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Haynes Miller

It is no accident that Peter Landweber’s career closely matches the
striking unification of algebra and topology provided by the theory of
bordism of manifolds, especially complex bordism: his work has been
at the heart of that interaction. Here I will briefly describe some of
Landweber’s main contributions to this story.

The starting point was Thom’s work [59], from 1954, in which
he used transversality to identify bordism classes of closed smooth n-
manifolds with what we today call the nth homotopy group of the
Thom spectrum MO (though of course it was in part an attempt to
express Thom’s arguments conveniently that later led to the concept
of a spectrum) and then computed the homology of this (by the Thom
isomorphism) and the homotopy (and actually the homotopy type).
The result was that any mod 2 cohomology class was carried by a
“singular manifold,” the image of the fundamental class of a smooth
closed manifold under a map; and the bordism ring is a polynomial
algebra over Z/2Z with one generator in each positive degree not one
less than a power of 2. Thom also considered the oriented bordism ring
Ω∗ = π∗(MSO).

This was followed in 1960 by the use of the newly minted Adams
spectral sequence [1], independently by Milnor [44] and by Novikov
[51] to make the analogous computation of the complex bordism ring
ΩU

∗
= π∗(MU). The result was a polynomial algebra over Z with one
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generator in each positive even degree. The following year Atiyah [6]
provided the natural relativization of bordism, defining the bordism
groups of a space X by considering bordism classes of maps into X. A
homology theory and its dual cohomology theory were born.

These theories were integrated into the arsenal of working topol-
ogists, to borrow Saunders Mac Lane’s phrase, and soon in the book
Differentiable Periodic Maps (1964) Pierre Conner and Ed Floyd [13]
were using them to solve problems in group actions. This work focused
attention on the bordism of classifying spaces, corresponding to clas-
sifying bordism classes of free actions, and in particular they showed
that for p odd the map

Ω∗(BCp) ⊗Ω∗ Ω∗(X) → Ω∗(BCp × X)

is a monomorphism for any X: the beginning of a Künneth theorem.
In 1962 [7] Atiyah provided a geometric approach to the Künneth

theorem, and used it to prove the result for K-theory. The combi-
nation of this idea with the Connor-Floyd result led to Landweber’s
thesis, written at Harvard under the direction of Raoul Bott, com-
pleted in 1965 and published with the same title, “Künneth formulas
for bordism theories” [21]. (Landweber recalls that “Frank Peterson
really served as my advisor (in the sense of giver of support and ad-
vice) when it came to matters such as cobordism theory.”) Landweber
studied both Ω and complex bordism (which he denoted by U∗), and
considered spaces W for which every homology class was carried by a
manifold, or, equivalently (Conner and Floyd [13] (15.1)), for which the
relevant Atiyah-Hirzebruch spectral sequence collapsed. (He worked at
an odd prime in the case of oriented bordism, which was subsequently
understood to be a summand of complex bordism when localized at an
odd prime.) Parity implies that W = BCp is an example. Under this
hypothesis he constructed a two-term resolution of W by spaces with
free bordism modules, and so obtained a natural short exact Künneth
sequence

0 → U∗(W ) ⊗U∗ U∗(X) → U∗(W × X) → TorU∗

1 (U∗(W ), U∗(X)) → 0.

Landweber made the explicit observation that what mattered here
was the fact that U∗(W ) had projective dimension at most one over
the bordism ring U∗. (He attributes this remark to Don Anderson.)
This story was continued by Conner and Larry Smith in their 1969
study [15] of the complex bordism of finite complexes. They observed
that surjectivity of U∗(W ) → H∗(W ) was in fact equivalent to U∗(W )
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having projective dimension at most one. They also extended Landwe-
ber’s exact Künneth sequence to a full spectral sequence, removing the
restriction on projective dimension.

Landweber’s long-term interest in the module structure of the
bordism of a space, especially the complex bordism, was thus born
with his thesis. In 1970 [25] he continued his study of the com-
plex bordism of a classifying space of a finite group G, showing that
hom dimMU∗MU∗(BG) = 1 is equivalent to the well-studied condition
that G have periodic cohomology, or, equivalently, that every abelian
subgroup of G is cyclic, or that H∗(BG; Z) is even.

