
Coyotos Core Domain Interfaces
Version 0.1 (in progress)

Jonathan S. Shapiro, Ph.D., Jonathan W. Adams
The EROS Group, LLC

December 8, 2007

Copyright c© 2007, The EROS Group, LLC. Verbatim copies of this document may be duplicated or distributed in
print or electronic form for non-commercial purposes.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, INCLUDING ANY WAR-
RANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Contents

Acknowledgments iii

coyotos.Builder . 1

coyotos.Constructor . 3

coyotos.ElfSpace . 5

coyotos.IoStream . 6

coyotos.SpaceBank . 8

coyotos.SpaceHandler . 12

coyotos.TermIoStream . 13

coyotos.Verifier . 17

coyotos.VirtualCopySpace . 18

coyotos.driver.IrqCallback . 19

coyotos.driver.IrqHelper . 20

coyotos.driver.IrqHelperCtl . 22

coyotos.driver.TextConsole . 23

i

ii CONTENTS

Acknowledgments

Many elements of the utility domain design described here are derived from earlier work on the KeyKOS [1] and
EROS [2] operating systems.

Comments and suggestions concerning these interfaces are welcome. They should be filed as bug or enhancement
requests in the Coyotos issue tracking system and/or discussed on thecoyotos-dev electronic mailing list. In order
to send, you must be subscribed to the list. The subscriptioninterface may be found at:

http://www.coyotos.org/mailman/listinfo/coyotos-dev.

In order to keep the mail archives readable, we ask that you send only “plain text” emails.

iii

coyotos.Builder

Interface coyotos.Builder

Derivation:
coyotos.Cap
coyotos.Verifier

coyotos.Constructor
coyotos.Builder

Synopsis:Constructor instantiation interface.

The builder interface enables developers and installers topopulate new constructors with their initial capabilities.
The constructor life cycle begins with a builder capability. When sealed, the builder interface returns a constructor
interface, and no longer permits inseration of new capabilities.

As each capability is added to the constructor instance, theconstructor computes whether each added capability satis-
fies the confinement requirements. If all capabilities installed in the constructor satisfy the confinement property, the
yield of the constructor is confined and the constructor willcertify this to its clients.

The builder capability implements the operations of the constructor capability, allowing the developer to perform test
instantiations before sealing the constructor.

Exceptions

Sealed Raised on insert operations when constructor has been sealed.

Operations

setHandler Insert a capability to be used as the yield’s external fault handler.

void setHandler(
Cap handler);

Raises:Sealed

If the installed capability is a constructor capability, a new address space will be fabricated from this constructor
for each newly instantiatied process.

setSpace Insert a capability to be used as the yield’s initial addres space.

void setSpace(
Cap space);

Raises:Sealed

If the installed capability is a constructor capability, a new address space will be fabricated from this constructor
for each newly instantiatied process.

1

2 COYOTOS.BUILDER

setPC Set the initial program counter for the yield.

void setPC(
coyaddr t pc);

Raises:Sealed

setTool Insert a tool capability for the process.

void setTool(
uint32 slot,
Cap c);

Raises:Sealed

seal Seal the constructor, returning a constructor capability.

Constructor seal();

coyotos.Constructor

Interface coyotos.Constructor

Derivation:
coyotos.Cap
coyotos.Verifier

coyotos.Constructor

Synopsis:Process instantiation interface.

The constructor is responsible for fabricating new processinstances from application images. It also implements a test
of confinement.

A confined process is one that cannot (initially) communicate with any party other than its creator. The constructor
tests confinement by examining the capabilities initially held by the process. As each capability is installed, the
constructor determines whether this capability is “safe” (meaning that it does not permit outward communication) or a
“hole.” Prior to fabricating a new process instance, a client can ask the fabricating constructor whether its yield would
be confined.

Constructors also implement a query to determine whether a process is its yield. This allows a client to determine
whether a process alleging to be an instance of some binary X was in fact created by the constructor of X instances.

