The Coyotos Build System

\ersion 0.3

Jonathan Shapiro, Ph.D.
Systems Research Laboratory
Dept. of Computer Science

Johns Hopkins University

Abstract

Coyotos requires a regrettably complicated build proceddihe complexity is mainly driven by two issues:
the need for cross compilation and the fact that some of tingghin the build tree come from other (foreign)
build environments — most notably things built with autoton

This document describes how to obtain and install the cals,thow the build tree is structured, what the
complications are, and how the Coyotos build mechanisménded to operate.

The description provided here is provisional. We are tgstimew, simplified build process relative to the
older EROS build process.

Contents

1 Setting up a Build Environment
1.1 RecognizedTargets e e e
1.2 Settingupon CoyotoS v o i e e
1.3 Settingupon Linux/YUM Systems e e
1.4 Settingupon Other UNIX'S e e e e e e
1.5 SettinguponWIindows L e e e

2 Obtaining the Sources

3 Organization of the Source Tree
3.1 Impactof IDL e e e e e
3.2 NormalBuild Sequence e e

4 Adding a New Package To The Tree

5 Coyotos Makefiles
5.1 XML Documentation e e e
5.2 Building ObjectCode e

T Copyright(© 2005, Johns Hopkins University.

A A DO DD

1 Setting up a Build Environment

The Coyotos development team runs Fedora. At the time ofathitsg, we use Fedora 7, but our usual practice is to
run the latest Fedora release. In practical terms, this st if Fedora has updated recently you can probably still
rely on the cross environment working, but you should prdpapgrade soon, because we will only be working on
(and therefore testing) the latest release.

We try to tinker with the cross environment as little as pblksiso it is fairly pointless to rebuild it every time the
source tree is built. On the other handjditesneed to be updated once in a while, either to supply a bug fix adtl a
new component. Our solution is that we have packaged the toots as RPM files, and we make these available via
a YUM repository.If it is feasible for you to use this YUM repository, we strondy recommend it.

The following discussion assumes that you are buildingfierrecent Pentium family (i386 target). We will shortly
support at least one other architecture. If so, you shoutdtitute the appropriate target name 886 wherever it
appears below.

1.1 Recognized Targets

The targets that are currently recognized take the favsrchitecturé where “0s” is one of “coyotos” or “capros?,
and “architecture” is one of:

i386 1A32 processors and derivatives, eventually including @eand similar embedded processors. Current work is
targeted exclusively at PC-based desktop machines, whigtiriprimary development system.

It would have been better to call this family “IA32,” but theeuof “i386” as a family identifier is nearly universal
amongeconfigure scripts, and changing the label wasn’timportant enoughgtfy the patch effort required.

m68k Coldfire processors.

arm ARM-based processors. No work for this target is currending done in Coyotos. The target is maintained in
the cross tools chain so that the CapROS project and the @opodject can work from a common tool chain
to avoid duplication of effort.

We would eventually like to see support 86_64, but no port olhewlib has been done to that platform yet.

1.2 Setting up on Coyotos

The best development environment for Coyotos is, of coutegptos itself. If you cannot find a Coyotos port for
your platform,please write one.

Okay, okay. This isn't likely for a while, so let's move on fwaseothersystems that you may need to suffer with until
an upgrade to Coyotos becomes available...

1.3 Setting up on Linux/YUM Systems

To make getting going on Linux easy, we have built a packagetiate your yum configuration. Once this is installed
the rest is easy. To install this package:

rom -ivh http://www.eros-os.com/YUM/coyotos/Fedora/12 /Coyotos-Repository.noarch.rpm

If you are running an earlier version of Fedora, replace th#&’accordingly. Be advised that we will be dropping
support for obsolete versions of Fedora very shortly. If yoelirunning CentOS 5.4, use:

rpm -ivh http://www.eros-os.com/YUM/coyotos/CentOS/5/ Coyotos-Repository.noarch.rpm

1 We are currently maintaining a cross-build suite for theroagroject.

The CentOS packagsbouldwork for RHEL5.4 as well, but we haven't tested that.
Once the repository is set up, you can install some helpbisttand a required library) by running (as root):

yum install coyotos-i386-xenv

or possiblycoyotos-arm-xenv or coyotos-m68k-xenv . This will get you all of the tools in the Coyotos cross
environment for your target.