His first job was at the University of Virginia, and it was from
there, in September, 1965, that he submitted his paper “Cobordism
operations and Hopf algebras” [22]. Conner and Floyd, in work pub-
lished in their 1966 Springer Lecture Note The Relation of Cobordism

to K-Theories [14], had observed that a splitting principle held in com-
plex cobordism, and this allowed them to compute the cobordism of
BU and construct in it specific polynomial generators written later by
Adams [3] as cfi, the “Conner-Floyd Chern classes.” The subalgebra
Z[cf1, . . .] they generate admits a diagonal, reflecting the Whitney sum
formula. Landweber considered the image of this subalgebra under the
Thom isomorphism

MU∗(BU) → MU∗(MU).

This isomorphism is not an algebra map, but Landweber discovered
that the image is a subalgebra of the full algebra of cobordism opera-
tions under composition, and that it forms a Hopf algebra if we trans-
fer the Whitney diagonal. He observed that the dual Hopf algebra is
polynomial on classes I will write bi, and gave an explicit expression
for the diagonal in the dual Hopf algebra, reflecting the composition
product. Novikov, in his epic 1967 paper “The methods of algebraic
topology from the viewpoint of cobordism theory” [52], independently
constructed this algebra but did not make the structure explicit. In
his 1967 Chicago lectures on Landweber and Novikov’s work, Adams
wrote Landweber’s formula as

∆b =
∑

bi+1 ⊗ bi.

where b is the formal sum of the bi and b0 = 1. This formula was
understood by Dan Quillen and Jack Morava as asserting that the dual
“Landweber-Novikov algebra” S∗ (in Novikov’s notation) represents the
functor sending a ring to the group, under composition, of power series
of the form x + . . ..
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The full algebra MU∗(MU) is a completed tensor product of S
with MU∗, and Landweber recognized that the remaining ingredient,
the action of S on the coefficient ring MU∗, was important and ex-
tremely complex. The key to understanding it was hinted at by the
work of Mike Boardman1 [9] and and Novikov, in their observation that
the behavior of cobordism Euler classes of complex line bundles under
tensor product is described by a formal group law

x +F y = x + y + · · · .

Novikov has said that he did not know of Lazard’s theorem ([43], 1955),
giving the structure of the ring supporting the universal formal group
law, and it was left to Quillen [54] to prove, in 1969, that the Novikov
formal group over MU∗ is universal, MU∗ is the Lazard ring. The
action of the Landweber-Novikov algebra was then described by con-
jugation of F by formal power series.

This insight has led to a remarkable incursion of algebra into homo-
topy theory over the subsequent thirty years, in which Peter Landweber
has been a four-star general. A first payoff, carried out by Quillen, was
the use of Cartier’s theory of p-typical parameters to provide a canon-
ical and computable splitting of MU(p) into indecomposables, namely
suspensions of the Brown-Peterson spectrum BP [12]. This spectrum
had been constructed in 1966 and such a splitting established but with-
out enough control to make computations feasible.

While at Virginia, and later at the IAS and Yale, Landweber wrote
a series of papers on the geometric side of his subject. To give one
example, with Pierre Conner [23] he gave a necessary and sufficient
condition for an oriented manifold to be unoriented cobordant to an
SU -manifold: all the Pontryagin numbers involving p1 must vanish
mod 2. To give another, in a paper [24] in the Annals he considers an
equivariant map

(Rn+p
− ⊕ R

q
+)+ → (Rp

− ⊕ R
q
+)+

and uses equivariant KO-theory to resolve an ambiguous power of 2
in Glen Bredon’s calculation of the degree of the restriction to fixed
points

(Rq
+)+ → (Rq

+)+.

In 1970 Landweber moved to Rutgers, and returned to the ques-
tion of what the operations on complex bordism tell you about the
MU∗-module structure. The work of Conner and Smith [15] (and of

1In these notes, representing a portion of his thesis, Boardman introduced the
formal group for unoriented bordism and used it, as Quillen was to do in the complex
case, to give a canonical splitting of MO.
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Conner and Floyd earlier on) had focused attention on the structure
of annihilator ideals of nonzero elements, especially spherical classes.
Sphericity has strong implications on the behavior of operations: all
the Landweber-Novikov operations vanish—the class is “primitive.”

