MkImage Specification

Version 0.2

Jonathan Shapiro, Ph.D.
The EROS Group, LLC.

February 26, 2007

Abstract 3 Structure of a Compilation Unit 4

MkImage is the tool used to create installable applica- 3.1 Importand Export.

4
tion images, including the initial system bootstrap file im- 3.2 Defining Statements 4
age. It may be thought of as a link editor feystemsin 3.3 Control Flow Statements 5
much the way that d is a link editor for object files. A
nki mage input file contains a specification for what pro-
cesses need to exist in the image, how they should be con-

3.4 General Statements

nected together by capabilities, and what (if any) exterrfal Expressions 6
references need to be resolved in order for the image to be4.1 Basic Expressions
successfully incorporated by the installer. - : -
: . : . . .2 Object Allocation Expressions
This document defines theki mage input specifi- ject Afloca pn xpressions)
cation language. It borrows heavily from the original 4-3 Vectorand Environment Expressions . . . 6
ki mage specification from the EROS system. 4.4 Block Expressions 7
Il Built-In Procedures 7
Contents 5 Kernel Object Constructors 7
1 Introduction 1 6 Capability Manipulation 7
1.1 Theoryof Operation 2
1.2 CommandlLine 27 Space and Object Manipulation 7
1.3 Specification Conventions 2
A Change History 8
2 Lexical Matters 3 Al Version0.2 8
21 Comments. 3 A2 Version0.1 8
22 ReservedWords 3
2.3 lIdentifiers

3 .
24 Literals 41 Introduction

The nki nage utility creates an image for the Coyotos
| Core Language Definition 4 [1] _install_er. Thr.ough th.is tool, a devgloper can create
a single image file that includes running processes, ad-
T Copyright© 2007, Jonathan S. Shapiro. dress spaces, and other objects. These various objects
THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT ANY May be pre-initialized to refer to each other via capabil-
WARRANTIES, INCLUDING ANY WARRANTY OF MER- ities. The inputfile can also contain unresolved capability

CHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY references that are to be “filled in” at image load time.
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. More precisely, the “running” processes imii nage

output file are processes that are frozen at the instant be- nki mage

fore the execution of their first instruction. These are [options]
added to a “run list” that is started by the installer, or in -t target .
the case of the initial system image, by 1. process specfile specfile

whose job (in either case) is to actually get these processes
into motion. It might therefore be more precise to say thétheretargetis the target architecture. Other options un-
these processes amearkedto be run. derstood byrki mage include:

-I directory Add directoryto the end of the module reso-

1.1 Theory of Operation lution path.

A ki mage script consists of a single module containg gjrectory Add directory to the end of the library
ing a sequence of statements. The first import of a mod- gearch path.

ule causes its statements to be executed in sequence, with
several consequences: -H headerDir Emit header files suitable for C andtG-
programs intcheaderDirfor each module named on
1. Symbols defined within the module are assigned val- the command line. The names of the header files are

ues. derived from the module names. A constant defini-

tion will appear in the header file for every member

of every enumeration in the module that is qualified

by theheader keyword.

3. Objects are allocated and initialized that become part ¢ thjs option is given, no binary Coyotos image file
of the system image file. is emitted.

2. A subset of these symbols (those designated as “ex-
ported”) are made available for use in other modules.

While nki mage can be used as a scripting language,-ib outputfile Place the constructed system image in
isn’t designed for this purpose. #ki nmage script is ex- out put fil e. If this option is not given the de-
ecuted for the sake of its side effects on the image file. fault image file name iski mage. out .

For example, theki mage script: -v Process the input verbosely.

modul e exanpl e { -V Report tharki mage version and exit.

export def a =1 + 2;

def b = make_process(); —showparse Show the actions of the parser (for debug-
} ging).

has three effects. The symbalis bound to the value 3—-showlex Show the actions of the tokenizer (for debug-
and exported. A new, running process is allocated. The ging).
symbolb is bound this new process. Of these three ef-

fects, the important one is the allocation of the new proShowpassesEmita list ofnki mage compiler passes.

cess structyre. At the end of t.hlk| mage execution, the _stopafter pass Stop processing aftgrasshas been run
symbols will be gone, but this process structure and its , he input (for debugging).

contents will end up in the Coyotos installable image file.

