

Status and Trends of Photoautotrophic Algae Cultivation from the Viewpoint of a Glass Manufacturer

European Algae Biomass, April 20 & 21, 2016, Berlin SCHOTT AG / N. Schultz

Content

1. Technologies of Photoautotrophic Algae Cultivation

2. Limits

3. Trends and new Technologies

A few Definitions

Photoautotrophic = phototrophic and autotrophic

Phototrophic= photon capture for energy acquisition.Typically: photosynthesis for biomass build-up

Autotrophic = use of inorganic nutrients

Heterotrophic = use of organic nutrients for energy acquisition

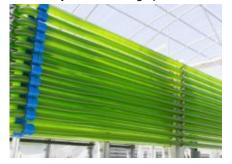
Mixotrophic = use of both, inorganic and organic nutrients

Content

1. Technologies of Photoautotrophic Algae Cultivation

2. Limits

3. Trends and new Technologies


Common Photoautotrophic Algae Cultivation Technologies

Open Raceway Ponds Widespread systems. Low Capex

Glass tubular systems

Durable systems with high process control.

Polymer based systems Polymer Types: PVC, PMMA, PE, PC*

Flat panels

Most often polymer (sometimes glass). Good light utilization

European Algae Biomass, 20.-21.04.16, $\,$ N. Schultz, F. Wintersteller @ SCHOTT AG

*) polycarbonate plates, polyethylene bags, poly (methyl methacrylate) tubes, UV-stabilized polyvinylchloride tubes & plates

Open Raceway Ponds

Pros:

- I. Apparently simple to construct and operate
- II. Low installation cost per active volume
- III. Scalability to huge systems

Cons:

- I. Risk of bio-contamination & culture crashes
- II. Salination / fresh water consumption due to water evaporation
- III. Low volumetric productivity
- IV. Limited to sunny and warm areas (but sandstorms, heavy rains (Monsun)

Advantageous for production: Growth of algae that require selective environments.

Flat Panel Reactors

Air-lift provides nutrients and keeps algae in motion

Modern systems (right) have structure for more uniform light distribution and cycling

> Image: Subitech website: subitec.com

Pros:

Image: Subitech website: subitec.com

- Air-lift: No pumps energy/cost saving!
- Modularity Ш.
- Ш. High volumetric productivity and biomass concentrations

Cons:

- Sometimes biofilm formation with difficult cleanability
- П. Polymer sheets – short outdoor lifetime (3-5y)
- III. Hazard of overheating

Polymer Bags

Pros:

- I. Low installation cost per active volume
- II. Air-lift operation, no pumps
- III. Simple technology (problems of biofilm formation resolved by material exchange)

Cons:

Image: Algasol website: algasol.com

- I. Strong biofilm formation
- II. Short lifetimes (1-3 y), 1y in oceans
 - high material and labor cost for exchange!

Plastic bags from Supreme Biotech

Tubular systems

Glass and polymer systems share a few common features

Pros:

- I. Huge surface to volume ratio good light dilution/utilization.
- II. Closed systems (low risc of contamination, culture crashes)

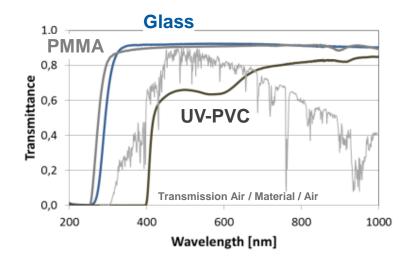
Cons:

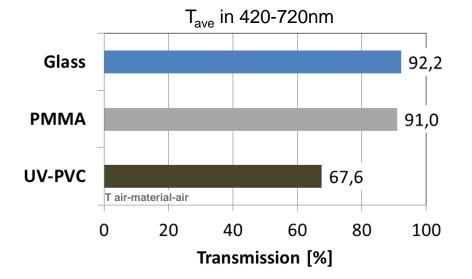
- Oxygen accumulation in loop lengths > 200m (then degassing tank)
- II. Overheating (but spray-water cooling)

BGG, China (glass tubes)

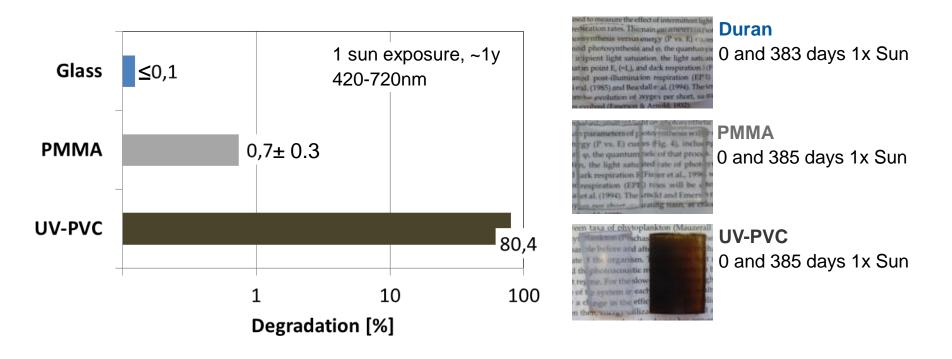
Tubular materials in direct comparison Glass (Borosilicate) vs. PMMA and PVC

- Glass ∅=65mm, d= 2.2 mm SCHOTT Duran[®] standard PBR glass tubes
- **PMMA** \emptyset =63mm, d= 4,69 mm Sample received from outdoor-PBR operator
- UV-PVC Ø=90mm, d=4.05 mm Advertised by manufacturer for use in outdoor PBRs with solar illumination