Landweber published a sequence of three papers developing his pro-
gram. He wanted to use methods from commutative algebra, and in
place of the standard Noetherian condition he used the condition of
coherence. This had been introduced into Topology by Novikov [52]
(without identifying it by name) and Larry Smith [56], and was ad-
vertised by Adams in his Seattle lectures [2]. Recall that an R-module
is coherent if it is finitely generated and every finitely generated sub-
module is finitely presented. A ring is coherent if it is coherent as a
module over itself, and over a coherent ring the conditions of finitely
presented and coherent coincide. Novikov and Smith proved that the
complex bordism of any finite complex is coherent, so the category of
comodules over MU∗MU which are coherent as MU∗-modules is a good
first approximation to the category of finite complexes. In particular,
coherent MU∗-modules have finite projective dimension.

In the first of these papers [26] Landweber showed that if the an-
nihilator ideal of an element in such a comodule is prime then it is
invariant, i.e. a sub-comodule of MU∗. This prompted a study of the
invariant prime ideals in MU∗, and Landweber made explicit Morava’s
observation [47] that Lazard’s classification [43] of formal groups over
separably closed fields by their height leads to a determination of these
ideals. The ring MU∗ admits generators xi ∈ π2iMU with the property
that the Hurewicz image in H2iMU is divisible by p whenever i + 1 is
a power of the prime p. The ideal

I(p, n) = (x0, xp−1, xp2−1, . . . , xpn−1−1)

(where x0 = p) is independent of choices, and as p runs over the rational
primes and n runs between 1 and ∞ this exhausts the list of nonzero
invariant prime ideals in MU∗. This was proven inductively, calculat-
ing the module of primitive elements in MU∗/I(p, n) to be Fp[xpn−1]
by means of a purely algebraic version of a theorem of Stong and Hat-
tori concerning the K-theoretic Hurewicz homomorphism. K-theory
made its appearance through the multiplicative formal group over Fp,
and Landweber used work of Lazard to produce generalizations of this
formal group law, distinguished by the property that

[p](x) = xpn

.
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The fact that once you choose a characteristic the invariant primes are
linearly ordered has played an absolutely fundamental role in all the
subsequent work in this area. See [20] for a slick proof using BP .

Returning to [26], the invariance of prime annihilator ideals was
proven using standard primary decomposition together with the fol-
lowing structural result: any coherent comodule has a finite comodule
filtration whose quotients are cyclic as MU∗-modules. This result was
strengthened in the second paper [27], in which Landweber showed
that maximal elements in the partially ordered set of proper annihila-
tor ideals are annihilators of primitive elements. This allowed him to
refine the filtration theorem to its final form, the Landweber Filtration
Theorem: any coherent comodule has a finite comodule filtration whose
associated quotients are suspensions of the comodules MU∗/I(p, n) for
0 ≤ n < ∞.

In the third paper [30] in this series, Landweber put the filtra-
tion theorem to work in Topology. His primary goal was to com-
plete the original task of understanding the projective dimension of
the bordism module of a finite complex. By this time definitive re-
sults had been obtained by Dave Johnson and Steve Wilson [19], us-
ing BP in place of MU . They used the new Sullivan-Baas theory of
manifolds with singularities [58, 8] to construct certain BP -module
theories BP 〈n〉. The classes xpi−1 ∈ MU∗ project to polynomial
generators of BP∗ which I will write vi, and in terms of these gen-
erators the coefficient ring of BP 〈n〉 is the BP∗-module BP 〈n〉∗ =
BP∗/(vn+1, vn+2 . . .) = Z(p)[v1, . . . , vn]. Johnson and Wilson showed
that hom dimBP∗BP∗(X) ≤ n+1 if and only if BP∗(X) → BP 〈n〉∗(X)
is surjective. They also made the intriguing observation that after local-
ization BP 〈n〉∗(X) is determined algebraically from BP∗(X) (Remark
5.13):

v−1
n BP 〈n〉∗ ⊗BP∗ BP∗(X)

∼=
−→ v−1

n BP 〈n〉∗(X).

