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Abstract

Given the binary representation of some integer, a typical problem is to determine the number
of trailing zeros. This HOWTO will show you how to accomplish the task in constant time. The
reader is assumed to have experience with the C programming language, though the methods
presented throughout this document can easily be applied to other languages as well.
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1. Introduction
You may safely skip this chapter if you are already familiar with HOWTOs or just hate to read all this
programming-unrelated stuff.

1.1. Copyright and License
Copyright 2009 by Philip Busch. You are free:

• to Share: to copy, distribute and transmit the work

• to Remix: to adapt the work
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Under the following conditions:

• Attribution. You must give the original author credit

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

1.2. Disclaimer
Citing from the README of a mathematical subroutine package by R. Freund:

For all intent and purpose, any description of what the codes are doing should be construed as being a
note of what we thought the codes did on our machine on a particular Tuesday of last year. If you're really
lucky, they might do the same for you someday. Then again, do you really feel *that* lucky?

1.3. Credits / Contributors
I would like to thank the following people for their valuable input:

• Malcolm Phillips (New Zealand)

1.4. Feedback
Feedback is most certainly welcome for this document. Send your additions, comments and criticisms to
<philip@0xe3.com>.

2. Background Knowledge
Computing the number of trailing zeros in constant time is sweet and simple, but in order to understand the
trick, we will have to look at some math first. This may sound scary, but all we have to do is understand
the notion of a so called de Bruijn sequence. Once we know about de Bruijn sequences, we'll have a short
reminder of Two's Complement, and off we go...

2.1. de Bruijn sequences
As we are used to do from math classes, let's start with a definition:

Definition: A de Bruijn sequence of length n = 2k is a bitstring consisting of n digits such that every 0-1-
sequence of length k occurs exactly once.

What? Let's have an example: a binary number of length 8 = 23 is a de Bruijn sequence, if it contains every
possible bitstring of length 3, i.e. 000, 001, 010, 011, and so on. If you try to find such a de Bruijn sequence,
you'll notice that our 8 digit binary has only room for 6 bitstrings of length 3, even if the bitstrings are
allowed to overlap. So if you reach the end of a de Bruijn sequence, simply restart from the beginning.
That's why they are called sequences and not just numbers.

http://creativecommons.org/licenses/by-sa/3.0/


Computing Trailing Zeros HOWTO

3

Have you already found some de Bruijn sequence of length 8 (i.e., 23)? Of course you have. Here's another
one: 00010111. Don't believe me? I'll show you:

00010111
000             0
 001            1
  010           2
   101          5
    011         3
     111        7
      110       6
       100      4
      

Look at how the bitstrings overlap and wrap around at the end. If you match them together, you'll get our
original 00010111, or as we're used to call it: 23.

Now, in order to compute the number of trailing zeros of a binary, we need a de Bruijn sequence of exactly
the size of our binary, i.e. CHAR_BITS*sizeof(int). The value of this expression may vary from system to
system, and who says that we shall restrict ourselves to ints anyway, but for the purpose of this HOWTO,
let's simply assume that this is 32. So how do we find a de Bruijn sequence of length 32? After some
scribbling on the cover of "Math in 21 days", I ended up with 0x077cb531, which is 00000111 01111100
10110101 00110001 in binary representation. As specified above, its length is exactly 32=25, so this time
it even contains all possible 5-tuples.

Just for fun, let's write down the offset for each 5-tuple in the sequence:
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Table 1. Sample Table

5-tuple decimal value offset

00000 00 0

00001 01 1

00010 02 28

00011 03 2

00100 04 29

00101 05 14

00110 06 24

00111 07 3

01000 08 30

01001 09 22

01010 10 20

01011 11 15

01100 12 25

01101 13 17

01110 14 4

01111 15 8

10000 16 31

10001 17 27

10010 18 13

10011 19 23

10100 20 21

10101 21 19

10110 22 16

10111 23 7

11000 24 26

11001 25 12

11010 26 18

11011 27 6

11100 28 11

11101 29 5

11110 30 10

11111 31 9

The table tells us that e.g. the 5-tuple 11010 (decimal 26) appears at the 18th position in the binary
representation of our de Bruijn sequence. We will need this table later, but let's forget about math for now
and learn some fundamental facts about our computers.
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2.2. Two's Complement

As we're programmers, I assume that you are already familiar with Two's Complement (if not, see http://
en.wikipedia.org/wiki/Two%27s_complement). Actually, I just want to show you a nice trick. This would
probably have been a better name for this section, but frankly speaking, it doesn't sound as important.

So. Have you ever wondered how to set all bits of an int to zero, except for the last 1 that appears in
its binary representation? Well, neither did I, but we need it in order to compute the number of trailing
zeros. But before I tell you how to do it, let's first play around a bit. Remember how to change the sign
in Two's Complement? We have to do bitwise negation and add 1. Let's do a simple example: changing
the sign of 12.

