
The Coyotos Build System†
Version 0.3

Jonathan Shapiro, Ph.D.
Systems Research Laboratory
Dept. of Computer Science
Johns Hopkins University

Abstract

Coyotos requires a regrettably complicated build procedure. The complexity is mainly driven by two issues:
the need for cross compilation and the fact that some of the things in the build tree come from other (foreign)
build environments — most notably things built with autoconf.

This document describes how to obtain and install the cross tools, how the build tree is structured, what the
complications are, and how the Coyotos build mechanism is intended to operate.

The description provided here is provisional. We are testing a new, simplified build process relative to the
older EROS build process.

Contents

1 Setting up a Build Environment 2

1.1 Recognized Targets 2

1.2 Setting up on Coyotos 2

1.3 Setting up on Linux/YUM Systems 2

1.4 Setting up on Other UNIX’s 4

1.5 Setting up on Windows 4

2 Obtaining the Sources 4

3 Organization of the Source Tree 5

3.1 Impact of IDL 6

3.2 Normal Build Sequence 6

4 Adding a New Package To The Tree 7

5 Coyotos Makefiles 9

5.1 XML Documentation 9

5.2 Building Object Code 10

† Copyright c© 2005, Johns Hopkins University.

1

1 Setting up a Build Environment

The Coyotos development team runs Fedora. At the time of thiswriting, we use Fedora 7, but our usual practice is to
run the latest Fedora release. In practical terms, this means that if Fedora has updated recently you can probably still
rely on the cross environment working, but you should probably upgrade soon, because we will only be working on
(and therefore testing) the latest release.

We try to tinker with the cross environment as little as possible, so it is fairly pointless to rebuild it every time the
source tree is built. On the other hand, itdoesneed to be updated once in a while, either to supply a bug fix or to add a
new component. Our solution is that we have packaged the cross tools as RPM files, and we make these available via
a YUM repository.If it is feasible for you to use this YUM repository, we strongly recommend it.

The following discussion assumes that you are building for the recent Pentium family (i386 target). We will shortly
support at least one other architecture. If so, you should substitute the appropriate target name fori386 wherever it
appears below.

1.1 Recognized Targets

The targets that are currently recognized take the form “os-architecture” where “os” is one of “coyotos” or “capros”,1

and “architecture” is one of:

i386 IA32 processors and derivatives, eventually including Geode and similar embedded processors. Current work is
targeted exclusively at PC-based desktop machines, which is our primary development system.

It would have been better to call this family “IA32,” but the use of “i386” as a family identifier is nearly universal
amongconfigure scripts, and changing the label wasn’t important enough to justify the patch effort required.

m68k Coldfire processors.

arm ARM-based processors. No work for this target is currently being done in Coyotos. The target is maintained in
the cross tools chain so that the CapROS project and the Coyotos project can work from a common tool chain
to avoid duplication of effort.

We would eventually like to see support forx86 64, but no port ofnewlib has been done to that platform yet.

1.2 Setting up on Coyotos

The best development environment for Coyotos is, of course,Coyotos itself. If you cannot find a Coyotos port for
your platform,please write one.

Okay, okay. This isn’t likely for a while, so let’s move on to thoseothersystems that you may need to suffer with until
an upgrade to Coyotos becomes available...

1.3 Setting up on Linux/YUM Systems

To make getting going on Linux easy, we have built a package toupdate your yum configuration. Once this is installed
the rest is easy. To install this package:

rpm -ivh http://www.eros-os.com/YUM/coyotos/Fedora/12 /Coyotos-Repository.noarch.rpm

If you are running an earlier version of Fedora, replace the ”12” accordingly. Be advised that we will be dropping
support for obsolete versions of Fedora very shortly. If youare running CentOS 5.4, use:

rpm -ivh http://www.eros-os.com/YUM/coyotos/CentOS/5/ Coyotos-Repository.noarch.rpm

1 We are currently maintaining a cross-build suite for the capros project.

2

The CentOS packagesshouldwork for RHEL5.4 as well, but we haven’t tested that.

