A Scientific Approach to CAPM and Options Valuation

Emanuel Derman Columbia University

My Discomfort with CAPM

- Neoclassical finance:
 - Black Scholes derivation depends on replication (elegant)
 - CAPM depends on mean variance optimization (unrealistic)
- Would prefer one approach to both that starts from one logical principle I can accept

General Principle of Valuation

- Finance asks: What return should you expect from taking on risk?
- I claim:
 Equal Risk Should Expect Equal Return μ
- But some risks can be avoided
- Equal Unavoidable Risk Should Expect Equal Return μ
- We know what expected return is, but what is risk?

How Can You Avoid Risk?

- Dilution: Combine security with a riskless bond
- Diversification: Combine security with many uncorrelated securities
- Hedging: Combine security with a correlated security

Specialize: Define Risk as Std Deviation

- Pretend that risk is the standard deviation σ of returns
- Expected return μ
- This is obviously naive. Of course there are much more general and realistic definitions of risk, but for now we stick with this one....

Equal Diluted Risk, Equal Return: All stocks have same Sharpe Ratio

• Combine weight w of a risky stock S (μ, σ) with a weight (1 - w) of riskless bond B (r, 0)

$$[w\mu + (1 - w)r, w\sigma] = [r + w(\mu - r), w\sigma]$$

- All uncorrelated stocks with risk $w\sigma$ earn excess return $w(\mu r)$
- One parameter fixes everything

• Same Sharpe ratio for all stocks
$$\overline{}$$

$$\frac{(\mu - r)}{\sigma} = \lambda$$

2

Equal Diversified Diluted Risk, Equal Return: Sharpe Ratio is Zero

- Suppose there are countless uncorrelated stocks (μ_i, σ_i)
- Put them all in a portfolio with weights $P = \sum w_i S_i$
- Then $\mu - r \equiv \sum_{i} w_{i}(\mu_{i} - r) = \sum_{i} \lambda w_{i} \sigma_{i}$
- But the total risk σ diversifies to zero.

$$\mu - r = \lambda \sigma = \lambda \sum \sigma_i = 0$$

i

- Thus $\lambda = 0$
- Every stock is expected to earn the riskless rate

Equal Diversified Hedged Diluted Risk, Equal Return: CAPM

R

• Suppose there are countless stocks S_i (μ_i, σ_i)

correlated with the market M (μ_M, σ_M)

• Then the market-neutral stock $S_i^M \equiv S_i - \beta_i (\frac{|S_i|}{|M|})M$

has no market risk (is hedged), where $\beta_i = \rho_{iM} \frac{\sigma_i}{\sigma_M}$

- Thus S^{M}_{i} has zero Sharpe ratio, earns riskless rate r
- Which means

$$(\mu_i - r) = \beta_i (\mu_M - r)$$

4

Stock and Option Have Equal Sharpe Ratio: Black-Scholes

Stock S, call C

$$\frac{(\mu_{S} - r)}{\sigma_{S}} = \frac{(\mu_{C} - r)}{\sigma_{C}}$$

- Ito's Lemma applied to a call C to obtains its expected return and effective volatility leads to Black-Scholes, as originally derived by Black.
- Unified treatment of BS and CAPM