00001100       | that's a binary 12
11110011       | bitwise negation
11110100       | add 1, get -12
    

Start with -12 and repeat this procedure, and you'll end up with 12 again. Astonishing, isn't it? Now look
at the binary representations of 12 and -12 respectively. You'll notice that they have the same number of
trailing zeros. Aside from that, they differ in every digit, except for the last 1. And what's more important,
this is also true for every other Two's Complement number 1.

Now it's pretty clear how to isolate the last 1. Simply use bitwise AND on an int x and its bitwise
negation:

x & -x

Too simple2. The result is a number whose binary representation consists of all zeros, except for the last
1 in both x and -x, so for x=12, the result is a binary 00000100.

2.3. Bit shifts

In school, one of the most delightful arithmetic operations is multiplication by ten, because there's no real
work to do: simply append a zero and that's it. Same goes for multiplication by 100, 1000, and every other
power of ten with a natural exponent. But astonishingly, this doesn't have to do anything with 10n ending
with zeros, but with the fact that 10 is the base of our numeral system. Multiplying by 7 in base 7 works
exactly the same way: append a zero. More generally, multiplying by b in base b works by appending
a zero. If you don't already believe it, have a short look at how numeral systems are used to represent
numbers. For the purpose of this HOWTO, it completely suffices to know that for binaries, multiplication
by 2n is really the same as left-shifting by n. Actually, this is how left-shifting is formally defined:

        x << n  :=  x * 2n

      

Of course, no sane chip designer will use multiplication in order to implement bit shifts on a new CPU,
but this trick will help us determine the number of trailing zeros in a binary. Now, we are finally ready
to have a look at the actual algorithm.

1Except INT_MIN, because abs(INT_MIN) == INT_MIN.
2Quiz question: how do you isolate the first 1 in constant time?

http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement
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3. Ready, Steady, Go!
We know some simple facts about Two's Complement arithmetic, and we are mere experts on de Bruijn
sequences, so let's see what we can do with it.

3.1. The algorithm
The algorithm for determining the number of trailing zeros of a binary number x works as follows. First,
we create an array which tells us for each possible bitstring of length 5 its offset in our de Bruijn sequence
DEBRUIJN. That is, for a given 5-tuple t, how many times do we need to shift DEBRUIJN to the left in
order to have t appear at the front. Then we set all bits of x to zero, except for the last 1. Let's call this
number n. We multiply n with DEBRUIJN, but remember: the digit 1 appears exactly once in the binary
representation of n (i.e. n is a power of two), so multiplying DEBRUIJN with n is really the same as
shifting DEBRUIJN to the left as many times as there are trailing zeros in n. Now we take the first 5 digits
of the shifted de Bruijn sequence and look it up in our array. This will tell us how many times we actually
shifted DEBRUIJN to the left, i.e. the number of trailing zeros of n, which is the same as the number of
trailing zeros of x, which is the solution to our original problem.

Here's the algorithm again:

1. Create array table for DEBRUIJN

2. n = x & -x

3. shifted = DEBRUIJN * n

4. offset = table[shifted]

5. return offset

3.2. An Example
Looks easy enough, but let's have an example anyway: suppose we want to determine the number of trailing
zeros in the binary representation of x = 26,784, which is 00000000 00000000 01101000
10100000. Let's have a look at the de Bruijn sequence:

DEBRUIJN = 00000111 01111100 10110101 00110001

Note that I emphasized the substring 11101. Now, let's first first isolate the last 1: n = x & -x. The
binary representation of n is 00000000 00000000 00000000 00100000. We shift the de Bruijn
sequence by the number of trailing zeros in n, i.e. multiply DEBRUIJN with n: shifted = DEBRUIJN
* n.

shifted = 11101111 10010110 10100110 00100000

We immediately right-shift the result by 27:

shifted = 00000000 00000000 00000000 00011101

Remember our table? It tells us for each bitstring of length 5 its offset in the de Bruijn sequence. For
11101, it correctly reports 5, which is indeed the number of trailing zeros in x.

I'd love to claim that you don't need to understand this, but you need to. If it isn't already clear to you,
read this chapter again. Maybe it helps to have a look at the previous chapter, too. Use a sheet of paper
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and try to reproduce the examples yourself. It's easy, go ahead! In the meantime, I'll continue with the
actual source code.

3.3. Populating the table
As mentioned in the previous section, we need an array which tells us for every possible binary 5-tuple
the corresponding offset in a given de Bruijn sequence. Of course we might simply hardcode the array,
and if you're happy with this solution, you can safely skip the current section and proceed to the next one
without any further ado. For aesthetical completeness, this is what we have to do in order to populate
the array table on the basis of a given de Bruijn sequence debruijn: we iterate over i = 0..31
and for each step, we left-shift debruijn by i and immediately right-shift back by 27. This way, we
retrieve all 5-tuples from our de Bruijn number, i.e. all numbers between 0 and 31, and use them as array
subscripts to store the current value of i in table. When finished, table tells us the offset of each 5-
tuple in debruijn.

