Coyotos Core Domain Interfaces

Version 0.1 {(n progress)

Jonathan S. Shapiro, Ph.D., Jonathan W. Adams
The EROS Group, LLC

December 8, 2007

Copyright(© 2007, The EROS Group, LLC. Verbatim copies of this documeay ime duplicated or distributed in
print or electronic form for non-commercial purposes.

THIS SPECIFICATION IS PROVIDED “AS I1S” WITHOUT ANY WARRANTES, INCLUDING ANY WAR-
RANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR AY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFICADN OR SAMPLE.

Contents

Acknowledgments iii
coyotos. Builder e 1
coyot 0S. CONStIrUCTOr e 3
coyotos. El fSpace e 5
coyotos. loStream e 6
coyot 0s. SpaceBank e e e 8
coyot 0s. SpaceHandl er L 12
coyotos. TermoStream 13
coyotos. Verifier e 17
coyotos. Virtual CopySpace e 18
coyotos.driver.lrqCallback 19
coyotos.driver.lrgHel per e 20
coyotos.driver.lrgHel perCtl e 22
coyotos.driver.TextConsole e 23

CONTENTS

Acknowledgments

Many elements of the utility domain design described heeedarived from earlier work on the KeyKOS [1] and
EROS [2] operating systems.

Comments and suggestions concerning these interfacesedceme. They should be filed as bug or enhancement
requests in the Coyotos issue tracking system and/or disdumn the oy ot 0s- dev electronic mailing list. In order
to send, you must be subscribed to the list. The subscriptienface may be found at:

http://ww. coyotos.org/ mai |l man/ | i sti nfo/coyot os-dev.

In order to keep the mail archives readable, we ask that yod sely “plain text” emails.

coyot os. Bui | der

Interface coyot os. Bui | der

Derivation:
coyot os. Cap
coyotos. Verifier
coyot os. Const ruct or
coyot os. Bui | der

Synopsis:Constructor instantiation interface.

The builder interface enables developers and installefsofmulate new constructors with their initial capabilities
The constructor life cycle begins with a builder capabilityhen sealed, the builder interface returns a constructor
interface, and no longer permits inseration of new captadsli

As each capability is added to the constructor instance;ahstructor computes whether each added capability satis-
fies the confinement requirements. If all capabilities iltestiain the constructor satisfy the confinement propertg, th
yield of the constructor is confined and the constructor eelttify this to its clients.

The builder capability implements the operations of thestauttor capability, allowing the developer to perfornttes
instantiations before sealing the constructor.

Exceptions

Sealed Raised on insert operations when constructor has beerdseale

Operations

setHandler Insert a capability to be used as the yield’s external faauidier.

voi d set Handl er (
Cap handl er);

Raises:Seal ed
If the installed capability is a constructor capability,@ennaddress space will be fabricated from this constructor
for each newly instantiatied process.

setSpace Insert a capability to be used as the yield’s initial addpecs.

voi d set Space(
Cap space);

Raises:Seal ed

If the installed capability is a constructor capability,@ennaddress space will be fabricated from this constructor
for each newly instantiatied process.

setPC Set the initial program counter for the yield.

voi d set PC(
coyaddr t pc);

Raises:Seal ed

setTool Insert a tool capability for the process.

voi d set Tool (
ui nt 32 sl ot,
Cap c);

Raises:Seal ed

seal Seal the constructor, returning a constructor capability.

Constructor seal ();

COYOTCS. BUI LDER

coyot os. Construct or

Interface coyot os. Const r uct or

Derivation:
coyot os. Cap
coyotos. Verifier
coyot os. Constructor

Synopsis:Process instantiation interface.
The constructor is responsible for fabricating new prodestances from application images. It also implementsta tes
of confinement.

A confined process is one that cannot (initially) commurdcaith any party other than its creator. The constructor
tests confinement by examining the capabilities initialgichby the process. As each capability is installed, the
constructor determines whether this capability is “safe&éning that it does not permit outward communication) or a
“hole.” Prior to fabricating a new process instance, a ¢lean ask the fabricating constructor whether its yield wdoul
be confined.

Constructors also implement a query to determine whethepeegs is its yield. This allows a client to determine
whether a process alleging to be an instance of some binargsdmfact created by the constructor of X instances.