The reason to have a full scripting language is to providelumpafter pass Show the state of the AST aftpassas
flexibility in initializing the objects that will end up in th an XML dump (for debugging).

coyotos image.

A nki mage script can refer to capabilities that are nothenki mage utility is not designed for incremental use.
defined by any imported module. This mechanism is uski#e | d, its job is to create the final image for a system.
to refer to capabilities that will later be supplied by the inThere is (at the moment) no conceptual equivalent to cre-
staller at image install time. When constructing an initi@ting a relocatable, reusable library.

system image, there should be no unresolved references

of this form. e .
1.3 Specification Conventions
1.2 Command Line The primary conventions used in this document concern
the presentation of grammar rules. In grammar rule speci-
Thenki nage command line takes the form: fications, non-terminals are presented in lowercase #alic

categorical terminals are shown in normal face, and lgoses of input tokenization, a comment is considered to
eral terminals appear in bold face or within single-quotee whitespace, and terminates any input token. Comments
characters. White space is permitted between toketierefore cannot be used for “token splicing.”

nki mage is case sensitive; aftki mage keywords are

lowercase.

Exceptwhen quoted, the charactéend} indicate meta-
syntatic grouping following the customary representati
of EBNF grammars. The superscript characters, and o N)]
2 indicate, respectively, zero or more, one or more, or dhe following identifiers are syntactic keywords or literal
optional item or group. In Except when quoted, the ch&f@nstants, and may not be rebound:

acter “:” indicates the separation between a non-terminal

and its EBNF definition. For categorical terminals, sets of

(?”2 Reserved Words

input characters are abbreviated by enclosing them Witﬁiﬁpr €9 def do
. . Ge se enum export
square brackets. Within such a set, the character ’- & er nal fal se for
notes an inclusive lexical sequence according to the usfal, y, i f i mpor t
conventions of regular expressions. | anbda nodul e new
print return true
whil e usi ng

2 Lexical Matters

The nki mage input character set is the UTF-8 encoded

Unicode character set, as defined by the Unicode 4. .6served words shown in italics are not currently imple-
standard [2] mented, but are reserved for future use.

Input units of compilation are defined to be encoded us-

ing the Unicode character set as defined in version 4.1.0 of

the Unicode standard [2], using Normalization C. Allkey? 3 |dentifiers
words and syntactically significant punctuation fall withi

the ISO-LATIN-1 subset, and the language provides far 4 mage identifier may start with any “identifier

ISO-LATIN-1 encodable “escapes” that can be used t0 €44 ,acter” (UNICODE 4.1.0 character class X8art),
press t_he fgll Unicode character code space in charag{joved by any number of optional “identifier con-
and string literals. tinue characters” (UNICODE 4.1.0 character class
Tokens are terminated by white space if not otherwi3@D _Continue). For this purpose, the underscore charac-
terminated. For purposes of input processing, the chear (', U+005F) is considered to be an identifier charac-
actersspace(U+0020),tab (U4+0009), carriage return ter, and the hyphen character (-’ is considered to be
(U+000D), andinefeed(U+000A) are considered to bean identifier continue character. Any such sequence that is
white space. not a reserved word is an identifier. Identifiers beginning

Input lines are terminated by a linefeed charact¥fith two leading underscores are reserved.