Once the repository is set up, you can install some helpful tools (and a required library) by running (as root):

yum install coyotos-i386-xenv

or possiblycoyotos-arm-xenv or coyotos-m68k-xenv . This will get you all of the tools in the Coyotos cross
environment for your target.

If you are asked whether to import the signing key, you will need to say ”yes”. This key is used to sign all of our
packages. If you wish to ensure that the key is authentic, youcan check the key fingerprint at pgp.mit.edu key server
by searching forpackager@eros-os.org if you choose to do so. If imported, you should find that it is signed
using my (Jonathan Shapiro’s) offline signing key. The fingerprint of my offline signing key is DFAB6639. If you
export this key, you can directly import the ascii armored file usingrpm --import .

Thecoyotos-i386-xenv package is a “virtual” package — it simply supplies the necessary dependencies so that
YUM will find all of the pieces you need. As of this writing, thepackages installed are:

coyotos-common-filesystemArchitecture independent file system skeleton for/coyotos

coyotos-common-binutilsArchitecture independent support files for the binary utilities.

coyotos-common-gcc3Architecture independent support files for GCC.

coyotos-common-gcc3-cppArchitecture independent support files for CPP.

coyotos-i386-filesystemArchitecture specific file system skeleton for/coyotos

coyotos-i386-binutils Assembler, linker, and so forth for cross compilation.

coyotos-i386-newlibThenewlib C library for Coyotos native applications. This is likely tobe updated a fair bit.

coyotos-i386-gcc3-gccGCC version 3 that targets the Coyotos target environment.

coyotos-i386-gcc3-cppC preprocessor.

If you are targeting the Pentium family, you may also find it helpful to install qemu, a full-machine emulator for the
PC. We rely on this heavily for debugging, and if you don’t have a lab full of machines it is probably the best way to
experiment. You can install this by:

yum install qemu

Theqemu package is a native tool, so it installs in the customary directories.

All of the Coyotos cross environment tools install into/coyotos/ . If you install them with YUM, you can remove
them by:

rpm -e ‘rpm -q -a |grep coyotos‘
rpm -e qemu libsherpa libsherpa-devel

If you are on a RPM system but you prefernot to use the YUM-based method, you are certainly welcome to install
these packages by hand, but it will be harder to stay up to date. Alternatively, you can build the cross environment
yourself (see below).

We would be willing to set up the necessary metadata for usersof apt as well, but we would need some guidance.
A further concern is that we don’t tend to run and Debian systems, so it would be difficult to test the RPMs for that
environment.

3

1.4 Setting up on Other UNIX’s

It’s really a much better plan to use the provided cross environment packages, because that way we can easily provide
updates to the cross tools that will arrive in the normal way for your system. If you are building on some other UNIX
derivative that has not accepted the Dao of YUM, you may find that nothing will do but to build the cross environment
for yourself. If that is the case, you can fetch it from the repository using mercurial.

First, as root, you should create the directory/coyotos and use thechown command to make it writable to you and
owned by you:

as root:
mkdir /coyotos
chown yourlogin: yourgroup /coytos

1.4.1 If You Have Constrained Space

If your space is not greatly constrained, skip ahead to ”Obtaining the Sources”. Fetch the entire tree and then build the
cross environment from insidecoyotos/src/ccs-xenv .

Find an empty directory with an unreasonably large amount ofavailable disk space,cd to it, and proceed as follows:

hg clone http://dev.eros-os.com/hg/ccs-xenv/trunk ccs- xenv
(cd ccs-xenv; make -f Makefile.xenv TARGETS="coyotos-i38 6")

This will compile and install the complete cross environment. Once this is done, you can delete the cross environment
source directory. It takes up a lot of space. If you need to compile the tools for multiple targets, you can list them in
the TARGETS variable, for example:

(cd ccs-xenv; make -f Makefile.xenv TARGETS="coyotos-m68 k coyotos-i386")

If you are unable to install the cross tools in/coyotos , you can specify another location to themake command:

(cd ccs-xenv; make -f Makefile.xenv TARGETS="coyotos-i38 6" CROSSROOT=$HOME/coyotos-xenv)

This will require some fiddling in the rest of the build environment, and it is not a configuration that we test. If
you choose to put your tools someplace unusual, then at buildtime you will need to set the environment variable
COYOTOS XENV to point to wherever you put it (the same value that you gave for CROSSROOTwhen you built
the cross environment in the command above).