The constructor itself is part of the system-wide trusted computing base. Its determination concerning process con-
finement can be relied uponprovided the constructor itself is authentic. The authenticity of the constructor can be
determined by asking the metaconstructor (the constructorof constructors) to authenticate its yield. In the normal
Coyotos configuration, both the metaconstructor and the space bank verifier are readily available to applications as
part of the standard runtime environment.

A constructor lifecycle proceeds in two phases. In the builder phase, it is possible to install new capabilities into
the constructor (seecoyotos.builder). Thecoyotos.builder.seal() operation produces the constructor
capability. Once sealed, new capabilities cannot be added to the constructor.

Operations

isYieldConfined Return true exactly if the constructor’s yield is confined.

bool isYieldConfined();

create Create a new instance of the constructor’s yield.

Cap create(
SpaceBank bank,
Schedule sched,
Cap runtime);

The created instance is allocated from the provided space bank and executes under the provided schedule.

bank should be a newly created bank; upon any failure, the bank will be destroyed.

runtime is passed to the newly created process as its runtime information key.

3

4 COYOTOS.CONSTRUCTOR

simpleCreate Create a new instance of the constructor’s yield, using the default arguments.

Cap simpleCreate(
Cap runtime,
OUT Cap newBank);

UsesCR SELF’s schedule and a new child ofCR SPACEBANK to invoke the constructor.runtime is passed
through unchanged, and the new bank is returned throughnewBank.

Equivalent to:

tmp schedule = coyotos.Process.getSlot(CR SELF, cslot.schedule);
tmp fullbank = coyotos.SpaceBank.createChild(CR SPACEBANK);
try {

tmp c bank = coyotos.SpaceBank.reduce(tmp fullbank,
restrictions.noRemove);

ret =
coyotos.Constructor.create(tmp c bank, tmp schedule, runtime);

newBank = tmp fullbank;
return ret;

} catch (e) {
try { coyotos.Cap.destroy(tmp fullbank); } catch () { }
throw (e);

}

getVerifier Get a Verifier for this Constructor

Verifier getVerifier();

coyotos.ElfSpace

Interface coyotos.ElfSpace

Derivation:
coyotos.Cap
coyotos.SpaceHandler

coyotos.ElfSpace

Synopsis:ElfSpace

Exceptions

NoSpace No Virtual Address Space is available

Operations

setBreak Set the end of the heap, allowing further allocation

void setBreak(
uint64 newBreak);

Raises:NoSpace

5

coyotos.IoStream

Interface coyotos.IoStream

Derivation:
coyotos.Cap
coyotos.IoStream

Synopsis:Generic bi-directional I/O stream interface.

This is a first version of the I/O stream interface. It doesn’timplement any I/O control operations, but it has the basic
read write interface.

Constants

Name Type Value Description
bufLimit uint32 4096

Type Definitions

chString Maximum length character buffer that can be transmitted or received in a single read/write operation.

typedef anon1 chString;

Exceptions

RequestWouldBlock

Closed

Operations

doRead void doRead(
uint32 length,
OUT chString s);

Raises:RequestWouldBlock

getReadChannel Return the read-specific channel for thisIoStream.

IoStream getReadChannel();

getWriteChannel Return the write-specific channel for thisIoStream.

IoStream getWriteChannel();

6

COYOTOS.IOSTREAM 7

doWrite uint32 doWrite(
chString s);

Raises:RequestWouldBlock

read Readlength bytes intochString from stream.

void read(
uint32 len,
OUT chString s);

This declares a library-supplied wrapper that callsdoRead() internally, hiding the details of the read blocking
protocol.

write Write chString to stream.

uint32 write(
chString s);

This declares a library-supplied wrapper that callsdoWrite() internally, hiding the details of the read blocking
protocol.

coyotos.SpaceBank

Interface coyotos.SpaceBank

Derivation:
coyotos.Cap
coyotos.SpaceBank

Synopsis:Coyotos system storage allocator.

The space bank implements the storage allocation and deallocation service. To allocate an object, you invoke a space
bank and request an object of a specified type. To destroy an object, you invoke the space bank providing a capability
to the object and ask that the object designated by that capability be destroyed. The destroy operation requires that the
object must currently be “owned” by the bank being invoked.

