
CapIDL Language Specification†

Version 0.1

Jonathan Shapiro, Ph.D. Mark Miller
Systems Research Laboratory
Dept. of Computer Science
Johns Hopkins University

February 13, 2006

Abstract

CapIDL is an interface definition language for capability-
based systems. It is loosely derived from the CORBA
IDL language, and specialized for the needs of capability-
based systems.

This document provides an English-language specifica-
tion of the CapIDL input language and its intended mean-
ing. CapIDL intentionally doesnot include any specifi-
cation of transport-level data layout or application-layer
serialization rules. It is solely a specification of the inter-
face layer.

Contents

1 Overview 1

2 Specification Conventions 2

3 Theory of Operation 2

4 Lexical Matters 3

5 Structure of a Compilation Unit 3

† Copyright c© 2006, Jonathan S. Shapiro and Mark Miller.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT ANY
WARRANTIES, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

6 Types 4

6.1 Basic Types 4

6.2 Enumeration Types 5

6.3 Composite Types 5

6.4 Sequence Types 5

6.5 Exceptions 6

6.6 Typedef 6

7 Constants 6

8 Name Spaces 6

9 Interfaces 6

A Change History 7

A.1 Version 0.1 7

1 Overview

This document is the reference definition for CapIDL.
CapIDL is a language for the specification of interfaces
between subsystems. It is somewhat based on CORBA
IDL. In contrast to CORBA IDL, CapIDL is specialized
for interfaces where:

• Interfaces are designated by capabilities. An inter-
face name is therefore a CapIDL type.

• Caller and callee are firmly separated. CapIDL inten-
tionally lacks any means to define interfaces that rely
on shared memory or by-reference argument trans-
mission.

• Because accurate reference documentation for inter-
faces is critical, CapIDL provides mechanisms for

1

the definition of interface and method documenta-
tion, and provides XML as an output language. This
XML can be post-processed to HTML, OSDOC, or
(presumably) other desired forms. The reference in-
terface documentation for the Coyotos kernel is gen-
erated this way.

CapIDL is intended to provide a specification that is neu-
tral with respect to source language, but it attempts to
tread the line between being “neutral” and being “naive.”
As a concrete example of this, consider the definition of
the POSIXread() function. In languages that allow
preallocation of buffer storage, it is desirable to express
the fact that the output of the read can be placed directly
into this buffer. CORBA provides no means of saying this.

2 Specification Conventions

The primary conventions used in this document concern
the presentation of grammar rules. In grammar rule speci-
fications, non-terminals are presented in lowercase italics,
categorical terminals are shown in normal face, and literal
terminals appear in bold face or within single-quote char-
acters. White space is permitted between tokens. CapIDL
is case sensitive; all CapIDL keywords are lowercase.

Except when quoted, the characters{ and} indicate meta-
syntatic grouping following the customary representation
of EBNF grammars. The superscript characters* , +, and
? indicate, respectively, zero or more, one or more, or an
optional item or group. Except when quoted, the char-
acter “:” indicates the separation between a non-terminal
and its EBNF definition. For categorical terminals, sets of
input characters are abbreviated by enclosing them within
square brackets. Within such a set, the character ’-’ de-
notes an inclusive lexical sequence according to the usual
conventions of regular expressions.

3 Theory of Operation

Examples in this section are non-normative.

Conceptually, an interface definition language specifies
two things:

1. A collection of (versioned) interfaces, each of which
defines constants, types, and methods.

2. A set of name spaces that define containing scopes
for these interfaces.

In practice, matters are slightly complicated by pragmat-
ics. It is desirable to be able to specify two (or more) in-
terfaces in separate input files that reside in the same name

space, and it is necessary to be able to specify independent
name spaces that ultimately can be unified into a single
conceptual hierarchical space of identifiers. The CapIDL
packagedefines an “open” name space that allows both
objectives to be satisfied. The recommended usage pat-
tern follows the Java convention for package names: the
defining entity uses a reversed, dotted domain name, as
in:

package org.coyotos;

as its top-level name space.

Logically, packages and the identifiers they contain are
defined to occupy a single, unified namespace. It is an
(unreliably checked) error for a single identifiera.b to
refer ambiguously to both a package and a declared el-
ement within a package. This restriction is validated by
CapIDL when possible. Since interfaces are simultane-
ously being defined by multiple, non-communicating or-
ganizations, it is impossible for a CapIDL implementation
to check this requirement in general. In practice, the use
of domain names as package names means that most such
errors occur within a single, localized group of cooperat-
ing developers and are detected.