The constructor itself is part of the system-wide trustechpating base. Its determination concerning process con-
finement can be relied upgmovided the constructor itself is authentic. The authenticity af tonstructor can be
determined by asking the metaconstructor (the construdtopnstructors) to authenticate its yield. In the normal
Coyotos configuration, both the metaconstructor and theespank verifier are readily available to applications as
part of the standard runtime environment.

A constructor lifecycle proceeds in two phases. In the lariljohase, it is possible to install new capabilities into
the constructor (seeoyot os. bui | der). Thecoyot os. bui | der. seal () operation produces the constructor
capability. Once sealed, new capabilities cannot be adu#tktconstructor.

Operations

isYieldConfined Return true exactly if the constructor’s yield is confined.
bool isYiel dConfined();

create Create a new instance of the constructor’s yield.

Cap create(
SpaceBank bank,
Schedul e sched,
Cap runtinme);

The created instance is allocated from the provided spatle d&r@d executes under the provided schedule.
bank should be a newly created bank; upon any failure, the barkowitiestroyed.

runti ne is passed to the newly created process as its runtime infamieey.

4 COYOTCS. CONSTRUCTCR

simpleCreate Create a new instance of the constructor’s yield, using #fawdt arguments.

Cap si npl eCreat e(

Cap runti e,

QUT Cap newBank);
UsesCR SELF’s schedule and a new child @R SPACEBANK to invoke the constructor.unt i e is passed
through unchanged, and the new bank is returned throegiBank .

Equivalent to:

t np_schedul e = coyot os. Process. get Sl ot (CRSELF, cslot. schedul e);
t np_ful | bank = coyot os. SpaceBank. cr eat eChi | d(CRSPACEBANK) ;
try {
t np_c_bank = coyot 0os. SpaceBank. r educe(t np_ful | bank,
restrictions. noRenove);
ret =
coyot os. Constructor.create(tnp.c_bank, tnp.schedule, runtine);
newBank = tnp_full bank;
return ret;
} catch (e) {
try { coyotos. Cap.destroy(tnpfullbank); } catch () { }
throw (e);

getVerifier Get a Verifier for this Constructor
Verifier getVerifier();

coyot os. El f Space

Interface coyot os. El f Space

Derivation:
coyot os. Cap
coyot 0s. SpaceHandl er
coyot os. El f Space

Synopsis:El f Space
Exceptions

NoSpace No Virtual Address Space is available

Operations

setBreak Setthe end of the heap, allowing further allocation

voi d set Break(
ui nt 64 newBr eak) ;

Raises:NoSpace

coyotos. |l oStream

Interface coyot 0s. | oSt r eam

Derivation:
coyot os. Cap
coyotos. |l oStream

Synopsis:Generic bi-directional I/O stream interface.

This is a first version of the I/O stream interface. It doesnjplement any 1/O control operations, but it has the basic
read write interface.

Constants

Name Type Value Description
bufLimit uint32 4096

Type Definitions

chString Maximum length character buffer that can be transmittectoeived in a single read/write operation.
typedef anonl chString;

Exceptions

RequestWouldBlock
Closed

Operations

doRead voi d doRead(
ui nt 32 | engt h,
QUT chString s);

Raises:Request Wul dBl ock

getReadChannel Return the read-specific channel for thisSt r eam
| oSt r eam get ReadChannel () ;

getWriteChannel Return the write-specific channel for tHi® St r eam
| oSt ream get Wit eChannel ();

COYOTCS. | OSTREAM 7

doWrite ui nt 32 doWite(
chString s);

Raises:Request Wul dBl ock

read Read engt h bytesintochSt ri ng from stream.

voi d read(
uint32 len,
QUT chString s);

This declares a library-supplied wrapper that cditdRead() internally, hiding the details of the read blocking
protocol.
write Write chSt ri ng to stream.

uint32 wite(
chString s);

This declares a library-supplied wrapper that cdlidV i t e() internally, hiding the details of the read blocking
protocol.

coyot 0os. SpaceBank

Interface coyot 0s. SpaceBank

Derivation:
coyot os. Cap
coyot 0s. SpaceBank

Synopsis:Coyotos system storage allocator.