While their results were for the most part stable, their proofs used the
unstable splitting of Wilson’s thesis, and one of Landweber’s objectives
was to use stable operations instead. (For more information the reader
may consult Wilson’s Primer and Sampler, [62].)

Landweber succeeded in this goal. As a technical step he made the
following observation. Given any MU∗-module M one can form the
functor

(1) X 7→ M ⊗MU∗ MU∗(X).

If M is flat over MU∗ then of course you get a homology theory, rep-
resented by a spectrum. The fact is, though, that one need test the
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exactness of M ⊗MU∗ − against exact sequences of modules of a type
which is very tightly restricted by the Filtration Theorem. The result
was that (1) is a homology theory provided that for every p the se-
quence p, xp−1, . . ., acts regularly on M : this is the Landweber Exact
Functor Theorem.

To return to the original theorem of Conner and Floyd, we begin by
classifying the graded multiplicative formal group by a map MU∗ →
K∗ = Z[v±1]. For any prime p, p is monic on K∗, and xp−1 maps to a
nonzero multiple of vp−1 in K∗. Since it is a unit, K∗/(p, xp−1) = 0 and
the whole sequence acts regularly. Thus

(2) X 7→ K∗ ⊗MU∗ MU∗(X)

is a homology theory. The Todd genus determines a map from this the-
ory to K-homology, which is an isomorphism for X a sphere. It follows
that (2) is none other than K-homology. Landweber’s proof differs in
an important respect from that of Conner and Floyd: he did not need
to know that there was a homology theory there in advance; rather,
he showed directly that (2) defines a homology theory. Combined with
the Brown Representability Theorem, the Exact Functor Theorem pro-
vides a tool of almost magical efficacy for constructing homotopy types
from pure algebra.

Landweber worked out the evident analogue over BP as well. As
an example the localization of the Johnson-Wilson coefficient ring
v−1

n BP 〈n〉∗ clearly satisfies his conditions, and one obtains a new con-
struction of the localized homology theory (later called E(n)∗(−)) and
a new proof of the observation of Johnson and Wilson. (Of course the
connective spectra, BP 〈n〉, cannot be constructed in this way.) Jack
Morava and Mike Hopkins have taught us that for many purposes it is
better to consider a complete theory, associated to the Lubin-Tate uni-
versal deformation of a formal group of height n. It also is constructed
from the Exact Functor Theorem.

The perspective of describing a structure by the functor it repre-
sents was beautifully carried over by Landweber to the case of BP in
1975 [29]. Adams, in his magisterial “Lectures on generalized coho-
mology” at the Battelle Conference in the summer of 1968 [2], had
described the structure on the pair (E∗, E∗E) in case E is a commuta-
tive ring spectrum such that E∗E is flat over E∗. The theorems just
described assert that (MU∗, MU∗MU) represents the functor sending a
ring R to the groupoid of formal groups over R and their strict isomor-
phisms. Landweber’s contribution was to note that (BP∗, BP∗BP )
represented the functor sending an Z(p)-algebra to the groupoid of
p-typical formal group laws over R and their strict isomorphisms. I
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vividly recall the moment of enlightenment when he explained this to
me in the common room in Fine Hall, and was led by this to propose
the term “Hopf algebroid” for a cogroupoid object in the category of
commutative rings.

By 1974 the technical advances in the subject had opened the way to
serious computations in the Adams spectral sequence based on MU , or,
equivalently when localized at a prime, on BP . Landweber’s determi-
nation of the invariant prime ideals in BP∗ amounted to a computation
of

Ext0(BP∗, BP∗/In).

Steve Wilson and I [46] computed

Ext1(BP∗, BP∗/In)

for p odd, and then Wilson and Doug Ravenel and I [45] computed

Ext2(BP∗, BP∗)

for p odd. Landweber [31] interpreted these computations as classifying
certain invariant ideals in BP∗ which were not necessarily prime but
rather regular. Many of these ideals have the form (pa0 , va1

1 , . . . , van
n ),

but not all do. Landweber gave some structural properties of these
ideals. For example, an invariant regular sequence of length n generates
a primary ideal with radical In.