Space banks also provide bulk destruction services. Destroying a space bank via thedestroyBank() operation
causes all objects allocated from that bank to be destroyed,including any sub-banks. TheremoveBank() operation
destroys the space bank itself, but ownership of the objectscurrently owned by that space bank (including sub-banks)
is transferred to the parent of the removed bank.

In a typical running system, there are many space bank capabilities. Typically, all of these capabilities are implemented
by a single process known as the “prime bank.” Space banks arearranged in a hierarchy rooted at the prime bank.
New banks are formed by thecreateChild operation.

Space banks come in various restricted variants.

Exceptions

LimitReached A limit on the amount of usable space has been reached.

Enumerations

restrictions Reduced-authority space bank variants

Name Type Value Description
noAlloc uint32 1 Capability does not permit object or sub-bank alloca-

tion.
noFree uint32 2 Capability does not permit object destruction.
noDestroy uint32 4 Capability does not permit space bank destroy() or re-

move();
noQueryLimits uint32 8 Capability will not disclose remaining limit bounds.
noChangeLimits uint32 16 Capability does not permit alteration of bank limits.

8

COYOTOS.SPACEBANK 9

Name Type Value Description
noRemove uint32 32 This bank cannot be destroyed by remove().

This restriction is appropriate when destruction of the
bank should not permit allocated storage to survive. If
a bank is being used by an untrusted subsystem, the re-
move() operation would permit the subsystem to con-
duct denial of resource attacks against its source of
storage. Once storage has been inherited by a parent
bank, the only means to destroy that storage is to de-
stroy the parent bank. The mechanism of denial is to
cause storage to be owned by a bank that contains other
state that the holder cannot afford to destroy. This at-
tack is prevented by imposing thenoRemove restric-
tion on the subsystem’s bank.

Structures

limits Structure for limit information.
struct limits{

uint64 byType[Range.obType.otNUMTYPES];
};

Operations

alloc Allocate objects.

void alloc(
Range.obType obType1,
Range.obType obType2,
Range.obType obType3,
OUT Cap c1,
OUT Cap c2,
OUT Cap c3);

Raises:LimitReachedNoAccess

Allocates objects of typeobType1, obType2, and obType3, returning them inc1, c2, c3. If
range.obType.otInvalid is passed as a desired object type, the corresponding returncapability will
becap.null. The operation is all or nothing; if three objects are requested but only two can be allocated, the
LimitReached exception is raised.

An allocation performed on any bank is performed in parallelon all of its parent banks up to the prime bank.
This means that the effective allocation limit is themost constraining limit applied by the invoked bank and all
of its parent banks.

RaisesLimitReached if this allocation would exceed the limits of the current bank or one of its parents.

RaisesNoAccess if the capability has thenoAlloc restriction.

free Free objects.

void free(
uint32 count,
Cap c1,
Cap c2,
Cap c3);

Raises:LimitReachedNoAccess

10 COYOTOS.SPACEBANK

Releasescount objects, returning them to the free storage pool. If the passed capabilities are not owned by this
space bank, thecap.RequestError exception is raised. The passed capabilities must additionally satisfy
the constraints ofcoyotos.Range.rescind.

If any of the passed capabilities fail to meet these requirements,the operation fails with a
cap.RequestError exception with no action taken.

If the count is not in the range 0< count< 4,cap.RequestError is raised.

RaisesNoAccess if the capability has thenoFree restriction.

allocProcess Allocate a process.

Cap allocProcess(
Cap brand);

Raises:LimitReachedNoAccess

Allocates a new process object, installingbrand in the brand slot of the process. Processes can be allocated
using alloc(), but doing so will not permit their brand slot to be populated.

A process allocated usingallocProcess() should be deallocated using free().

destroyBankAndReturn Destroy the target bank as in destroy(), and reply to the specified rcvr capability with
resultresultCode.

void destroyBankAndReturn(
Cap rcvr,
exception t resultCode);

If resultCode isRC OK, the reply torcvr will be a ”normal” (non-error) reply with no payload. Otherwise,
it will be an exceptional reply withresultCode as the specified exception code.