The space bank implements the storage allocation and datila service. To allocate an object, you invoke a space
bank and request an object of a specified type. To destroy jastoipou invoke the space bank providing a capability
to the object and ask that the object designated by that dapéle destroyed. The destroy operation requires that the
object must currently be “owned” by the bank being invoked.

Space banks also provide bulk destruction services. Dgsg@ space bank via theest r oyBank() operation
causes all objects allocated from that bank to be destrageldiding any sub-banks. ThreenoveBank() operation
destroys the space bank itself, but ownership of the obretently owned by that space bank (including sub-banks)
is transferred to the parent of the removed bank.

In a typical running system, there are many space bank déthiTypically, all of these capabilities are implemeat
by a single process known as the “prime bank.” Space bankareaaged in a hierarchy rooted at the prime bank.
New banks are formed by ther eat eChi | d operation.

Space banks come in various restricted variants.

Exceptions

LimitReached A limit on the amount of usable space has been reached.

Enumerations

restrictions Reduced-authority space bank variants

Name Type Value Description

noAlloc uint32 1 Capability does not permit object or sub-bank altoc
tion.

noFree uint32 2 Capability does not permit object destruction.

noDestroy uint32 4 Capability does not permit space bank destroy(geor r
move();

noQueryLimits uint32 8 Capability will not disclose remaining limit bound

noChangelLimits uint32 16 Capability does not permit alteration of bank tani

COYOTCS. SPACEBANK 9

Name Type Value Description

noRemove uint32 32 This bank cannot be destroyed by remove().
This restriction is appropriate when destruction of the
bank should not permit allocated storage to survive. If
a bank is being used by an untrusted subsystem, the re-
move() operation would permit the subsystem to con-
duct denial of resource attacks against its source of
storage. Once storage has been inherited by a parent
bank, the only means to destroy that storage is to de-
stroy the parent bank. The mechanism of denial is to
cause storage to be owned by a bank that contains other
state that the holder cannot afford to destroy. This at-
tack is prevented by imposing tm®Renpve restric-
tion on the subsystem’s bank.

Structures

limits Structure for limit information.

struct limits{
uinté4 byType[Range.obType.otNUNMYPES];

I

Operations

alloc Allocate objects.

free

void all oc(
Range. obType obTypel,
Range. obType obType2,
Range. obType obType3,
QUJT Cap cl,
QUT Cap c2,
QUT Cap c3);

Raises:Li mi t ReachedNoAccess

Allocates objects of typ@bTypel, obType2, andobType3, returning them incl, c2, c3. If
range. obType. ot I nval i d is passed as a desired object type, the corresponding reapability will
becap. nul | . The operation is all or nothing; if three objects are re¢eg$ut only two can be allocated, the
Li m t Reached exception is raised.

An allocation performed on any bank is performed in parailelall of its parent banks up to the prime bank.
This means that the effective allocation limit is tlmest constraining limit applied by the invoked bank and all
of its parent banks.

Raised.i m t Reached if this allocation would exceed the limits of the current kam one of its parents.
RaisedNoAccess if the capability has thaoAl | oc restriction.

Free objects.

void freeg(
ui nt 32 count,
Cap cl,
Cap c2,
Cap c3);

Raises:Li nm t ReachedNoAccess

10

COYOTOS. SPACEBANK

Releasesount objects, returning them to the free storage pool. If the @ésapabilities are not owned by this
space bank, theap. Request Er r or exception is raised. The passed capabilities must additiosatisfy
the constraints of oyot 0s. Range. r esci nd.

If any of the passed capabilities fail to meet these requiremenit® operation fails with a
cap. Request Er r or exception with no action taken.

If the count is notin the range & count< 4, cap. Request Er r or is raised.
RaisedNoAccess if the capability has theoFr ee restriction.

allocProcess Allocate a process.

Cap al | ocProcess(
Cap brand);

Raises:Li nm t ReachedNoAccess

Allocates a new process object, installibgand in the brand slot of the process. Processes can be allocated
using alloc(), but doing so will not permit their brand slotlie populated.