Coyotos interface definitions may make use of single in-
heritance. The inheriting interfaceextends its parent inter-
face, providing all methods of the parent plus additional
methods unique to the extending interface:

interface parent {
... declarations ...

};
interface child extends parent {
... additional declarations ...

}

Interfaces may make use of types defined on other inter-
faces, provided this does not result in static circular de-
pendency among the interfaces involved. For this purpose,
the use of an interface nameas a type does not create a de-
pendency: an interface name used as a type is conceptu-
ally a reference type. In practice, such “lateral” interface
cross-references are rare; the more common pattern is for
an interface to make general use of other interface names
as types, but to rely only on data types defined by itself
and its ancestor interfaces.

When used as a type name, an interface name denotes that
a capability argument is expected, and that the passed ca-
pability is expected to be of the specified interface type
(or an extension). The CapIDL design assumes that capa-
bilities are dynamically typed, and does not emit code to
type-check capability arguments.

2

4 Lexical Matters

Character Set The CapIDL input character set is the
UTF-8 encoded UNICODE character set.

Comments CapIDL supports two comment formats de-
rived from C and C++. Any sequence beginning with
// and ending with the next newline is a comment. Any
character sequence beginning with/* and ending with
the next*/ is a comment. No beginning of comment ap-
pearing within a comment is considered lexically signif-
icant. For purposes of input tokenization, a comment is
considered to be whitespace, and terminates any input to-
ken. Comments therefore cannot be used for “token splic-
ing.”

Documentation Comments Certain comments have no
significance for purposes of programmatic interface spec-
ification, but have significance to the humans who use
these interfaces. Any comment beginning with/*** fol-
lowed by a space or a newline begins a documentation
comment that is terminated by the next appearance of*/
in the input. Similarly, anyconsecutive sequence of com-
ments beginning with/// and terminating with the next
newline is a documentation comment. For this purpose,
a “consecutive sequence” of documentation comments is
deemed to include any sequence of/// comments that
are separated only by white space.

Many productions in the CapIDL grammar include an un-
derlinedIdent in a production that defines that identi-
fier. The appearance of this underlined terminal in the
indicates that the nearest preceding documentation com-
ment will be associated with the symbol being defined by
the present productionprovided that comment has not al-
ready been associated with some other symbol.

Identifiers A CapIDL identifier consists of a leading al-
phabetic character followed by zero or more alphanumeric
characters. For this purpose, the underscore character is
considered alphabetic:

Ident: [a-zA-Z][a-zA-Z0-9]*

Identifiers beginning with two leading underscores are re-
served. In general, a use-occurrence of an identifier may
be a “dotted name”

dotted name: Ident {’.’ Ident}*

With the intended meaning “search for the leftmost iden-
tifier according to the usual lexical scoping rules, treat the
resolved name as a scope, and search (recursively) within
that scope for the succeeding identifiers, but in no case
should this search resolve to any identifier definition that
lexically follows the use-occurence in any incompletely
defined scope in the current unit of compilation.

While the CapIDL input character set is UTF-8 encoded
UNICODE, CapIDL identifiers are restricted to the ISO-
LATIN-1 subset of the UNICODE identifier specification.
In principle, the identifier specification could be extended
to UNICODE characters more generally, and we expect
that it eventuallywill be extended in this fashion. For
the moment, there remain many programming languages
whose source code character set is restricted to the ISO-
LATIN-1 subset. CapIDL adopts this restriction for the
sake of broad compatibility.

Integer Literals An integer literalIntLit consists of
a sequence of decimal digits:

IntLit: [0-9]+

Constant Expresions CapIDL allows the use of an arbi-
trary arithmetic expression using the operators “+”, “-”,
“*”, and “/” with their usual meanings and precedence.
Parenthesization is permitted. Both unary negation and
binary subtraction are supported. Constant expression
values are computed using arbitrary precision arithmetic.
The associated grammar rules are:

const expr: const sum expr
const sum expr:

const mul expr
| const mul expr ’+’ const mul expr
| const mul expr ’-’ const mul expr

const mul expr:
const term

| const term ’*’ const term
| const term ’/’ const term

const term:
dotted name

| literal
| ’(’ const expr ’)’

with the restriction that adotted name must reference
some previously defined constant. Note that for purposes
of expression computation, character literals are consid-
ered to denote their corresponding code points as integers.

To Do The specification will soon, but does not yet, spec-
ify an input syntax for character, string, and floating point
literals.