Note that as with all spacebank replies, the reply will be non-blocking. if rcvr is not receiving, the reply will
be lost.

If the operation fails, the failure is returned to thecaller, notrcvr.

setLimits Set the limits imposed by this bank.

void setLimits(
limits lims);

Raises:NoAccess

getLimits Retrieve the current limits imposed by this bank (directly).

limits getLimits();

Raises:NoAccess

getEffectiveLimits Retrieve the most constraining limits that apply to allocations from this bank, including parent
limits.

limits getEffectiveLimits();

Raises:NoAccess

getUsage Retrieve the current usage of the bank

limits getUsage();

Raises:NoAccess

destroy inherited from coyotos.Cap.destroy

Destroy bank and storage.

void destroy();

In addition to deallocating the space bank itself, the destroy operation deallocates all storage that has been
allocated from this bank.

COYOTOS.SPACEBANK 11

remove Destroy this bank, transfering ownership of storage and sub-banks to the parent bank.

void remove();

Raises:NoAccess

createChild Create a child bank from the current bank.

SpaceBank createChild();

Raises:NoAccessLimitReached

verifyBank Verify that a bank is authentic.

bool verifyBank(
SpaceBank bank);

Tests whether a capability references an official space bank. Note that to be able to usefully call this, you must
have a capability that you know is a capability to an official space bank. The constructor holds such a capability
and uses it to validate the bank that is passed for object construction. Applications can therefore bootstrap bank
authentication from the initial bank provided through their constructor.

reduce Return bank capability with reduced authority.

SpaceBank reduce(
restrictions mask);

Returns bank capability to the same bank with the additionalrestrictions specified bymask. These restrictions
are applied in addition to any pre-existing restrictions onthe invoked capability.

coyotos.SpaceHandler

Interface coyotos.SpaceHandler

Derivation:
coyotos.Cap
coyotos.SpaceHandler

Synopsis:Address space handler.

Operations

getSpace Get the address space root for this space

AddressSpace getSpace();

12

coyotos.TermIoStream

Interface coyotos.TermIoStream

Derivation:
coyotos.Cap
coyotos.IoStream

coyotos.TermIoStream

Synopsis:Bi-directional I/O stream interface for serial streams.

The intent of this interface is to follow theTERMIOS specification of the SingleUNIX Specification, Version 3, which
can be found here. (free to read, registration required).

Constants

Name Type Value
NCCS uint32 32

Type Definitions

tcflag t typedef uint32 tcflag t;

speedt typedef uint32 speed t;

Enumerations

iflag

Name Type Value
IGNBRK uint32 1
BRKINT uint32 2
IGNPAR uint32 4
PARMRK uint32 8
INPCK uint32 16
ISTRIP uint32 32
INLCR uint32 64
IGNCR uint32 128
ICRNL uint32 256
IUCLC uint32 512

13

14 COYOTOS.TERMIOSTREAM

Name Type Value
IXON uint32 1024
IXANY uint32 2048
IXOFF uint32 4096
IMAXBEL uint32 8192

oflag

Name Type Value
OPOST uint32 1
OLCUC uint32 2
ONLCR uint32 4
OCRNL uint32 8
ONOCR uint32 16
ONLRET uint32 32
OFILL uint32 64
OFDEF uint32 128
NLDLY uint32 256
NL0 uint32 512
NL1 uint32 1024
CRDLY uint32 2048
CR0 uint32 4096
CR1 uint32 8192
CR2 uint32 16384
CR3 uint32 32768
TABDLY uint32 65536
TAB0 uint32 131072
TAB1 uint32 262144
TAB2 uint32 524288
TAB3 uint32 1048576
BSDLY uint32 2097152
BS0 uint32 4194304
BS1 uint32 8388608
FFDLY uint32 16777216
FF0 uint32 33554432
FF1 uint32 67108864

cflag

Name Type Value
B0 uint32 0
B50 uint32 1
B75 uint32 2
B110 uint32 3
B134 uint32 4
B150 uint32 5
B200 uint32 6
B300 uint32 7
B600 uint32 8
B1200 uint32 9
B1800 uint32 10
B2400 uint32 11
B4800 uint32 12
B9600 uint32 13