If you are asked whether to import the signing key, you wilkddo say "yes”. This key is used to sign all of our
packages. If you wish to ensure that the key is authentic cpmucheck the key fingerprint at pgp.mit.edu key server
by searching fopackager@eros-o0s.org if you choose to do so. If imported, you should find that it gn&d
using my (Jonathan Shapiro’s) offline signing key. The fipget of my offline signing key is DFAB6639. If you
export this key, you can directly import the ascii armored isingrpm --import

Thecoyotos-i386-xenv package is a “virtual” package — it simply supplies the neaegsdependencies so that
YUM will find all of the pieces you need. As of this writing, tipackages installed are:

coyotos-common-filesystemArchitecture independent file system skeleton/émyotos
coyotos-common-binutils Architecture independent support files for the binary tidifi.
coyotos-common-gcc3Architecture independent support files for GCC.
coyotos-common-gcc3-cppArchitecture independent support files for CPP.
coyotos-i386-filesystemArchitecture specific file system skeleton fooyotos

coyotos-i386-binutils Assembler, linker, and so forth for cross compilation.

coyotos-i386-newlibThenewlib C library for Coyotos native applications. This is likelylte updated a fair bit.
coyotos-i386-gcc3-gc&CC version 3 that targets the Coyotos target environment.

coyotos-i386-gcc3-cppC preprocessor.

If you are targeting the Pentium family, you may also find ifpiiel to install gemu, a full-machine emulator for the
PC. We rely on this heavily for debugging, and if you don’t @avlab full of machines it is probably the best way to
experiment. You can install this by:

yum install gemu

Thegemu package is a native tool, so it installs in the customaryatinges.

All of the Coyotos cross environment tools install ibmyotos/ . If you install them with YUM, you can remove
them by:
rom -e ‘rpm -q -a |grep coyotos'

rom -e gemu libsherpa libsherpa-devel

If you are on a RPM system but you prefest to use the YUM-based method, you are certainly welcome talins
these packages by hand, but it will be harder to stay up ta ddternatively, you can build the cross environment
yourself (see below).

We would be willing to set up the necessary metadata for usfeapt as well, but we would need some guidance.
A further concern is that we don’t tend to run and Debian systeso it would be difficult to test the RPMs for that
environment.

1.4 Setting up on Other UNIX’s

It's really a much better plan to use the provided cross emvirent packages, because that way we can easily provide
updates to the cross tools that will arrive in the normal wayybur system. If you are building on some other UNIX
derivative that has not accepted the Dao of YUM, you may firad tiothing will do but to build the cross environment
for yourself. If that is the case, you can fetch it from theasipory using mercurial.

First, as root, you should create the directryyotos and use thehown command to make it writable to you and
owned by you:

as root:
mkdir /coyotos
chown yourl ogi n: your gr oup /coytos

1.4.1 If You Have Constrained Space

If your space is not greatly constrained, skip ahead to "@btg the Sources”. Fetch the entire tree and then build the
cross environment from insidmyotos/src/ccs-xenv

Find an empty directory with an unreasonably large amouatvaflable disk spaced to it, and proceed as follows:

hg clone http://dev.eros-os.com/hg/ccs-xenv/trunk ccs- xenv
(cd ccs-xenv; make -f Makefile.xenv TARGETS="coyotos-i38 6")

This will compile and install the complete cross environmémnce this is done, you can delete the cross environment
source directory. It takes up a lot of space. If you need tomtathe tools for multiple targets, you can list them in
the TARGETS variable, for example:

(cd ccs-xenv; make -f Makefile.xenv TARGETS="coyotos-m68 k coyotos-i386")
If you are unable to install the cross toolg@oyotos , you can specify another location to tirmke command:
(cd ccs-xenv; make -f Makefile.xenv TARGETS="coyotos-i38 6" CROSSROOT=$HOME/coyotos-xeny

This will require some fiddling in the rest of the build enviroent, and it is not a configuration that we test. If
you choose to put your tools someplace unusual, then at buikel you will need to set the environment variable
COYOTOS_XENV to point to wherever you put it (the same value that you gav€€ROSSROOTwhen you built
the cross environment in the command above).