(U+000A), a carriage return (8000D) or by the two A hyphen, if present, may not be the leading character of
character sequence consisting of a carriage return fath identifier. Hyphens are converted to underscores when
lowed by aline feed. This is primarily significant for coméata constant bindings are exported for use in C ¢rHC
ment processing and diagnostic purposes, as the rest oftbader files.

language treats linefeeds as white space without furtley, \he sake of compatibility with existing file systems,

significance. identifiers appearing imki nage module names are re-
stricted to characters that fall within the ISO-LATIN-1

21 Comments subset of the general identifier specification.

The following regular expression describes those identi-
nki mage supports two comment formats derived from @ers using only characters from the ISO-LATIN-1 subset.
and G++. Any sequence beginning with/ and ending This subsetis commonly used because such identifiers can
with the next newline is a comment. Any character see directly exported to languages such as C.
guence beginning with* and ending with the next/ is
a comment. No beginning of comment appearing within
a comment is considered lexically significant. For pur- Ident: [a-zA-Z][-a-zA-Z0-9]+

2.4 Literals | Core Language Definition

2.4.1 Integer Literals o .
3 Structure of a Compilation Unit

The general form of an integer literal is an octal, decimal,

or hexidecimal constant: A ki mage unit of compilation consists of a single mod-
ule definition, which in turn consist of a sequence of

IntLit: [1-9][0-9] module-level statements and definitions:

IntLit: O[0-7]*

IntLit: Ox[O-9a-zA-Z] + UoC: nodul e nodname ' {° modstmt + '}
nodnane: |Ident {".’ Ident}*
nodst nt :
Integer literals beginning with the digit zero (0) are in- | export def _stnt
terpreted in base 8 (octal). Integer literals starting with | export Ident {,' Ident}* ';’
“0x” are interpreted in base 16 (hexadecimal). Hexidec- | i mport Ident * = nodnane ’;
mal digits are interpreted with the customary hexadecimal | stnt

valuations. The letters may appear in either lowercase or

uppercase. Itis an error for a digit to be present Whoggqqnirast to “inner” definitions, definitions introduced a
value as a digit is greater than or equal to the specifiggqyle scope may be exported, making them importable

base. from other modules.

2.4.2 String Literals 3.1 Import and Export

String literals &t r i ng) are written within double quotes,Export Theexport keyword indicates that a symbol
and may contain printable charactescludingbackslash bound at top level in a module should be visible to import-
(“\"). They may also contain spaces-{0020). The set ing modules. When interpretation of the module is com-
of printable characters consists of any character speciffddted, and the top-level environment is fully defined, a
in the UNICODE 4.1.0 standaekcepthose with general selective copy of the elements of this environmentis made
categories "Cc” (control codes) "Cf” (format controls)to create a “public” environment containing only the ex-
"Cs” (surrogates), "Cn” (unassigned), or "Z” (separatorsported symbols. This is the environment that is obtained
That is, any printable character, excluding spaces. by a subsequemtnpor t statement.

Import Theimport statement has two effects. If the
StringLit: /+ as described above imported module has not yet been loaded and intepreted,
this is done at the time of the first import. A given mod-
ule will be imported at most once during an execution of
o . o nki mage.
Within a string, the backslash charactek(" is inter-) . .)
preted as beginning an encoding of a specially embdd!® I_eft-hz_md |dent|_f|er specme_d in a_lrrrport gives a
ded character. The character following th¢ fs either a local |dent|f|ertq which the pubhc_er_wwon_ment of the im-
single-character embedding or a curly brace charagter P0rted module is bound. Thus, @ is defined to 1 and
identifying the start of a UNICODE character embeddin§XPorted by moduleoyot os. SpaceBank, then the

The legal forms and their meanings are: Statements:

\n Linefeed)

\r Carriage Return i rrport sb : coyot os. SpaceBank;
\t Horizontal Tab print sb.a

\b Backspace

\s Space displays the value "1".

\f Formfeed

\” Double quote o

\\ Backslash 3.2 Defining Statements

\{U+digits} Unicode code point, hexidecimaigits.
The defining statments introduce variables, procedures,

and enumerations:

def stnt: def ldent '=' expr ';’ 3.3 Control Flow Statements
| def Ident ({ldent {",’ Ident}*}?)"
bl ock ' ;’ The statement:
| header? enum’ {" enunDef + '}’

| header? enumlident ' {' enunDef+ '} jf stnmt: if '(* expr ')’ block { el se block

| header?capreg ' {" enunDef + '}’ | if "(" expr ')’ block { elseif._stnt
| header?capreg Ident ' {" enumDef+ 'V stmt: if.stnt
enunDef : ldent {" =" expr}*

provides conditional execution with the customary mean-
The firstdef form associates an initial the value with afhg. The value of this statement is the value of the exe-
identifier and binds that identifier in the current scope. cuted block, omnit if the test expression producésse