Once the cross environment is installed, you can safely delete the source directory. We aren’t yet rebuilding this stuff
to run natively, and it consumes a very large amount of space.

1.5 Setting up on Windows

You can download a set of Fedora installation CD’s from our Fedora mirror repository. When you get to the place
where it asks whether you want to delete all existing partitions, remember that as much as you maywant to, you
probably can’t afford to lose your Windows install quite yet.

2 Obtaining the Sources

The coyotos sources can be built in just about any convenientplace. The top level directory of the Coyotos source tree
mustbe namedcoyotos , because the makefiles rely on this to find other parts of the tree. However, thecoyotos
directory can liveunderneathany convenient location. In the following instructions, wewill assume that you are
placing it underneath your home directory.

The easiest way to get the sources is to usemercurial :

4

hg clone http://dev.eros-os.com/hg/coyotos/trunk coyot os
(cd coyotos/src;make get trees)

Note that this shouldnotbe the samecoyotos directory that you compiled the cross compilation tools into. The idea
is that the directory with the cross compilation tools can beshared by multiple users. This one is for your personal
build of the Coyotos tree. Placing the two trees in the same directorywill not work (which is something we should fix
at some point).

It is likely that you do not want to keep a local copy of the cross environment subtree unless you need to build it for
some reason. Once the cross environment is built you can delete thecoyotos/src/ccs-xenv subtree. The rest
of the build does not rely on this subtree after the binary cross environment tools are built and installed.

3 Organization of the Source Tree

The Coyotos source tree is organized intopackages. A package is a collection of code that is built as a unit. The build
structure assumes that the Coyotos source tree is set up as follows:

coyotos
src

build - makefile fragments for the build system
ccs - coyotos compilation system tools package
ccs-xenv - the cross environment package
web - the documentation tree (this web site)
sys - the coyotos kernel package
base - basic domains and libraries package
tutorial - package of tutorials for people getting started.

Each package has a top-level makefile supporting a number of standard make targets. The procedure for building a
given package is determined by the package author. In practice, there seem to be four “categories” of package:

1. Thebuild package, which contains the various makefile fragments and rules that support the rest of the EROS
build system.

2. Theccspackage, which contains the tools needed in order to cross-build the kernel and applications. The CCS
package is a relatively large and static package, and we are working on ways to establish RPM files that will
support binary-only installs of these tools.

3. So-callednativepackages, which use the Coyotos build system explained in this document.

4. Foreignpackages — typically ones that are built from other source bases — are packages that donot follow
the Coyotos build practices. In these cases, the package-level makefile (and the package directory) are simply
wrapper makefiles that in turn invoke the foreign make process in whatever way is appropriate.

There are ordering dependencies among packages. At the moment, these are captured implicitly in a variable in the
top level makefile (packages are built in the order of specification). We need to revise this so that each package can
state explicitly what other packages must be built first.

The build tree is designed to sit under a directory namedcoyotos , which may live at any convenient location. This
directory is named by the environment variableCOYOTOS ROOT. If the COYOTOS ROOT environment variable is
not set, the build system will attempt to locate it by searching upwards in the current working directory string to
find a directory of the formprefix/coyotos/src . It will then assume thatCOYOTOS ROOT should be set to
prefix/coyotos .2 From this point on in this document, when we use a path starting with coyotos/ , it should
be understand to refer to the directory named byCOYOTOS ROOT.

2 One problem arising from this design is that confusion can result if someone creates an internal directory within the build tree namedsrc . This
is fairly common in UNIX-based library software, so we will undoubtedly improve this search mechanism in short order. The goal is to ensure
that it is almost never necessary to set theCOYOTOS ROOT environment variable by hand.

5

3.1 Impact of IDL

Coyotos is an IDL-based system. The interfaces for Coyotos subsystems are specified using aninterface description
language(IDL). Interface description filenames end with.capidl for “capability IDL.” The IDL files are used to
generate:

• Client-side header files needed by a client when calling a provider.