A process allocated usirgy | ocPr ocess() should be deallocated using free().

destroyBankAndReturn Destroy the target bank as in destroy(), and reply to theipde cvr capability with

resultr esul t Code.

voi d destroyBankAndRet ur n(
Cap rcvr,
exceptiont resultCode);

If resul t Code is RC_CK, the reply tor cvr will be a "normal” (non-error) reply with no payload. Othese,
it will be an exceptional reply with esul t Code as the specified exception code.

Note that as with all spacebank replies, the reply will be-btwcking. ifr cvr is not receiving, the reply will
be lost.

If the operation fails, the failure is returned to tballer, notr cvr .

setLimits Set the limits imposed by this bank.

voi d setLimts(
limts linms);
Raises:NoAccess

getLimits Retrieve the current limits imposed by this bank (directly)

limts getLimts();
Raises:NoAccess

getEffectiveLimits Retrieve the most constraining limits that apply to allamasg from this bank, including parent

limits.
[imts getEffectiveLimts();
Raises:NoAccess

getUsage Retrieve the current usage of the bank

[imts getUsage();
Raises:NoAccess

destroy inherited from coyotos.Cap.destroy

Destroy bank and storage.
voi d destroy();

In addition to deallocating the space bank itself, the dgstperation deallocates all storage that has been
allocated from this bank.

COYOTCS. SPACEBANK 11

remove Destroy this bank, transfering ownership of storage andtmriks to the parent bank.
void remove();
Raises:NoAccess

createChild Create a child bank from the current bank.
SpaceBank createChil d();
Raises:NoAccessLi n t Reached

verifyBank Verify that a bank is authentic.

bool verifyBank(
SpaceBank bank) ;

Tests whether a capability references an official space.ddate that to be able to usefully call this, you must

have a capability that you know is a capability to an officizdee bank. The constructor holds such a capability
and uses it to validate the bank that is passed for objectrmmti®n. Applications can therefore bootstrap bank
authentication from the initial bank provided through tteinstructor.

reduce Return bank capability with reduced authority.

SpaceBank reduce(
restrictions nask);

Returns bank capability to the same bank with the additicesdtictions specified byask. These restrictions
are applied in addition to any pre-existing restrictionglominvoked capability.

coyot os. SpaceHandl er

Interface coyot os. SpaceHandl er

Derivation:
coyot os. Cap
coyot 0s. SpaceHand! er

Synopsis:Address space handler.

Operations

getSpace Get the address space root for this space
Addr essSpace get Space();

12

coyotos. Term oStream

Interface coyot os. Term oSt r eam

Derivation:
coyot os. Cap
coyot os. | oStream
coyotos. Ternl oSt ream

Synopsis:Bi-directional 1/O stream interface for serial streams.

The intent of this interface is to follow tHEERM OS specification of the SinglegNI X Specification, Version 3, which
can be found here. (free to read, registration required).

Constants

Name Type Value
NCCS uint32 32

Type Definitions

tcflag.t typedef uint32 tcflagyt;

speedt typedef uint32 speed.t;

Enumerations

Name Type Value
IGNBRK uint32 1
BRKINT uint32 2
IGNPAR uint32 4
PARMRK uint32 8
iflag INPCK uint32 16
ISTRIP uint32 32
INLCR uint32 64
IGNCR uint32 128
ICRNL uint32 256
IUCLC uint32 512

13

14

Name Type Value

IXON uint32 1024

IXANY uint32 2048

IXOFF uint32 4096

IMAXBEL uint32 8192
Name Type Value
OPOST uint32 1
OoLCuC uint32 2
ONLCR uint32 4
OCRNL uint32 8
ONOCR uint32 16
ONLRET uint32 32
OFILL uint32 64
OFDEF uint32 128
NLDLY uint32 256
NLO uint32 512
NL1 uint32 1024
CRDLY uint32 2048

oflag CRO u?nt32 4096
CR1 uint32 8192
CR2 uint32 16384
CR3 uint32 32768
TABDLY uint32 65536
TABO uint32 131072
TAB1 uint32 262144
TAB2 uint32 524288
TAB3 uint32 1048576
BSDLY uint32 2097152
BSO uint32 4194304
BS1 uint32 8388608
FFDLY uint32 16777216
FFO uint32 33554432
FF1 uint32 67108864
Name Type Value
BO uint32 0
B50 uint32 1
B75 uint32 2
B110 uint32 3
B134 uint32 4
B150 uint32 5

cflag B200 uint32 6
B300 uint32 7
B600 uint32 8
B1200 uint32 9
B1800 uint32 10
B2400 uint32 11
B4800 uint32 12
B9600 uint32 13