Once the cross environment is installed, you can safelyteléhe source directory. We aren’t yet rebuilding this stuff
to run natively, and it consumes a very large amount of space.

1.5 Setting up on Windows

You can download a set of Fedora installation CD’s from oulldfa mirror repository. When you get to the place
where it asks whether you want to delete all existing pariii remember that as much as you mantto, you
probably can't afford to lose your Windows install quite yet

2 Obtaining the Sources

The coyotos sources can be built in just about any conveplaoé. The top level directory of the Coyotos source tree
mustbe namedaoyotos , because the makefiles rely on this to find other parts of & tiHowever, theoyotos
directory can liveunderneathany convenient location. In the following instructions, wél assume that you are
placing it underneath your home directory.

The easiest way to get the sources is tomsecurial

hg clone http://dev.eros-os.com/hg/coyotos/trunk coyot 0s
(cd coyotos/src;make get _trees)

Note that this shouldotbe the sameoyotos directory that you compiled the cross compilation toolgirthe idea

is that the directory with the cross compilation tools carshared by multiple users. This one is for your personal
build of the Coyotos tree. Placing the two trees in the sameethirywill not work (which is something we should fix
at some point).

It is likely that you do not want to keep a local copy of the aresvironment subtree unless you need to build it for
some reason. Once the cross environment is built you catediblecoyotos/src/ccs-xenv subtree. The rest
of the build does not rely on this subtree after the binangsmenvironment tools are built and installed.

3 Organization of the Source Tree

The Coyotos source tree is organized iptxkages A package is a collection of code that is built as a unit. Tiiédb
structure assumes that the Coyotos source tree is set upagsfo

coyotos
src

build - makefile fragments for the build system
ccs - coyotos compilation system tools package
ccs-xenv - the cross environment package
web - the documentation tree (this web site)
sys - the coyotos kernel package
base - basic domains and libraries package

tutorial - package of tutorials for people getting started.

Each package has a top-level makefile supporting a numbé¢andard make targets. The procedure for building a
given package is determined by the package author. In peattiere seem to be four “categories” of package:

1. Thebuild package, which contains the various makefile fragments aled that support the rest of the EROS
build system.

2. Theccspackage, which contains the tools needed in order to crod#he kernel and applications. The CCS
package is a relatively large and static package, and we arieirvg on ways to establish RPM files that will
support binary-only installs of these tools.

3. So-callechativepackages, which use the Coyotos build system explainedsmttument.

4. Foreign packages — typically ones that are built from other sourcgeba— are packages that dot follow
the Coyotos build practices. In these cases, the packagermkefile (and the package directory) are simply
wrapper makefiles that in turn invoke the foreign make predesvhatever way is appropriate.

There are ordering dependencies among packages. At the myaimese are captured implicitly in a variable in the
top level makefile (packages are built in the order of spedtific). We need to revise this so that each package can
state explicitly what other packages must be built first.

The build tree is designed to sit under a directory naemtos , which may live at any convenient location. This
directory is named by the environment variall®YOTOS ROOT. If the COYOTOSROOT environment variable is
not set, the build system will attempt to locate it by searghipwards in the current working directory string to
find a directory of the fornpr ef i x/coyotos/src . It will then assume thaCOYOTOS.ROOT should be set to
prefi x/coyotos .2 From this point on in this document, when we use a path stavtith coyotos/ , it should
be understand to refer to the directory namedd®YOT OS ROOT.

2 One problem arising from this design is that confusion caultéf someone creates an internal directory within thdcbtiee namedrc . This
is fairly common in UNIX-based library software, so we wilhdoubtedly improve this search mechanism in short ordee gdal is to ensure
that it is almost never necessary to set@@/OTOS.ROOT environment variable by hand.