COYOTOS.TERMIOSTREAM 15

Name Type Value
B19200 uint32 14
B38400 uint32 15
B57600 uint32 16
B115200 uint32 17
B230400 uint32 18
B460800 uint32 19
B500000 uint32 20
B576000 uint32 21
B921600 uint32 22
B1000000 uint32 23
B1152000 uint32 24
B1500000 uint32 25
B2000000 uint32 26
B2500000 uint32 27
B3000000 uint32 28
B3500000 uint32 29
B4000000 uint32 30
MAX BAUD uint32
CSIZE uint32 64
CS5 uint32 0
CS6 uint32 32
CS7 uint32 40
CS8 uint32 48
CSTOPB uint32 128
CREAD uint32 256
PARENB uint32 512
PARODD uint32 1024
HUPCL uint32 2048
CLOCAL uint32 4096

lflag

Name Type Value
ISIG uint32 1
ICANON uint32 2
ECHO uint32 4
ECHOE uint32 8
ECHONL uint32 16
NOFLSH uint32 32
TOSTOP uint32 64
ECHOCTL uint32 128
ECHOPRT uint32 256
ECHOKE uint32 512
FLUSHO uint32 1024
PENDIN uint32 2048
ECHOK uint32 4096

cc

Name Type Value
VINTR uint16 0
VQUIT uint16 1
VERASE uint16 2
VKILL uint16 3

16 COYOTOS.TERMIOSTREAM

Name Type Value
VEOF uint16 4
VTIME uint16 5
VSTART uint16 8
VSTOP uint16 9
VEOL uint16 11
VREPRINT uint16 12
VWERASE uint16 14
VEOL2 uint16 16

Structures

termios

struct termios{
tcflag t c iflag;
tcflag t c oflag;
tcflag t c cflag;
tcflag t c lflag;
uint16 c line;
uint16 ccc[NCCS];
speedt c ispeed;
speedt c ospeed;

};

Operations

makeraw void makeraw();

makecooked void makecooked();

setattr void setattr(
termios t);

getattr termios getattr();

coyotos.Verifier

Interface coyotos.Verifier

Derivation:
coyotos.Cap
coyotos.Verifier

Synopsis:Constructor Yield Verification Interface

Constructors also implement a query to determine whether a process is its yield. This allows a client to determine
whether a process alleging to be an instance of some binary X was in fact created by the constructor of X instances.

In order to verify that a constructor is authentic, there is aconstructor verifier, which is the Verifier for the Meta-
constructor. In the normal Coyotos configuration, both the metaconstructor and the space bank verifier are readily
available to applications as part of the standard runtime environment.

Operations

verifyYield Returns true exactly ifyield is a child of this constructor.

bool verifyYield(
Cap yield);

17

coyotos.VirtualCopySpace

Interface coyotos.VirtualCopySpace

Derivation:
coyotos.Cap
coyotos.SpaceHandler

coyotos.VirtualCopySpace

Synopsis:VirtualCopySpace

Operations

freeze Constructor freeze();

18

coyotos.driver.IrqCallback

Interface coyotos.driver.IrqCallback

Derivation:
coyotos.Cap
coyotos.driver.IrqCallback

Synopsis:Interrupt notification callback interface

This interface is invoked by theIrqHelper to advise the receiver that an interrupt has occurred.

Operations

onInterrupt Method invoked by theIrqHelper to advise the receiver that an interrupt has arrived.

void onInterrupt(
coyotos.IrqCtl.irq t irq);

19

coyotos.driver.IrqHelper

Interface coyotos.driver.IrqHelper

Derivation:
coyotos.Cap
coyotos.driver.IrqHelper

Synopsis:Interrupt demultiplexing helper application.