• Client-side stub libraries that translate provider invocation arguments into a Coyotosinterprocess communica-
tion (IPC) message.

• XML documentation that describes the interface. This documentation is later gathered to create the system
object reference manual.

• Server-side header files needed by a provider toimplementan CapIDL interface.

• Server-side stub code that demarshals requests and marshals responses. This is also used to implement a CapIDL
interface.

It is possible to have circular dependencies among interfaces, but not among interface implementations.

In general, the client-side IDL headers need to be generatedbefore a given piece of client code can be compiled, and
the client-side stubs need to be generated before client code can be linked. There are two ways in which this might be
implemented:

1. Each client application can generate and compile it’s owncopy of the necessary client headers and client stub
libraries. This is feasible, but it is a nuisance and it makesthe compile process take an unreasonably long time.

2. A pre-pass can be made to generate the headers and client stubs, which can then be used in common by all of
the clients that depend on them. This has the advantage of notbuilding the headers and stubs redundantly, but
has the cost that the unit of build is now the package rather than the directory.

We initially tried the first approach in the EROS build process. We found that it was excessively inconvenient, and we
switched to the second method. The Coyotos build process uses the second method. In the EROS build system, we
found that the automatic dependency generation mechanism does a pretty good job of avoiding unnecessary rebuilds.

However, this approach creates a quandry for foreign packages, because we aren’t in a position to modify the makefiles
of those packages to force a complete package rebuild whenevermake is invoked. Even if we could resolve this, the
foreign packages aren’t necessarily designed to be friendly to the complete package build discipline. Therefore:

Caution

The developer must be aware of whether they are performing amake within a Coyotos package or a
foreign package. Within a Coyotos package, the default result of the make command will be to rebuild
the current package. Within a foreign package, the default result of themake command will be whatever
procedure is defined as normal by that package. Since themakefile at the package level conforms
to the Coyotos build procedures, amake in the package-level directory can be relied on to rebuild the
complete package.

3.2 Normal Build Sequence

When themake command is invoked from thecoyotos/src directory, each package root directory is visited in
order, and themake install command is issued for that package. The build order is:

1. Thecoyotos/src/ccs package if present,3

3 We intend to make the output of thecoyotos/src/ccs package build available as installable RPM files for developer convenience.

6

2. Thecoyotos/src/sys package,

3. Packages incoyotos/src/lib , in the order specified in the top-level library makefile,

4. Packages incoyotos/src/bin in the order specified in the top-level binaries makefile,

5. Packages incoyotos/src/examples in the order specified in the top-level binaries makefile,

Because packages can be foreign, the internal build rules for a given package are inherently package dependent. All
package-level makefiles are expected to implement the following make targets:

• make install Build and install all content in subdirectories of this one,then build and install the content of
the current directory.

• make world Rebuild the entire source tree from the top.

• make package Rebuild the current package by issuingmake install from the top of the package tree.
In Coyotos packages, this is usually the defaultmake target.

• make clean Delete all generated content in the current directory and its subdirectories.

• make nodepend Discard all automatically generated dependency information from the tree. Dependency
information is usually updated automatically by the Coyotos makefile rules, but it sometimes becomes out of
date and must be forcibly deleted. When doing this, it is often necessary to usemake -k , and it is recommended
that a clean should be performed as well:

make -k clean nodepend

Each of themake targets above is also available at thecoyotos/src level of the tree, but the scope of effect is the
entire source tree rather than a single package. In addition, the following targets are available at the top level:

• make targdir-clobber Delete the entire installed directory tree.

• make pristine Wipes out the installed directory tree, performs a clean on every package, removes all auto-
matically generated dependencies, and then rebuilds the entire tree from scratch.

At the top level of the source tree, the defaultmake target ismake world .

4 Adding a New Package To The Tree

Adding a new package to the Coyotos build tree is actually fairly simple:

1. Create a new directory belowcoyotos/src/lib , coyotos/src/bin , or coyotos/src/examples .

2. Place an appropriate package-level makefile in that directory, according to whether you are implementing a
foreign package or a Coyotos package.