The seconddef form introduces a procedure. Whernd noel se clause is given. The expression in the test
called, the body of the procedure will be executed in &@sition should generate either an integer or a boolean re-
environment consisting of its lexically preceding defingult. If the resultis an integer, the value zero is intergdet
tions within the module and the formal parameters of @ a false condition result and non-zero is interpreted as a
procedure. Inner procedures are legal, and can be returiigg condition result.

as values. The statement:

The enum form introduces enumerated constant values.

The values of these identifiers cannot be modified. Edigt urn.stnt: return expr

merated constants are supported in the language because

there are certain values thati nage and it's constructed causes a value to be returned from the nearest enclosing
programs must agree on. In particular, enumerations &@cedure. This statement is not legal at module scope.
used to define slot numbers in the “tools” capability padey statement following @ et ur n statement will not be

of each process. executed.

The capreg form introduces enumerated constant valud€e statement:
that are to be used as capability register numbers. For pur- .
poses of use inside a mkimage file, there is no differenitfi | e-stnt: while " (* expr ")’ bl ock

between a&apregenumeration and agnum.
Causes the sequence of statements within the block to be

When anenum or capreg definition is market by the
T xecuted as long as the valuesafrevaluates to true (see
headerkeyword, definitions for the enumerated constan . .
I T statement, above). The return value of this statement s

will be e_mltted to the corresponding C he_ader_flle Whetne value of the last iteration of executed blockUnii t
header files are generated. Constants defined enam . :
r|1f_the loop is not executed at all.

enumeration will be emitted as integer literals, while co
stants defined in eapregenumeration will be emitted asThe statement:

constant structure declarators of typ&pr eg_t .

When an expression appears on the right hand side oi‘dé\)r'lst m: do block while (" expr ") ;

enumDef it is subject to several constraints: -
) Causes the sequence of statements within the block un-

)) til the value ofexpr evaluates to true (seéef statement,
e The only functions that can be called are arithmetig,e) The return value of this statement is the value of
functions and unary negation. the last iteration of executed block.
The only identifiers that can be referenced are iden-

tifiers defined by earlieenumDefforms.
Y 3.4 General Statements

The combined effect of these constraints is thatenumeﬁ-e traditional syntax for assignment is accepted, and

tion definitions may make reference to, and compute V@Jhtements may be executed for side effects:
ues based on, other enumeration definitions, but they do '

not require general interpretation to occur. This is nec mi:oexpr ' = expr
sary to support header file generation. At the time head@fy . expr ' -
files are generated the corresponding binary programs do

not exist, so attempts to execute (elggdimage(would e jeft hand side of an assignment must be an “ivalue”.

fail. That is: an identifier bound in the current environment, a
The value of a defining statementusit. field of an object, or a slot of an array.

Sequences of statements may be surrounded by braceé®rtaedure calls are expressions written in the usual way:
form a statement block:
expr: expr (' expr* ')’
bl ock: ' {" blockstnt+ 'V
bl ock_stmt: stnt

I ;g: “Srt”r;ftm 4.2 Obiject Allocation Expressions

Processes, GPTs, Endpoints, Pages, CapPages, and Banks

A block is not a legal statement. The value of a block ige primitive objects. Creating one entails reserving real
the value of the last executed statement within the blocgtorage in the output image file. In consequence, alloca-

Diagnostics may be obtained during execution througjbn of these is supported by syntax:
two pri nt statements:

expr: new Bank ' (' expr ')’

stnt: print expr expr: new CapPage ' (' expr ")’
| print '+’ expr expr: new GPT ' (' expr ')’
expr: new Endpoint ' (' expr ')’
The first prints the value of the expressiexpr. If expr expr: new Page ' (' expr ')’

is a capability-valued expression denoting an object, the €xpr: new Process ' (' expr ')’
second prints the fields of the object in human-readable

form. Theexprargument must be a bank capability.