3.1 Impact of IDL

Coyotos is an IDL-based system. The interfaces for Coyaibsystems are specified usingiaterface description
language (IDL). Interface description filenames end wittapidl for “capability IDL.” The IDL files are used to
generate:

e Client-side header files needed by a client when calling sigeo.

e Client-side stub libraries that translate provider invimaarguments into a Coyotasterprocess communica-
tion (IPC) message.

e XML documentation that describes the interface. This doentation is later gathered to create the system
object reference manual.

e Server-side header files needed by a providémiglementan CaplIDL interface.

e Server-side stub code that demarshals requests and nsamss@bnses. This is also used to implementa CapIDL
interface.

Itis possible to have circular dependencies among intesfaout not among interface implementations.

In general, the client-side IDL headers need to be genebafmie a given piece of client code can be compiled, and
the client-side stubs need to be generated before cliert caxl be linked. There are two ways in which this might be
implemented:

1. Each client application can generate and compile it's oapy of the necessary client headers and client stub
libraries. This is feasible, but it is a nuisance and it makescompile process take an unreasonably long time.

2. A pre-pass can be made to generate the headers and dliest which can then be used in common by all of
the clients that depend on them. This has the advantage tuilding the headers and stubs redundantly, but
has the cost that the unit of build is now the package rattear the directory.

We initially tried the first approach in the EROS build proged/e found that it was excessively inconvenient, and we
switched to the second method. The Coyotos build processthsesecond method. In the EROS build system, we
found that the automatic dependency generation mecharusmalpretty good job of avoiding unnecessary rebuilds.

However, this approach creates a quandry for foreign paakdipcause we aren’tin a position to modify the makefiles
of those packages to force a complete package rebuild weemake is invoked. Even if we could resolve this, the
foreign packages aren't necessarily designed to be fryelodhe complete package build discipline. Therefore:

Caution

The developer must be aware of whether they are performinglee within a Coyotos package or a
foreign package. Within a Coyotos package, the defaulitre$the make command will be to rebuild
the current package. Within a foreign package, the defaslilt of themake command will be whatever
procedure is defined as normal by that package. Sincentieefile at the package level conforms
to the Coyotos build proceduresnaake in the package-level directory can be relied on to rebuikl th
complete package.

3.2 Normal Build Sequence

When themake command is invoked from theoyotos/src directory, each package root directory is visited in

order, and thenake install command is issued for that package. The build order is:
1. Thecoyotos/src/ccs package if presertt,
3 We intend to make the output of tieeyotos/src/ccs package build available as installable RPM files for deved@mnvenience.

2. Thecoyotos/src/sys package,

3. Packages inoyotos/src/lib , in the order specified in the top-level library makefile,
4. Packages inoyotos/src/bin in the order specified in the top-level binaries makefile,
5. Packages inoyotos/src/examples in the order specified in the top-level binaries makefile,

Because packages can be foreign, the internal build rufes §iven package are inherently package dependent. All
package-level makefiles are expected to implement thedolpmake targets:

e make install Build and install all content in subdirectories of this otteen build and install the content of
the current directory.

e make world Rebuild the entire source tree from the top.

e make package Rebuild the current package by issuimgke install from the top of the package tree.
In Coyotos packages, this is usually the defaudike target.

e make clean Delete all generated content in the current directory asdubdirectories.

e make nodepend Discard all automatically generated dependency inforomafiom the tree. Dependency
information is usually updated automatically by the Cogoteakefile rules, but it sometimes becomes out of
date and must be forcibly deleted. When doing this, it isroftecessary to useake -k , anditis recommended
that a clean should be performed as well:

make -k clean nodepend

Each of themake targets above is also available at twgyotos/src level of the tree, but the scope of effect is the
entire source tree rather than a single package. In additierfollowing targets are available at the top level:

e make targdir-clobber Delete the entire installed directory tree.

e make pristine Wipes out the installed directory tree, performs a cleanwamepackage, removes all auto-
matically generated dependencies, and then rebuilds tire &ee from scratch.

At the top level of the source tree, the defaultke target ismake world .

4 Adding a New Package To The Tree
Adding a new package to the Coyotos build tree is actuallyfaimple:

1. Create a new directory belovoyotos/src/lib , coyotos/src/bin , or coyotos/src/examples

2. Place an appropriate package-level makefile in that wingcaccording to whether you are implementing a
foreign package or a Coyotos package.