COYOTCS. TERM OSTREAM

COYOTCS. TERM OSTREAM

Name Type Value
B19200 uint32 14
B38400 uint32 15
B57600 uint32 16
B115200 uint32 17
B230400 uint32 18
B460800 uint32 19
B500000 uint32 20
B576000 uint32 21
B921600 uint32 22
B1000000 uint32 23
B1152000 uint32 24
B1500000 uint32 25
B2000000 uint32 26
B2500000 uint32 27
B3000000 uint32 28
B3500000 uint32 29
B4000000 uint32 30
MAX _BAUD uint32
CSIZE uint32 64
CS5 uint32 0
Cs6 uint32 32
Cs7 uint32 40
Cs8 uint32 48
CSTOPB uint32 128
CREAD uint32 256
PARENB uint32 512
PARODD uint32 1024
HUPCL uint32 2048
CLOCAL uint32 4096
Name Type Value
ISIG uint32 1
ICANON uint32 2
ECHO uint32 4
ECHOE uint32 8
ECHONL uint32 16
iflag NOFLSH u@nt32 32
TOSTOP uint32 64
ECHOCTL uint32 128
ECHOPRT uint32 256
ECHOKE uint32 512
FLUSHO uint32 1024
PENDIN uint32 2048
ECHOK uint32 4096
Name Type Value
VINTR uintlé 0

cc

VQUIT uintle 1
VERASE uintle 2
VKILL uintle 3

15

16

Name
VEOF
VTIME
VSTART
VSTOP
VEOL
VREPRINT
VWERASE
VEOL2

Structures

Type Value
uintle 4
uintlé 5
uintlé 8
uintlé 9
uintlé 11
uintlé 12
uintle 14
uintlé 16

struct termio$

tcflagt
tcflag t
tcflag t
tcflagt
uintl6
uintl6
speedt
speedt
I

termios

Operations

c_iflag;
c_oflag;
c_cflag;
c_flag;
cline;
ccc[NCCS];
c_ispeed;
c_ospeed;

makeraw voi d maker aw() ;

makecooked voi d makecooked();

setattr void setattr(
termos t);

getattr term os getattr();

COYOTCS. TERM OSTREAM

coyotos. Verifier

Interface coyot os. Veri fier

Derivation:
coyot os. Cap
coyotos. Verifier

Synopsis:Constructor Yield Verification Interface

Constructors also implement a query to determine whethepeegs is its yield. This allows a client to determine
whether a process alleging to be an instance of some binargsdmfact created by the constructor of X instances.

In order to verify that a constructor is authentic, there isoastructor verifier, which is the Verifier for the Meta-
constructor. In the normal Coyotos configuration, both thetanonstructor and the space bank verifier are readily
available to applications as part of the standard runtinvir@mment.

Operations
verifyYield Returns true exactly ifi el d is a child of this constructor.

bool verifyYiel d(
Cap yield);

17

coyot os. Virtual CopySpace

Interface coyot os. Vi rt ual CopySpace

Derivation:
coyot os. Cap
coyot 0s. SpaceHandl er
coyot 0s. Vi rt ual CopySpace

Synopsis:Vi r t ual CopySpace

Operations

freeze Constructor freeze();

18

coyotos.driver.lrqgCall back

Interface coyot os. dri ver. | rqCal | back

Derivation:
coyot os. Cap
coyot os.driver.IrqCal |l back

Synopsis:Interrupt notification callback interface
This interface is invoked by thier gHel per to advise the receiver that an interrupt has occurred.

Operations

oninterrupt Method invoked by thé r qHel per to advise the receiver that an interrupt has arrived.

voi d onl nterrupt (
coyotos.lrqCtl.irqt irq);

19

coyotos. driver. | rqgHel per

Interface coyot os. dri ver. | rqHel per

Derivation:
coyot os. Cap
coyot os. driver. | rqHel per

Synopsis:Interrupt demultiplexing helper application.