The print statementsmaybe dropped shortly in favor of

comparable built-in procedures. . .
P P 4.3 \Vector and Environment Expressions

; If env is a environment-valued expression, andient
4 Expressmns is a field of the corresponding object, themv. i dent

is an Ivalue expression denoting the location of that field.

ki mage provides both the conventional “basic” expresyhen this appears in a use-occurrence, it is automatically
sions and a number of expressions that are parucularpq%moted to theralueof the field.

the problem of system image construction.

expr: expr '.’' ldent
4.1 Basic Expressions
For each of the objects defined in the Coyotos specifica-
nki mage supports the traditional infix arithmetic, comyjon, if expris a capability-valued expression naming one
parison, and boolean negation operators with the usgkhese objects theexpris also an environment-valued
precedence: expression whose identifiers are the fields of the object.

For example:
expr: -’ expr

expr: expr arithop expr ¢ of he faul q ot -
expr: expr cnpop expr ;references the fault code slot:

expr: '’ expr processCap. f aul t Code o
arithop: "-' | "4 |/ | "% | % ;references the GPT capability array:
cnpop: ‘< | N> | <= | > gpt. cap
| == | t=
If evec is an expression denoting an array, arak is an
Arbitrary-precision integer literals, double-precisiomteger-valued expression, theewec[ndx] is an Ivalue
floating point values, and strings are valid expressions:expression denoting a slot in that array (or raises an ex-
ception if bounds are violated). When this appears in a
expr: Int | Float | String use-occurrence, it is automatically promoted to va&ie
of the field.
The identifierd r ue andf al se are built-in literals®
expr: expr '[' expr ']’
expr: true | fal se

1 True and false are not currently implemented. For example:

;references to a capability register: Range() Returns the Sleep capability.
processCap. capReg[ndx]
yreferences to a GPT capability slot: IrqCtl() Returns the IrqCtl capability.
gpt . cap[2]
SchedCtl() Returns the SchedCtl capability.

Environment-valued and vector-valued expressions are

obtained by calling various built-in library procedure§heckpoint() Returns the Checkpoint capability.
within the nki nage runtime. A capability page capa- .

bility is a vector-valued expression. Thoap field of a ©OPStore() Returns the ObStore capability.

GPT is a vector-valued expression. .
sav val P ! loPerm() Returns the loPerm capability.

4.4 Block Expressions PinCtl() Returns the PinCtl capability.

A statement block is an expression whose value is tiiRere is also a procedure for duplicating an existing ob-
value of the last statement. Note that this subsumes fegx:
need for a local binding construct:

dup(bank, cap) Given a capabilitpankto a space bank,
duplicates the object named bapand returns a ca-
pability to the duplicate.

def a = {def i =1; i + 3; }

I Built-In Procedures
6 Capability Manipulation
5 Kernel Object Constructors

The following built-in procedures manipulate and/or mod-

For each kernel capability defined by the Coyotos kerng}f existing capabilities:

there is a corresponding constructor function in the run-

time library that returns this capability. In some cases th@adonly(cap) Returns a read-only variant of the passed
capability is a “miscellaneous” capability that does not capabilitycap(sets the RO restriction bit).

designate an object. In other cases the capability desig-

nates an object and a call to the constructor function H48aken€ap) Returns aread-only and weak variant of the
the side effect of adding an object of that type to the coy- Passed capabilitgap (sets the WK, RO restriction
otos image that is under construction: bits).

noexectap Returns a non-executable variant of the

Window(offse) Returns a window capability into the . passed capabilityap (sets the NX restriction bit).

background space with the specified integer-value

offset. opaque@pt-cap Given a GPT capabilitygpt-cap re-

LocalWindow(offset slof) Returns a localwindow capa- ~ tUrns an opaque capability to the same GPT.

bility into the space named tsfot with the specified

integer-valued offset guard(cap guard[, I12g]) Given a memory object capa-

bility cap, returns a capability with the same permis-

enter(cap, pp) Fabricates an entry capability to the end- ~ sions whose guard value is set guard>>2v). If
point named byap. The protected payload value of ~ 12gis not specified, the capability’s existiiizg value
the fabricated capability will bpp. is used.