The “chromatic resolution” of [45] appeared there as an ad hoc
device, but of course Landweber was not content with that, and, with
Johnson and Zen-ichi Yosimura, he showed [34] that in a certain sense
it is an injective resolution. This paper established a characterization of
injective coherent comodules dual to the criterion in the Exact Functor
Theorem.

During this period Landweber also contributed to the study of com-
plex structures, showing [28] that if the cohomology of an open almost
complex manifold vanishes above the middle dimension then the almost
complex structure is integrable.

The Proceedings volume of a 1978 conference in Waterloo, Ontario,
contain back-to-back papers by Landweber, entitled “New applications
of commutative algebra to Brown-Peterson homology” [32] and “The
signature of symplectic and self-conjugate manifolds” [33]—a nice en-
capsulation of his breadth of interest and creativity. The first paper
carried on the story just told. In it he proved that the radical of the
annihilator of a nonzero element in a coherent BP -comodule is invari-
ant and prime. A result of Johnson and Yoshimura then followed from
the linear ordering of invariant primes: If x is vn-torsion then it is vn−1-
torsion. For if vs

nx = 0, then vn lies in the radical of the annihilator of
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x, which must thus contain In and hence vn−1. A further result from
this paper is that for finitely generated BP -comodules M the follow-
ing conditions are equivalent: M is coherent; M has finite projective
dimension; and vn|M is monic for some n. Landweber subsequently
used this observation to show [35] for example that finite projective
dimensionality of BP -homology is preserved by attaching of cells.

The second paper is a scholarly completion of the project, begun
by Rochlin’s theorem, of determining the image of the signature on
various standard bordism groups.

In the early 1980’s, influenced by the work [60] of Clarence Wilker-
son, Landweber became interested in the more classical question of the
structure of a commutative algebra endowed with an unstable action
of the Steenrod algebra. This led to a fruitful collaboration with Bob
Stong, represented for example by [40]. They were led to a conjecture
about the depth of the ring of invariants of a subgroup of GL(n, Fp)
acting on the polynomial algebra S = Fp[t1, . . . tn], |ti| = 2. The ring
of invariants contains the “Dickson invariants” SGL(n,Fp), which is itself
known to be a polynomial algebra Fp[c1, . . . cn], with |ci| = 2(pn−pn−i).
The Landweber-Stong conjecture is that the depth of SG is the largest
r for which c1, . . . , cr forms a regular sequence in SG. This conjecture
generated a substantial body of research, culminating in its proof by
Dorra Bourguiba and Said Zarati [11]. A long survey [57] by Larry
Smith takes this development as its centerpiece.

A new impetus was provided in the early 1980’s by the work of
Ed Witten. Landweber himself has given a beautiful account of this
development in [37]. Witten asked if certain equivariant characteris-
tic classes were invariant under a circle action. Landweber’s student
Lucilia Borsari verified this conjecture for semifree actions in her 1985
thesis [10]. In [42] Landweber and Stong produced several other “rigid
characteristic classes.” These results served as the starting point for
Serge Ochanine’s introduction [53] of an “elliptic genus,” and his proof
that any rigid genus is elliptic. Witten [63] immediately gave an inter-
pretation of this genus (and others) as equivariant indices on the space
of free loops, and proposed a physics proof that conversely any elliptic
genus is rigid. This was subsequently realized as a mathematical the-
orem by Cliff Taubes and then, sequentially, by Bott and Taubes, by
Kefeng Liu, and by Ioanid Rosu.