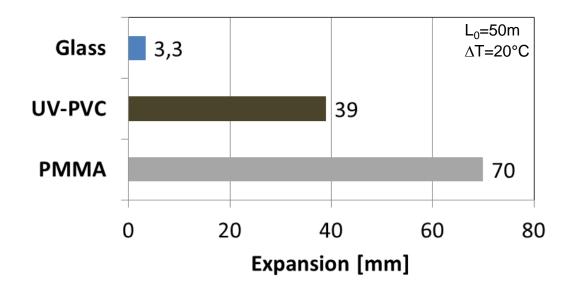




Transmission of Glass and Polymer tubes

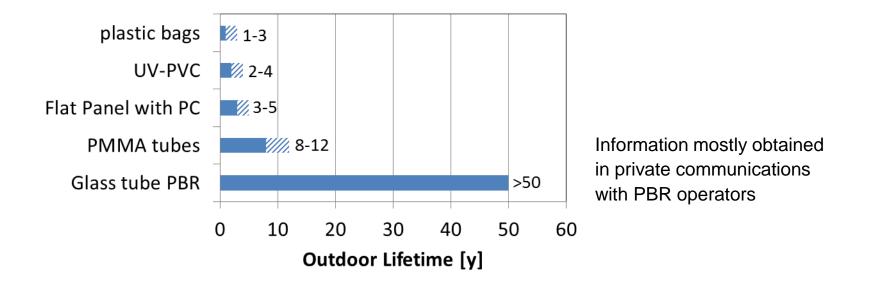


UV-PVC:T~0 in λ <400nm and low T in VIS</th>Glass, PMMA:High transmission > 90%


SCHOTT glass made of ideas 11

Solar Degradation of Glass and Polymer tubes

Thermal Expansion Glass (Borosilicate) vs. PMMA, PVC



The thermal expansion of polymers is 10-20 fold higher than glass

SCHOTT glass made of ideas

European Algae Biomass, 20.-21.04.16, N. Schultz, F. Wintersteller $\ensuremath{\textcircled{\sc SCHOTT}}$ AG

Typical Outdoor Lifetimes of Algae Culture Containments

Mechanical Cleaning of Glass Tubular PBRs

In situ with a pig,

...or with pellets

...or with chemistry (HCI, H2O2, citric acid, NaOH, Ozone...)

SCHOTT glass made of ideas

Content

1. Technologies of Photoautotrophic Algae Cultivation

2. Limits

3. Trends and new Technologies

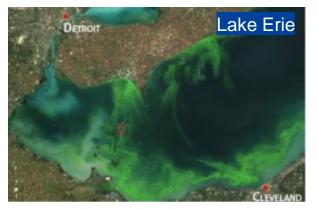
Limits of Photoautotrophic Algae Cultivation

\rightarrow theoretical biomass production (per active area)	17-30 or 61-108	g/(m²*d) t / (ha*y)
Available energy for biomass build-up Caloric energy of biomass:	0.1 - 0.2 GJ/(m²*y) 20 GJ / ton	
Photon efficiency (reflexion and scattering losses ~ 10%, PAR ~ 45%, low PS quantum yield (~20%), energy loss from high energy photons, photoinhibition (~50%), respiration losses~10%)	1.7 - 3%	
Solar energy in hot, sunny areas (here: USA)	7.2 GJ/ (m ² *y)	

Reduction through diff. location, clouds, downtime, non-ideal temperature...

Content

1. Technologies of Photoautotrophic Algae Cultivation


2. Limits

3. Trends and new Technologies

Trends and new Technologies

- 1. Market on the rise: Waste water cleaning (Clearas)
- 2. Cascade Raceway Pond (A4F)
- 3. Vertical glass tube PBR (Ecoduna)

Growing Market: Waste Water Cleaning Example: Clearaswater's Advanced Water Recovery Process

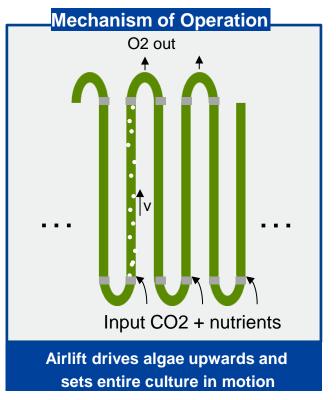
Algae bloom after discharge of waste water with phosphorous from commercial agricultural runoff, sewage, and industry \rightarrow Algae release toxins: risc for aquatic life and human health (when swimming or drinking the water)

SCHOTT glass made of ideas

A4F Cascade Raceway (CRW)

Channel length: 75m, width = $10m (1500m^2)$

Depth ~ 3cm


Channels are inclined, flow by gravitation Cascade and pumps at end

+ high vol. productivity
+ upto 4g/l (stable culture) → power saving
+ fast emptying at bad weather

ecoduna

Ecoduna (AT) – vertical tubes with air-lift

The vertical PBR of Ecoduna, AT

All advantages of a closed, glass-tubular system: → Durability, cleanability, low risc of contaminaton...

Large surface to volume ratio – good light dilution, i.e., less photoinhibiton effects \rightarrow high areal growth efficiencies.

Airlift drives culture

- → No pumps necessary
- → Uniform distribution of nutrients
- \rightarrow no O₂-intoxication
- Continuous harvest

In plan: Production with 600 m³/ha PBR \rightarrow 100 t/(ha·y)

Thank you for your attention

www.schott.com/pbr