3. Append your package directory to thédl RS variable in coyotos/src/lib/Makefile ,
coyotos/src/bin/Makefile , or coyotos/src/examples/Makefile , as appropriate.

Note that we will adding package-level dependency trackinge future, which will hopefully allow you to rebuild
only those packages that are needed to support the packagee/trying to test. As the source tree grows, we expect
that this capability will become increasingly attractive.

Here is an annotated example makefile for the package level:

Copyright notice

Default target. Every makefile should specify a default
target. This should be the first non-comment content in
the makefile. Package-level makefiles should specify

package as their default target.

default: package

Relative path to coyotos/src. All

makefiles rely on being able to locate the top-level source

directory in order to include other makefile fragments.

The definition of COYOTOS _SRC should appear immediately
beneath the identification of the default make target.
COYOTOSRC=../..

Subdirectories to build. This is a list of directories

that should be visited in sequence by the normal build

process. The Coyotos makefiles use the DI RS variable

to drive build recursion. Therefore, forei gn packages

shoul d NOT specify subdirectories using the DIRS vari abl e!
DIRS=subdirl subdir2 subdir3

Additional directories to clean [optional]. This is usefu I
if you have directories such as test directories that are

designed to be built by hand. These should not be visited

by the normal build mechanism, but you probably want them

cleaned by make“clean. Every element of DI RS will

automatically be added to CLEANDI RS
CLEANDIRS=otherdir

Include the generic package-level makefile support stuff

This defines all of the package-level make targets:

include $(COYOTOS _SRC)/build/make/pkgrules.mk
COYOTOS PACKAGES:

#
#
That's it. The real work is done by the included makefile
fragments by recursing using the DI RS variable.

FOREIGN PACKAGES ONLY:
#
Additional targets (if any) that you may want should be
defined here. Foreign packages will want to define
targets to execute the build and to perform a recursive
clean:
local-install:

Commands to (recursively) build and install
local-clean:

Commands to (recursively) clean

Add dependencies so that the clean and install targets
will do the right thing:
install: local-install

clean: clean-install

5 Coyotos Makefiles

If you are trying to build a wrapper package for a foreign cbdse, you are largely on your own. The package-level
makefiles supply thenake world , make package , make nodepend, make install , andmake clean
rules. Filling in the details is up to you. The balance of thigument focuses on makefiles that are built to follow the
Coyotos build conventions.

The package level makefile is really just a directory wragpat directs recursion. Nearly the same makefile structure
is used in each container directory within the Coyotos sedree. The only difference is that Coyotos directory
makefiles includenakerules.mk rather tharpkgrules.mk . Eventually, the recursive build procedure descends
into some directory where real work needs to be done. At thettpit becomes necessary to create a more complicated
makefile, and we need to start explaining which make varsatdéewhat.

The automatic build rules supported by the Coyotos buildesysupport generating documentation from XML, gen-
erating code from C/&+, and generating code from BitC. All of these perform autdmdéependency generation
where appropriate.

The general pattern of a Coyotos makefile is:
e Define default target and path to top of source tree
e Define framing makefile variables
e Includemakerules.mk

e Add target-specific rules, if any.

Each type of generated output has its own set of framing mekefiiables, which are described below.

5.1 XML Documentation

The Coyotos documentation system is based on the assuntipib@oyotos documentation is written in XML us-
ing theosdocDTD. The Coyotos documentation tree includes a set of XSamdformers that produce both online
(HTML) and offline (PDF) versions of these documents. The RBISions are generated using LaTeX.

The document generation process is controlled byXiie SOURCEvariable. This variable should be definieefore
includingmakerules.mk . It's content should be a list of XML input file namesthoutthe .xml file name suffix.
For the document you are reading, the relevant line of theafileks:

XMLSOURCE=build

The documentation support makefile fragments are only deduf theXM_. SOURCEVvariable is defined. By default,
both HTML and PDF output are generated for all XML input do@nts.

The XML translation mechanism also knows how to genemgps and.gif (soon switching to PNG) files from
XFIG input. Figure files should be identified by the GSOURCEmakefile variable. As wittiKM_ SOURCE this should
be defined beformakerules.mk s included:

FIGSOURCE-=figl.fig fig2.fig fig3.fig

We need better figure management system than XFIG, but thentwystem is better than nothing.