During this period, when e-mail was still uncommon and the web
nonexistent, Landweber acted as a distribution center for preprints
connected with elliptic genera. This preliminary work made all the
participants at the Princeton conference of September 15–17, 1986, be
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they topologists or number theorists or physicists, feel that they were
working on the same thing. He laid the groundwork for one of the
most exciting interactions between widely diverse specialists in recent
years, and followed up by editing the Springer Lecture Notes volume
Elliptic Curves and Modular Forms in Algebraic Topology [36]. Ac-
cording to Landweber, “Something else I was very happy about was
getting Hirzebruch interested in what might be called, in imitation of
course, the marriage of manifolds and modular forms. I spent a week
in Bonn in Spring 1987, talking to Hirzebruch and Zagier.” Hirzebruch
gave a course on this subject in the Winter Term 1987/88, and notes
were written up by Thomas Berger and Rainer Jung. The Preface to
[17] goes on: “P. Landweber used these notes for a course at Rutgers
University in the spring of 1989 and [in characteristic fashion] prepared
a translation into English for his students; in addition he proposed nu-
merous corrections and improvements.” The result was published as
Manifolds and Modular Forms, [17].

In 1987 Landweber, Ravenel, and Stong [39] showed that the el-
liptic genus, taking values in a ring of modular forms with suitable
integrality conditions, was in fact Landweber exact, when regarded as
a ring homomorphism into an appropriately localized ring of modular
forms. (In “Forms of K-theory” [50], dating from the Spring of 1972,
Jack Morava consciously avoided considering this case.) The result was
the construction of “Elliptic cohomology,” Ell∗(X). Jens Frenke [16]
subsequently put it in a larger framework. This homotopy theoretic
construction initiated an intriguing and frustrating search by many of
us for a geometric construction of this theory and its many cousins; see
Graeme Segal’s report [55] for an early view of this project.

Perhaps I could say a few words about the questions raised by this
work, to indicate that the line of research Landweber initiated and
guided is still at center stage. Let us write FGL for the category of
Landweber-exact formal groups. There is a functor L from this cate-
gory to the homotopy category of evenly graded periodic ring spectra.
(The functoriality has been a nagging question, and was recently re-
solved by Mark Hovey and Neil Strickland [18], building on [16].) Mike
Hopkins and I have shown that for various important and natural func-
tors π : M → FGL the composite Lπ lifts to a functor to the strict
category of A∞ rings spectra, and Hopkins and Paul Goerss have im-
proved this in many cases to E∞. This is a lifting of M into homotopy

theory rather than merely into the homotopy category, and it enables
one to form homotopy limits, giving new and interesting spectra such
as the spectrum TM of Topological Modular Forms. But in fact it is
quite possible that the entire functor L lifts in this way. The resulting
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diagram would be “Landweber homology,” and, one hopes, would have
interesting geometric aspects which are as yet completely obscure.

I’d like to end by recording my own personal appreciation of Peter
Landweber. Peter came to Rutgers the same year I entered Princeton
graduate school. In the fall of 1973 Steve Wilson, in his second year
as an Instructor at Princeton University, initiated a weekly seminar on
bordism theory, dubbed the “Bording School.” Jack Morava was living
in Princeton, Doug Ravenel was at Columbia University, Peter was at
Rutgers. It was an exciting moment. Jack was overflowing with ideas
and preprints, of which [47]–[50] are only a fragment. He talked about
his geometric perspective, viewing a comodule as an equivariant sheaf
over the moduli space of formal group laws; he described Sullivan’s
theory of bordism with singularities, gave a proof of the classification
of invariant prime ideals in this setting, identified the subcategory of
“height n” comodules with representations of the “stabilizer group”
(the automorphism group of a formal group of height n), and explained
that Lazard’s work on p-adic Lie groups led to astonishing finiteness
results for the cohomology of these comodules. Jack was very exciting,
but his ideas were sometimes hard to follow, and for an insecure young-
ster like me it was essential that there was at least one adult around.
Cobordism was the most exciting thing going, and Peter seemed to me
to be its éminence grise, though today it’s not so hard to compute that
he was just a few years older than we were. He came bearing his latest
translations from the mysterious Russian school, and always had some
new discovery to tell us about. Best of all, he read what we wrote and
returned copies to us with meticulous editorial comments, always to be
taken seriously since Peter’s own writing style is a model of clarity and
grace.

Peter Landweber presents us with example of one who pursues an
idea tenaciously over a long period of time—the ideas in the LEFT
and elliptic cohomology trace right back to his thesis, with its study
of the module structure of the complex bordism of a space, and the
work immediately after, on operations—while not single-mindly, as we
see from his contributions to our understanding of the geometric side
of topology as well.
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