Here's the code:

void init(int table[32], unsigned int debruijn)
{
        int i;

        for(i = 0; i < 32; i++) {
                table[debruijn >> 27] = i;
                debruijn = debruijn << 1;
        }
}
    

3.4. Looking up the number of trailing zeros
Computing the number of trailing zeros for a given int x is now a mere child's play. Set all bits of x
to zero, except for the last 1. Multiply the result by debruijn and right-shift by 27. Then use this value
to look up the number of trailing zeros in the table.

int ntz(int x)
{
 size_t i = ((x & -x) * debruijn) >> 27;
 return table[i];
}
    

Here, debruijn is a global variable, of course. If you don't like global variables, consider the function
above to be pseudocode.

3.5. Putting it all together
The following program is a complete implementation of the algorithm described above.

#include <stdio.h>
#include <stdlib.h>
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#define DEBRUIJN 0x077CB531UL

static int table[32];
static unsigned int debruijn;

static void init(int table[32], unsigned int db);
int ntz(int x);

int main(int argc, char *argv[])
{
        int x;

        if(argc != 2) {
                fprintf(stderr, "USAGE: %s <num>\n", argv[0]);
                return EXIT_FAILURE;
        }

        x = atoi(argv[1]);

        /* initialize de Bruijn table */
        init(table, DEBRUIJN);

        printf("number of trailing zeros: %d\n", ntz(x));

        return EXIT_SUCCESS;
}

/* compute number of trailing zeros */
int ntz(int x)
{
        size_t i = ((x & -x) * debruijn) >> 27;
        return table[i];
}

/* initialize table with de Bruijn sequence db */
static void init(int table[32], unsigned int db)
{
        int i;

        debruijn = db;

        for(i = 0; i < 32; i++) {
                table[db >> 27] = i;
                db = db << 1;
        }
}
    

In a real program, you probably wouldn't want to initialize the table at runtime, and you don't even need the
ntz() function call. So, for the sake of completeness, here's another version which I have shamelessly
taken over from Sean Eron Anderson. This version is highly tuned for efficiency, but at first sight it looks
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like voodoo. If you are bored at work, hand it out to your colleagues and see how long it will take them
to figure out what it does:

unsigned int v;  // find the number of trailing zeros in 32-bit v 
int r;           // result goes here
static const int MultiplyDeBruijnBitPosition[32] = 
{
  0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 
  31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
r = MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531UL) >> 27];
    

3.6. Caveats
Now you may think: "This was soo easy... now where's the catch?". And you are right, there are some
aspects to be aware of when you implement the algorithm.

Most notably, not all de Bruijn sequences are equally suitable (aside from the fact that they need to be of
proper size). In the beginning, I told you that we wrap to the start of the sequence once we've reached its
end. But in the implementation, we only do left shifting, i.e. fill in with zeros. But that would yield widely
inaccurate results if the de Bruijn sequence of length 2k doesn't start with k zeros, so make sure it does
or simply stick to the one I supplied.

Furthermore, the implementation presented here makes possibly inaccurate assumptions about the number
of bits in an int. Remember the 10th commandment from His prophet Henry Spencer: Thou shalt
foreswear, renounce, and abjure the vile heresy which claimeth that ``All the world's a VAX'', and have
no commerce with the benighted heathens who cling to this barbarous belief, that the days of thy program
may be long even though the days of thy current machine be short. I sacrificied this wisdom for the sake
of readability, but in order to avoid surprises, you better replace every occurrence of the number 32 (and
31 and 27 accordingly) with CHAR_BITS*sizeof(int), which fortunately happens to be a compile-
time constant.

On a sidenote, it has been suggested to add something along the lines of if(x%2) return 0; at
the beginning of ntz(), based on the observation that odd numbers don't have trailing zeros in their
binary representation. Separate from issues concerning branch prediction, this doesn't change anything
in the average case: for odd numbers, you save two machine instructions, but for even numbers, you get
two more.

4. Further Reading
This HOWTO is by no means an exhaustive analysis. It serves as an informal introduction to the topic
in general. A more formal discussion by Leiserson, Prokop and Randall is available in their paper Using
de Bruijn Sequences to Index 1 in a Computer Word [http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.37.8562]. If you're generally interested in bit manipulation techniques, have a look at Sean
Eron Anderson's excellent page about Bit Twiddling Hacks [http://www-graphics.stanford.edu/~seander/
bithacks.html].

5. Epilogue
I provided evidence to the assumption that there occasionally exist simple solutions to problems that render
impossible at first glance. I hope that you enjoyed reading this HOWTO and probably remember this

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8562
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8562
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8562
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.8562
http://www-graphics.stanford.edu/~seander/bithacks.html
http://www-graphics.stanford.edu/~seander/bithacks.html
http://www-graphics.stanford.edu/~seander/bithacks.html
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insight the next time you're about to implement the first approach that comes to your mind. Maybe you
now have comments, suggestions, questions or rants. Either way, I'd be glad to hear from you.