3. Append your package directory to theDIRS variable in coyotos/src/lib/Makefile ,
coyotos/src/bin/Makefile , or coyotos/src/examples/Makefile , as appropriate.

Note that we will adding package-level dependency trackingin the future, which will hopefully allow you to rebuild
only those packages that are needed to support the package you are trying to test. As the source tree grows, we expect
that this capability will become increasingly attractive.

Here is an annotated example makefile for the package level:

7

Copyright notice

Default target. Every makefile should specify a default
target. This should be the first non-comment content in
the makefile. Package-level makefiles should specify
package as their default target.

default: package

Relative path to coyotos/src. All
makefiles rely on being able to locate the top-level source
directory in order to include other makefile fragments.
The definition of COYOTOS SRC should appear immediately
beneath the identification of the default make target.
COYOTOSSRC=../..

Subdirectories to build. This is a list of directories
that should be visited in sequence by the normal build
process. The Coyotos makefiles use the DIRS variable
to drive build recursion. Therefore, foreign packages
should NOT specify subdirectories using the DIRS variable!
DIRS=subdir1 subdir2 subdir3

Additional directories to clean [optional]. This is usefu l
if you have directories such as test directories that are
designed to be built by hand. These should not be visited
by the normal build mechanism, but you probably want them
cleaned by make˜clean. Every element of DIRS will
automatically be added to CLEANDIRS.
CLEANDIRS=otherdir

Include the generic package-level makefile support stuff .
This defines all of the package-level make targets:
include $(COYOTOS SRC)/build/make/pkgrules.mk

COYOTOS PACKAGES:
#
That’s it. The real work is done by the included makefile
fragments by recursing using the DIRS variable.

FOREIGN PACKAGES ONLY:
#
Additional targets (if any) that you may want should be
defined here. Foreign packages will want to define
targets to execute the build and to perform a recursive
clean:
local-install:

Commands to (recursively) build and install
local-clean:

Commands to (recursively) clean

Add dependencies so that the clean and install targets
will do the right thing:
install: local-install

8

clean: clean-install

5 Coyotos Makefiles

If you are trying to build a wrapper package for a foreign codebase, you are largely on your own. The package-level
makefiles supply themake world , make package , make nodepend , make install , andmake clean
rules. Filling in the details is up to you. The balance of thisdocument focuses on makefiles that are built to follow the
Coyotos build conventions.

The package level makefile is really just a directory wrapperthat directs recursion. Nearly the same makefile structure
is used in each container directory within the Coyotos source tree. The only difference is that Coyotos directory
makefiles includemakerules.mk rather thanpkgrules.mk . Eventually, the recursive build procedure descends
into some directory where real work needs to be done. At that point, it becomes necessary to create a more complicated
makefile, and we need to start explaining which make variables do what.

The automatic build rules supported by the Coyotos build system support generating documentation from XML, gen-
erating code from C/C++, and generating code from BitC. All of these perform automatic dependency generation
where appropriate.

The general pattern of a Coyotos makefile is:

• Define default target and path to top of source tree

• Define framing makefile variables

• Includemakerules.mk

• Add target-specific rules, if any.

Each type of generated output has its own set of framing makefile variables, which are described below.

5.1 XML Documentation

The Coyotos documentation system is based on the assumptionthat Coyotos documentation is written in XML us-
ing theosdocDTD. The Coyotos documentation tree includes a set of XSLT transformers that produce both online
(HTML) and offline (PDF) versions of these documents. The PDFversions are generated using LaTeX.

The document generation process is controlled by theXMLSOURCEvariable. This variable should be definedbefore
includingmakerules.mk . It’s content should be a list of XML input file nameswithout the .xml file name suffix.
For the document you are reading, the relevant line of the makefile is:

XMLSOURCE=build

The documentation support makefile fragments are only included if theXMLSOURCEvariable is defined. By default,
both HTML and PDF output are generated for all XML input documents.

The XML translation mechanism also knows how to generate.eps and.gif (soon switching to PNG) files from
XFIG input. Figure files should be identified by theFIGSOURCEmakefile variable. As withXMLSOURCE, this should
be defined beforemakerules.mk is included:

FIGSOURCE=fig1.fig fig2.fig fig3.fig

9

We need better figure management system than XFIG, but the current system is better than nothing.

