absolute” approaches such as the CAPM and
consumption CAPM that infer the discount factor from measures
of macroeconomic or financial “bad times”. We emphasised that
a sound grasp of asset pricing theory is required to define systematic
risk and thus to identify those remaining risks on which investors
and firms should focus their risk management efforts, and to define
“good risks” which giVe high returns to investors who take them.
We surveyed term structure and derivatives models that specify
much simpler and more ad hoc discount factor models, resulting in
free parameters for market prices of risk. We surveyed “relative
pricing” approaches that learn about the discount factor for pricing
one asset from information in other assets. We argued that a little bit
of economics, a little bit of absolute pricing (such as a limit on dis-
count factor volatility) can help to plug the market price of risk holes
in much applied option pricing and resultfng risk management.
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The fundamental value equation has significant implications for
finance in general and for portfolio selection, capital budgeting,
hedge evaluation, and derivatives valuation applications in
particular. Far from being distantly related to risk management, the
consumption model and all its special cases and empirical repre-
sentations are, in fact, as central to risk management as they are to
all finance.

APPENDIX: DERIVATION OF THE FUNDAMENTAL

VALUE EQUATION

To describe what an investor likes and dislikes, and hence to think
about how the investor values an asset, we employ the standard
economist’s model that investors want to find the highest value of
a “utility function”:%

U(cy, ei41) = ulcy) + BEdu(csg)]

u(c;) describes how more consumption at time ¢ makes the investor
happier. We typically assume that investors always prefer more to

yless (u{c) >0), and each incremental unit of consumption brings

slightly less happiness than the unit before it (1,.(c) < 0).

Now think of a financial asset whose price at time ¢ is p, and
whose payoff (total value) at time ¢t +1 is x,,,. The investor can
freely buy or sell as much of this asset as they like at time t. How
much will they buy or sell? To find the answer, denote e(t) as their
consumption level before they buy any of the asset, and denote by
¢ the amount of the asset they choose to buy. Then, their problem is
to choose the £ that solves

max; (¢, )+ E, [ Bu(cpy ) ]
s.t. ¢ =g _gpt
St Cuq =€y HEX,,

Substitute the two constraints into the objective, and take a
derivative with respect to the £. Set the derivative equal to zero to
characterise the maximum. The result is that the investor’s optimal
consumption-investment choice satisfies

pi’(cy) = E[Bu’ (cra1)Xpsal
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or, rearranging with price on the left and the rest on the right,

= ©
[—]

1
12

13
14

15

u.(c,,,)
=E c\"i+1
- pt t B uc(ct) xt+1

(2003)- explores the relative-pricing approach in the subsequent chapter of this
volume. N
Winners of the Nobel Prize in Economic Sciences for their specific contributions to the theory
of finance are Harry M. Markowitz (1990), Merton H. Miller (1990), William F. Sharpe (1990),
Robert C. Merton (1997), and Myron S. Scholes (1997). Other Nobel laureates whose work
had a critical impact on finance include John R. Hicks (1972), Kenneth J. Arrow (1972),
Gerard Debreu (1983), Franco Modigliani (1985), and Robert E. Lucas, Jr. (1995).
The discussion here and in the next two sections is adapted from Cochrane (2001).
As a matter of theory, this only really works for investors. Corporations do not have utility
functions and thus engage in a different fype of analysis of hedging opportunities — see Culp
(2001, 2002a). ’
Derivation: For any two returns R and R¥, E{[m,,;(R/ - R¥)] = E/[m,,R/] - E/fm,yR¥] = 0, where
R*= R/ is a special case.
Derivation: Note that Rf = 1/E(m) and E(mP) = E(m)E(P) + cov(m, P) and solve.
See, for example, Ross (1976b) and Cox, Ross, and Rubinstein (1979). Cochrane (2001)
discusses the relations between discrete-time and contiruous-time formulations of the
problem and how to implement discount factors in contintious firrié;
Alternatively, that is why investors diversify thelr holdings to get rid of these risks on their
own. See Culp (2003).
The parameter y can be interpréted as the degree of risk aversion,
Cochrane (2001) shows different derivations.of the CAPM under alternative assumptions
and provides a comparison of the multiple approaches.
z is usually a vector of mulhple state variables and factor-mimicking portfolios.
Technically, this statement requlres a risk aversion coefficient greater than one, but that is the
usual case.
This treatment is agiapted from Campell, Lo, and MacKinlay (1997)
Derivation: The price and yield of a one-period bond are

2

—% l"s
o Pﬁl) =E[m,]= Et[em(mﬂn ] - Et[e-x,w,ﬂ 1= s
M = _ 1.,
Y =-In(p)=x~ 2 o

With an adjustment to the constant ., the state variable x thus is the short rate y{V. Things
get more interesting with a two-year bond:

Yo == % INE, [y 5] =~ l InE, [e st = % In E, [e-0p-0-dmetusmorins |

Y =2+ 42 A-Du+s cov(a e)—ioa Sot ,
i -

¥ -—(1 O+ Lareyym +1 cov(8 &)~ {u5 +@-o)(o?)} ‘ oy

The converse statement is one of the most famous founding theorems of finance. If the Law
of One Price holds, then there exists a discount factor. See Ross (1976), Harrison and Kreps
(1979), and Hansen and Richard (1987). -
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16 Proof: E[m(x +y)] = E(mx) + E(my).

17 See Cochrane (2001) for the algebra.

18 You can always burn or give away what you do not want, so less is never preferred to more.
19 Proof: 0=FE(m(R-R' ))=E(m)E(R - R’f)+ o(m)o(R) p(m, R)

E(m) _ER-R)_ =o(m)
a(R)p(m, R)
Correlations are less than one.

20 This simple formulation treats all consumers as alike and presumes that utility is “additively
separable” across time. Numerous alternatives to this simple set-up have been proposed.
See, for example, Constantinides (1990). Many alternatives are reviewed in Cochrane (1997,
1999a, 1999b).
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