5 Structure of a Compilation Unit

A CapIDL unit of compilation consists of a package dec-
laration followed by one or more declarations:

UOC: package dcl decl*
package dcl: package dotted name
decl:

3

const dcl ’;’
| typedef dcl ’;’
| enum dcl ’;’
| bitset dcl ’;’
| except dcl ’;’
| struct dcl ’;’
| union dcl ’;’
| namespace dcl ’;’
| interface dcl ’;’

Every declaration defined at package scope is defined
within the namespace defined by its containing package.
The package and declaration namespace are unified: it is
an error for a single identifiera.b to refer ambiguously to
both a package and a declared element within a package.
This requirement is validated by CapIDL when possible,
but in the absence of complete input it is not possible for
CapIDL to universally detect this error.

6 Types

The types of CapIDL are defined by:

type:
| param type
| seq type
| buf type

param type:
simple type

| string type
| array type
| object
| dotted name

Whereobject indicates any capability type. Note that
certain types may appear within structure, union, and
typedef declarations, but may not appear directly as pa-
rameter types. This restriction exists to ensure that the
CapIDL code generator has a name for certain types that
may not be natively expressable in certain target lan-
guages.

6.1 Basic Types

The simple types of CapIDL consist of the integer types,
floating point types, character types, andboolean. The
character typewchar includes an optional size specifier
giving the character code point size in bits. Legal values
are 8, 16, and 32. If unadorned thewchar type defaults
to a 32-bit UNICODE code point.

Theinteger type may carry an optional size qualifier
giving the representation size of the integer type in bits.
The representable range of the corresponding value is [-
2n-1,2n-1-1]. The typesbyte, short, long, andlong

long are convenience syntaxes for signed integer types
of (respectively) 8, 16, 32, and 64 bits.

The unsigned type similarly may carry an optional
size qualifier in bits. The representable range of the cor-
responding value is [0, 2n-1]. The typesunsigned
byte, unsigned short, unsigned long, and
unsigned long long are convenience syntaxes for
unsigned integer types of (respectively) 8, 16, 32, and 64
bits.

Note that the unadorned typeinteger indicates anar-
bitrary precision integer value. Such a value has no stat-
ically known size. In general, the use of a dynamically
sized type requires additional data copying in the stub
code generated by CapIDL.

simple type:
boolean

| char type
| integer type
| float type

char type:
char

| wchar
| wchar ’<’ const expr ’>’

integer type:
signed integer type

| unsigned integer type

signed integer type:
integer

| integer ’<’ const expr ’>’
| byte
| short
| long
| long long

unsigned integer type:
unsigned ’<’ const expr ’>’

| unsigned byte
| unsigned short
| unsigned long
| unsigned long long

Thefloat type may carry an optional size qualifier giv-
ing the representation size of the floating point type in
bits. All floating point values use IEEE format. Legal
values for the floating point size are 32, 64, and 128. The
typesfloat, double, andlong double are conve-
nience syntax for floating point types of (respectively) 32,
64, and 128 bits.

4

float type:
float ’<’ const expr ’>’

| float
| double
| long double

6.2 Enumeration Types

CapIDL supports two enumeration types: enumerations
and bit sets. An enumeration declaration takes the form:

enum dcl:
integer type enum ident
’{’ enum def

{ ’,’ enum def }* ’}’ ’;’
enum def: ident
enum def: ident ’=’ const expr

In the absence of a providedconst expr, the enumeration
value of an enumeration element takes on the sequentially
next greater value. If the first element of an enumera-
tion does not have a providedconst expr, it is assigned
the value zero.

The enumeration declaration introduces both new con-
stant definitions and a new type definition.

A bitset takes the form:

bitset dcl:
unsigned integer type bitset ident
’{’ enum def

{ ’,’ enum def }* ’}’ ’;’
enum def: ident
enum def: ident ’=’ const expr

Bitsets are semantically equivalent to enumerations, with
the caveat that they may generate different type declara-
tions in some emitted languages. For example, in C++,
the following code generates a type error:

enum enum t {
one = 1,
two = 2

};
int foo(enum t arg);

...
foo(one|two);

If this enumeration is declared in CapIDL using a bitset,
the code will be emitted to use a typedef of an unsigned
integer type rather than an enumeration, which evades the
warning.

6.3 Composite Types

A structure declaration takes the form:

struct dcl:
struct ident ’{’ member+ ’}’ ’;’

member:
struct dcl ’;’

| union dcl ’;’
| enum dcl ’;’
| bitset dcl ’;’
| namespace dcl ’;’
| const dcl ’;’
| element dcl ’;’

element decl: type ident
enum def: ident ’=’ const expr

A union declaration takes the form:

union dcl:
union ident ’{’
switch ’(’ switch type ident ’)’ ’{’

case+

’}’ ’;’ ’}’
switch type:

integer type
| char type
| dotted name
| boolean

case:
case label+ case def* element dcl ’;’

case label:
case const expr ’:’

| default ’:’
case def:

struct dcl ’;’
| union dcl ’;’
| enum dcl ’;’
| bitset dcl ’;’
| namespace dcl ’;’
| const dcl ’;’

Note that structure and union declarations implicitly de-
fine a name space.