The interrupt helper is a small process that waits for an interrupt and posts a notice to an interested client program. It
exists primarily because the kernel has no means to perform ageneral up-call.

The helper executes in one of two states. In “loop” state, it waits for an interrupt and calls the callback capability. This
state is exited when the callback invocation result is an exception. It also ends after the callback returns if the wait
loop has been directed to run only once viawaitOnce().

In “control” state, it receives on theIrqHelper interface and can be instructed to use a different callback capability
or re-start the loop state.

A flaw in this design is that there is no straightforward way for an outside party to determine which state the
IrqHelper is in. One way toforce the IrqHelper to enter the control state is to nullify the process capabil-
ity in its callback endpoint.

A second flaw in this design is that a callback failure may result in a lost interrupt.

Operations

setCallback Provide the helper with a notification callback capability that should be called from the wait-and-notify
loop.

void setCallback(
IrqCallback callbackCap);

isDeliveryPending Return true iff an interrupt callback is pending.

bool isDeliveryPending();

This will return true if an interrupt wait has completed and the associated callback generated an exception. If
runWaitLoop() orwaitOnce() are called while a delivery is pending, they will re-try the callback.

cancelPendingDelivery If an interrupt delivery is pending, cancel it, returning true iff cancelation occurred.

bool cancelPendingDelivery();

It is the responsibility of the caller not to lose track of pending interrupts.

runWaitLoop Start the wait and notify loop, continuing until otherwise instructed by the notification response.

void runWaitLoop();

TheIrqHelper returns immediately from this request, and then enters a loop in which it waits for its assigned
interrupt, calls the callback capability, and repeats. If the callback generates an exception, the wait loop is
terminated and the helper re-enters the control state.

20

COYOTOS.DRIVER.IRQHELPER 21

Raisescap.RequestError exception if interrupt is not initialized or callback capability is not set.

waitOnce Execute the wait and notify loop exactly once.

void waitOnce();

coyotos.driver.IrqHelperCtl

Interface coyotos.driver.IrqHelperCtl

Derivation:
coyotos.Cap
coyotos.driver.IrqHelperCtl

Synopsis:Interrupt demultiplexing helper application.

The interrupt helper is a small process that waits for an interrupt and posts a notice to an interested client program. It
exists primarily because the kernel has no means to perform ageneral up-call.

Operations

setIRQ Tell the helper what interrupt it should wait for.

void setIRQ(
coyotos.IrqCtl.irq t irq);

getHelper IrqHelper getHelper();

22

coyotos.driver.TextConsole

Interface coyotos.driver.TextConsole

Derivation:
coyotos.Cap
coyotos.driver.TextConsole

Synopsis:ASCII console display interface.

This is the interface specification for a text-oriented display providing minimal color capabilities. Conceptually, it
implements the display component of anASCII terminal, including the display-orientedANSI terminal escape codes.
Note that it doesnot implement theANSI identify or writeback sequences, mainly because this is an output-only
component.

When we have a bidirection stream interface defined, this interface should derive from that and should be cut over to
use compatible read/write methods.

The current interface makes no provision for signalling display size changes. It is not immediately clear whether that
should be handled here or in a separate process.

This is a very basic text display driver, originally thrown together for thePC display running inMDA mode (mode 25.)

Type Definitions

chString typedef anon9 chString;

Operations

clear Clear the display

void clear();

putChar Write ASSCII character to display.

void putChar(
wchar8 c);

putCharSequence Write ASSCII character string to display.

void putCharSequence(
chString s);

23

24 COYOTOS.DRIVER.TEXTCONSOLE

Bibliography

[1] Norman Hardy. “The KeyKOS Architecture.”Operating Systems Review, 19(4), October 1985, pp. 8–25.

[2] J. S. Shapiro, J. M. Smith, and D. J. Farber. “EROS, A Fast Capability System”Proc. 17th ACM Symposium on
Operating Systems Principles. Dec 1999. pp. 170–185. Kiawah Island Resort, SC, USA.

25