NullCap() Returns a null capability.
KeyBits() Returns the KeyBits capability. 7 Space and Object Manipulation

Discrim() Returns the Discrim capability. There are a variety of functions for manipulating address

spaces. It is probably advisable to experiment with these
usingprint_tree andprint_spaceto fully understand what
Sleep() Returns the Sleep capability. they do.

Range() Returns the Range capability.

readfile(bank, string) Given a capabilitypankto a space what pages are mapped where and with what permis-
bank, and a file nantring, reads the file whose path sions.
is provided instring and returns an appropriate ad-,) . ,
dress space capability. This routine will allocate arllj/P2g9€(cap uint8) Fills the page referenced tmapwith

GPT and page structures necessary to fabricate the the 8-bitvalueuints.

address space. setpageuint64(cap, addr, uint64) Writes the 64-bit

loadimagegap, string) Given a capabilitybank to a value uint64 at offsetaddr |n_the page referenced
space bank, loads an executable file from the file Py cap addrmust be a multiple of 8 less than the
named bystring into an address space in executable targgt’s page size. The value is written in the target’s
form. The file name should name an ELF executable. €ndianness.
The result is an address space that is populated ex-
actly as needed to contain the loadable sections spec- .
ified in the ELF file’s program header. This routini\ Change History
will allocate any GPT and page structures necessary
to fabricate the address space. This section is an attempt to track the changes to this doc-

In contrast toreadfile this procedure returns anUMmentby hand. It may not always be accurate!

environment-valued result. The environment willThis section is non-normative.
have bound identifiers;

pc An integer-valued expression con-
taining the binary’s entry point.

space A capability-valued expression con-
taining the fabricated address space.

A.1 Version 0.2

Complete rewrite reflecting new implementation.

guarded spacebank, cap guard], 12g]) Given a capa-
bility bankto a space bank, and a capabildgp to
an existing address space, returns a new capabilit
the same space having the specifgpthrd and 129
values. Ifl2g is not provided, the currer2g value
of the address space capability is used.

A.2 Version0.1

Wﬁ’[ial capture.

: ~References
In contrast toguard, which acts on the capabil-

ity alone,guardedspacemay insert additional GPT
structures in order to satisfy a guard request th
would not fit trivially into the guard field.

L,]ﬂ] J. S. Shapiro, Jonathan W. Adams, Eric Northup, M.
Scott Doerrie, Swaroop Sridhar, Neal H. Walfield,
and Marcus BrinkmanrCoyotos Microkernel Spec-

insert_subspacebank SpG Subspcoﬁset[’ |2a|’g]) iﬁcation, 2007, available online at WWW.CoyOtOS.0rg.
Given capabilities a capabilityankto a space bank,
and capabilitiespc and subspcthat name existing
address spaces, inserts the address space name
by subspcinto the address space named spc at
the specifiedoffset If the effective size okubspc
exceeds the effective size giiG returnssubspc

[2] Unicode Consortium. The Unicode Standard, ver-
ion 4.1.0, defined byhe Unicode Standard Version
.0, Addison Wesley, 2003, ISBN 0-321-18578-1, as

amended byUnicode 4.0.1and by Unicode 4.1.0

htt p: //ww. uni code. org.

Thel2arg value, if supplied, gives theffective size

of the subspace being inserted, which may be either
larger or smaller than the actual size of the subspace.
In this case, the subspace is inserted into the contain-
ing spaceas if it were of the size indicated H2arg.

print _tree(cap Given an address space capabiligp,
recursively prints the objects comprising the address
space in raw form.

print _space€¢ap Given an address space capabitip,
recursively prints the objects comprising the address
space. The output is designed to provide a picture of