The interrupt helper is a small process that waits for arrinfeg and posts a notice to an interested client program. It
exists primarily because the kernel has no means to perfgyemaral up-call.

The helper executes in one of two states. In “loop” stateaitswfor an interrupt and calls the callback capability. SThi
state is exited when the callback invocation result is areption. It also ends after the callback returns if the wait
loop has been directed to run only once wii t Once().

In “control” state, it receives on thier qHel per interface and can be instructed to use a different callbaplalbility
or re-start the loop state.

A flaw in this design is that there is no straightforward way &n outside party to determine which state the
I r gHel per is in. One way tdforce thel r gHel per to enter the control state is to nullify the process capabil-
ity in its callback endpoint.

A second flaw in this design is that a callback failure may ltéswa lost interrupt.

Operations

setCallback Provide the helper with a notification callback capabilitsitshould be called from the wait-and-notify
loop.

voi d set Cal | back(
I rqCal | back cal | backCap);

isDeliveryPending Return true iff an interrupt callback is pending.

bool isDeliveryPendi ng();

This will return true if an interrupt wait has completed ahe tassociated callback generated an exception. If

run\Wai t Loop() orwai t Once() are called while a delivery is pending, they will re-tryetballback.
cancelPendingDelivery If an interrupt delivery is pending, cancel it, returningeriff cancelation occurred.

bool cancel Pendi ngDel i very();

It is the responsibility of the caller not to lose track of plarg interrupts.

runWaitLoop Start the wait and notify loop, continuing until otherwisestiructed by the notification response.
voi d runWait Loop();

Thel r gHel per returns immediately from this request, and then enterspiloa/hich it waits for its assigned
interrupt, calls the callback capability, and repeats. hi tallback generates an exception, the wait loop is
terminated and the helper re-enters the control state.

20

COYOTCS. DRI VER. | RQHELPER

Raisescap. Request Er r or exception if interrupt is not initialized or callback cajililp is not set.

waitOnce Execute the wait and notify loop exactly once.
voi d wai t Once();

21

coyotos. driver. | rqgHel perCt |

Interface coyot os. dri ver. | rqHel perCt|

Derivation:
coyot os. Cap
coyot os.driver.|rqHel perCtl

Synopsis:Interrupt demultiplexing helper application.

The interrupt helper is a small process that waits for arrinfeg and posts a notice to an interested client program. It
exists primarily because the kernel has no means to perfgyemaral up-call.

Operations

setlRQ Tell the helper what interrupt it should wait for.

voi d set| RQY
coyotos.lrqCtl.irqt irq);

getHelper | rqHel per get Hel per();

22

coyot os. driver. Text Consol e

Interface coyot os. dri ver. Text Consol e

Derivation:
coyot os. Cap
coyot os. driver. Text Consol e

Synopsis:ASCI | console display interface.

This is the interface specification for a text-oriented tigpproviding minimal color capabilities. Conceptually, i
implements the display component of&8CI | terminal, including the display-orient@dNSI terminal escape codes.
Note that it doesot implement theANSI identify or writeback sequences, mainly because this iswput-only
component.

When we have a bidirection stream interface defined, thesfiate should derive from that and should be cut over to
use compatible read/write methods.

The current interface makes no provision for signallingptiig size changes. It is not immediately clear whether that
should be handled here or in a separate process.

This is a very basic text display driver, originally throwogether for thé>C display running inVDA mode (mode 25.)

Type Definitions

chString typedef anon9 chStri ng;

Operations

clear Clear the display
void clear();

putChar Write ASSCI | character to display.
voi d put Char (
wchar 8 c);
putCharSequence Write ASSCI | character string to display.

voi d put Char Sequence(
chString s);

23

24

COYOTCS. DRI VER. TEXTCONSCOLE

Bibliography

[1] Norman Hardy. “The KeyKOS ArchitectureOperating Systems Review, 19(4), October 1985, pp. 8-25.

[2] J. S. Shapiro, J. M. Smith, and D. J. Farber. “EROS, A Fagiability System'Proc. 17th ACM Symposium on
Operating Systems Principles. Dec 1999. pp. 170-185. Kiawah Island Resort, SC, USA.

25