6.4 Sequence Types

CapIDL provides three classes of sequence types: arrays,
sequences, and buffers. An array describes a fixed-length
vector of some type, and may appear only in a type-
def, structure, or union. Arrays are value types. A se-
quence describes a dynamically sized (possibly statically
bounded) vector of some type. The “content” of a se-
quence type is generally indirect. A buffer describes a
dynamically sized (possibly statically bounded) vector of
some type.

The difference between a sequence and a vector lies in
their use as parameters. an “out buffer” is actually an “in”
parameter describing the size (the limit) of the buffer, and

5

a compound “out” parameter describing the number of el-
ements actually received (the new length) and the location
into which they should be received. Sequences should be
used when the destination storage for the out parameter
should be allocated by the CapIDL-generated stub proce-
dure. Buffers should be used when the destination storage
for the out parameter is preallocated by the caller.

array type:
array ’<’ type ’,’ const expr ’>’

seq type:
sequence ’<’ type ’>’

| sequence ’<’ type ’,’
const expr ’>’

buf type:
buffer ’<’ type ’>’

| buffer ’<’ type ’,’
const expr ’>’

6.5 Exceptions

An exception defines an alternate return value for an in-
terface method. Generally, the return value of a method is
a union of several exception types plus a “normal” return
type. Exceptionsmay have member fields to carry addi-
tional information about the exceptional condition. Use
of such fields is rare.

except dcl:
except ident

| except ident ’{’ member+ ’}’ ’;’

Where member is defined above in the discussion of
struct dcl.

6.6 Typedef

A new name may be introduced for an existing type using
a typedef declaration:

typedef dcl:
typedef type ident

7 Constants

A constant declaration takes the form:

const dcl:
const simple type ident
’=’ const expr ’;’

A declared constant may be used in any subsequent
const expr wherever adotted name is expected.

8 Name Spaces

A namespace provides a means for wrapping a series of
declarations in a common containing scope:

namespace dcl:
namespace ident ’{’ decl+ ’}’

9 Interfaces

All of the preceding exist for the purpose of defining in-
terfaces and their methods. An interface is a (versioned)
namespace of methods and other declarations.

interface dcl:
interface ident

{ extends dotted name }?

{ raises ’(’ exceptions ’)’ }?

’{’ if def+ ’}’
exceptions:
dotted name { ’,’ dotted name }*

Whereif def consists of:

if def:
struct dcl

| union dcl
| except dcl
| namespace dcl
| enum dcl
| bitset dcl
| typedef dcl
| const dcl
| opr dcl

Note that an interfaceraises clause may refer to excep-
tions that are declared within the raising interface.

The important production here is the one foropr dcl,
which is used to describe methods of interfaces. The gen-
eral form ofopr dcl is:

opr dcl:
{ nostub | client }?

oneway void ident ’(’ inparams? ’)’
{ raises ’(’ exceptions ’)’ }?

| { nostub | client }?

ret type ident ’(’ params? ’)’
{ raises ’(’ exceptions ’)’ }?

| inherits ident
ret type: void | type
inparams: param type ident

{ ’,’ param type ident }*
params: inout param type ident

{ ’,’ inout param type ident }*
inout param type: out? param type

6

A onewaymethod has no expected reply, and must there-
fore always have a return type of void.

The qualifiernostub indicates that the stub procedure has
been generated by hand, and CapIDL should not generate
a stub for this method.

The qualifierclient indicates that a method is entirely im-
plemented in a client library, and is not actually part of the
interface protocol. Such a method may be included either
for descriptive completeness or for backwards compatibil-
ity. Note thatclient impliesnostub.

A method may raise exceptions as indicated in it’sraises
clause. In addition, every method may raise any exception
identified for the interface as a whole.

An inherits declaration indicates explicitly that an oper-
ation is inherited from a parent interface. this declaration
has no semantic effect. Its purpose is to allow additional,
interface-specific documentation to be added to an inheri-
tor’s implementation of a function.

A Change History

This section is an attempt to track the changes to this doc-
ument by hand. It may not always be accurate!

This section is non-normative.

A.1 Version 0.1

Initial capture.

7