Because generatingif and.eps files from the.fig sources is so fast, and because the output all goes in the
same directory in any case, the current xml makefile fragméan’t really attempt to associate individual figures to
individual documents within a single XML document diregtor

5.2 Building Object Code

In contrast to documentation, which is driven from the lissource files, object code compilation is driven from the
list of target files. An example is provided below.

Several of the makefile variables shown deserve particti@nton, because they control various aspects of the build
process:

CROSS.BUI LD States whether the build in this directory is done for thet fGROSSBUILD=no) or for the target
environment CROSSBUILD=yes). This variable needs to be declared beforakerules.mk is included.
It determines which set of compilers and build rules are usdmlild source files in the current directory.

OBJECTS The complete list of object filesq files) that should be built in this directory. TI@BJ ECTSvariable is
also used to determine the automatic dependency managgélesittat need to be generated.

OPTI M The optimization level that should be applied. This defatdtO2, but can be overridden locally.

| MGVAP Each service that is built into the system bootstrap image dra associated image map fragment (a
.imgmap file). A corresponding header file is created for each imagp fible The list of image map files, if
any, should be given using théViGMAP variable.

And here is an annotated example:
default: package

COYOTOSRC=../..]..

Use the CROSSBUI LD variable to say that this is a cross build.
If absent, the build is assumed to be a host build.
CROSSBUILD=yes

Convention: binaries (or libraries) built in the current
directory are named by the TARGETS variable.
TARGETS=$(BUILDDIR)/sample

Convention: bootstrap image map files must be named by the

| MGVAP variable. If x.imgmap is listed in the | MGVAP

variable, then $(BUI LDDI R) / x-constituents.h will be automatically generated
by the automatic make rules.

IMGMAP=sample.imgmap

Convention: all object files produced in this directory sh ould

be listed in the OBJECTS variable, and should

be prefixed by "$(BUILDDIR)/". If there are multiple targe ts, each
should have its own specialized X_OBJECTS Y_OBJECTS variables,

which should be accumulated into OBJECTS

OBJECTS=$(BUILDDIR)/sample.o
Default optimization level can be overridden by setting th e value

of OPTIM
OPTIM=-O

10

Include path can be modified by altering value of I NC
INC=-I1$(EROS _ROOT)/include

Additional defines can be provided by altering value of DEFS
DEFS=-DSOMEDEF

include $(COYOTOS _SRC)/build/make/makerules.mk

Convention: local 'all' target causes $(TARGETS) to be bui It.
That is, ’all’ is the local build target. The ’all’ target

should not recurse | it is assumed that the install

target has already done that.

all: $(TARGETS)

Link rule for the sample binary (this will need to change for

Coyot 0s)

$(BUILDDIR)/sample: $(OBJECTS) $(DOMCRTO0) $(DOMLIB)

$(DOMLINK) $(DOMLINKOPT) $(DOMCRTO) $(OBJECTS) -Ismall $ (DOMLIB) -0 $@

Convention: ’install’ target depends on ’all’, installs

targets into destination directory relative to COYOTOS ROCOT
install: all

$(INSTALL) -d $(COYOTOS _ROOT)/domain

$(INSTALL) -m 755 $(TARGETS) $(COYOTOS _ROOT)/domain

$(INSTALL) -m 644 $(IMGMAP) $(COYOTOS _ROOT)/domain

Convention: last line of makefile should be the following, which
ensures that existing automatic dependency files are relo aded

after each execution.

-include $(BUILDDIRY)/. *.m

Normally, the above mechanisms are sufficient. fakerules.mk file includesmakevars.mk , which internally
constructs values for the usual make varial3€€FL AGS GPLUSFLAGS and so forth. Along the way, the value of
CROSS.BUI LDis used to decide how to set the values of varialdes, GPLUS, LD, and friends. A more complete
list of all variables associated with the build mechanisroagainly needed. For a better sense of what is going on,
seemakevars.mk andbuild-rules.mk . The variable names definitely need to be regularized arahelt up.

The compilation mechanism is tuned to rebuild the assatiattomatic dependency files whenever an object file is
rebuilt.

11