Because generating.gif and .eps files from the.fig sources is so fast, and because the output all goes in the
same directory in any case, the current xml makefile fragments don’t really attempt to associate individual figures to
individual documents within a single XML document directory.

5.2 Building Object Code

In contrast to documentation, which is driven from the list of source files, object code compilation is driven from the
list of target files. An example is provided below.

Several of the makefile variables shown deserve particular attention, because they control various aspects of the build
process:

CROSS BUILD States whether the build in this directory is done for the host (CROSSBUILD=no) or for the target
environment (CROSSBUILD=yes). This variable needs to be declared beforemakerules.mk is included.
It determines which set of compilers and build rules are usedto build source files in the current directory.

OBJECTS The complete list of object files (.o files) that should be built in this directory. TheOBJECTSvariable is
also used to determine the automatic dependency managementfiles that need to be generated.

OPTIM The optimization level that should be applied. This defaults to-O2 , but can be overridden locally.

IMGMAP Each service that is built into the system bootstrap image has an associated image map fragment (a
.imgmap file). A corresponding header file is created for each image map file. The list of image map files, if
any, should be given using theIMGMAPvariable.

And here is an annotated example:

default: package

COYOTOSSRC=../../..
Use the CROSS BUILD variable to say that this is a cross build.
If absent, the build is assumed to be a host build.
CROSSBUILD=yes

Convention: binaries (or libraries) built in the current
directory are named by the TARGETS variable.
TARGETS=$(BUILDDIR)/sample

Convention: bootstrap image map files must be named by the
IMGMAP variable. If x.imgmap is listed in the IMGMAP
variable, then $(BUILDDIR)/x-constituents.h will be automatically generated
by the automatic make rules.
IMGMAP=sample.imgmap

Convention: all object files produced in this directory sh ould
be listed in the OBJECTS variable, and should
be prefixed by "$(BUILDDIR)/". If there are multiple targe ts, each
should have its own specialized X OBJECTS, Y OBJECTS variables,
which should be accumulated into OBJECTS
OBJECTS=$(BUILDDIR)/sample.o

Default optimization level can be overridden by setting th e value
of OPTIM.
OPTIM=-O

10

Include path can be modified by altering value of INC
INC=-I$(EROS ROOT)/include
Additional defines can be provided by altering value of DEFS
DEFS=-DSOMEDEF

include $(COYOTOS SRC)/build/make/makerules.mk

Convention: local ’all’ target causes $(TARGETS) to be bui lt.
That is, ’all’ is the local build target. The ’all’ target
should not recurse | it is assumed that the install
target has already done that.
all: $(TARGETS)

Link rule for the sample binary (this will need to change for
Coyotos)
$(BUILDDIR)/sample: $(OBJECTS) $(DOMCRT0) $(DOMLIB)
$(DOMLINK) $(DOMLINKOPT) $(DOMCRT0) $(OBJECTS) -lsmall $ (DOMLIB) -o $@

Convention: ’install’ target depends on ’all’, installs
targets into destination directory relative to COYOTOS ROOT
install: all
$(INSTALL) -d $(COYOTOS ROOT)/domain
$(INSTALL) -m 755 $(TARGETS) $(COYOTOS ROOT)/domain
$(INSTALL) -m 644 $(IMGMAP) $(COYOTOS ROOT)/domain

Convention: last line of makefile should be the following, which
ensures that existing automatic dependency files are relo aded
after each execution.
-include $(BUILDDIR)/. * .m

Normally, the above mechanisms are sufficient. Themakerules.mk file includesmakevars.mk , which internally
constructs values for the usual make variablesGCCFLAGS, GPLUSFLAGS, and so forth. Along the way, the value of
CROSS BUILD is used to decide how to set the values of variablesGCC, GPLUS, LD, and friends. A more complete
list of all variables associated with the build mechanism iscertainly needed. For a better sense of what is going on,
seemakevars.mk andbuild-rules.mk . The variable names definitely need to be regularized and cleaned up.

The compilation mechanism is tuned to rebuild the associated automatic dependency files whenever an object file is
rebuilt.

11

