
MkImage Specification†
Version 0.2

Jonathan Shapiro, Ph.D.
The EROS Group, LLC.

February 26, 2007

Abstract

MkImage is the tool used to create installable applica-
tion images, including the initial system bootstrap file im-
age. It may be thought of as a link editor forsystems, in
much the way thatld is a link editor for object files. A
mkimage input file contains a specification for what pro-
cesses need to exist in the image, how they should be con-
nected together by capabilities, and what (if any) external
references need to be resolved in order for the image to be
successfully incorporated by the installer.

This document defines themkimage input specifi-
cation language. It borrows heavily from the original
mkimage specification from the EROS system.

Contents

1 Introduction 1

1.1 Theory of Operation 2

1.2 Command Line 2

1.3 Specification Conventions 2

2 Lexical Matters 3

2.1 Comments 3

2.2 Reserved Words 3

2.3 Identifiers 3

2.4 Literals 4

I Core Language Definition 4
† Copyright c© 2007, Jonathan S. Shapiro.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT ANY
WARRANTIES, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

3 Structure of a Compilation Unit 4

3.1 Import and Export 4

3.2 Defining Statements 4

3.3 Control Flow Statements 5

3.4 General Statements 5

4 Expressions 6

4.1 Basic Expressions 6

4.2 Object Allocation Expressions 6

4.3 Vector and Environment Expressions . . . 6

4.4 Block Expressions 7

II Built-In Procedures 7

5 Kernel Object Constructors 7

6 Capability Manipulation 7

7 Space and Object Manipulation 7

A Change History 8

A.1 Version 0.2 8

A.2 Version 0.1 8

1 Introduction

The mkimage utility creates an image for the Coyotos
[1] installer. Through this tool, a developer can create
a single image file that includes running processes, ad-
dress spaces, and other objects. These various objects
may be pre-initialized to refer to each other via capabil-
ities. The input file can also contain unresolved capability
references that are to be “filled in” at image load time.

More precisely, the “running” processes in amkimage

1

output file are processes that are frozen at the instant be-
fore the execution of their first instruction. These are
added to a “run list” that is started by the installer, or in
the case of the initial system image, by theIPL process,
whose job (in either case) is to actually get these processes
into motion. It might therefore be more precise to say that
these processes aremarkedto be run.

1.1 Theory of Operation

A mkimage script consists of a single module contain-
ing a sequence of statements. The first import of a mod-
ule causes its statements to be executed in sequence, with
several consequences:

1. Symbols defined within the module are assigned val-
ues.

2. A subset of these symbols (those designated as “ex-
ported”) are made available for use in other modules.

3. Objects are allocated and initialized that become part
of the system image file.

While mkimage can be used as a scripting language, it
isn’t designed for this purpose. Amkimage script is ex-
ecuted for the sake of its side effects on the image file.

For example, themkimage script:

module example {
export def a = 1 + 2;
def b = make process();

}

has three effects. The symbola is bound to the value 3
and exported. A new, running process is allocated. The
symbolb is bound this new process. Of these three ef-
fects, the important one is the allocation of the new pro-
cess structure. At the end of themkimage execution, the
symbols will be gone, but this process structure and its
contents will end up in the Coyotos installable image file.
The reason to have a full scripting language is to provide
flexibility in initializing the objects that will end up in the
coyotos image.

A mkimage script can refer to capabilities that are not
defined by any imported module. This mechanism is used
to refer to capabilities that will later be supplied by the in-
staller at image install time. When constructing an initial
system image, there should be no unresolved references
of this form.

1.2 Command Line

Themkimage command line takes the form:

mkimage
[options]
-t target
specfile specfile

Wheretarget is the target architecture. Other options un-
derstood bymkimage include:

-I directory Add directoryto the end of the module reso-
lution path.

-L directory Add directory to the end of the library
search path.

-H headerDir Emit header files suitable for C and C++

programs intoheaderDirfor each module named on
the command line. The names of the header files are
derived from the module names. A constant defini-
tion will appear in the header file for every member
of every enumeration in the module that is qualified
by theheader keyword.

If this option is given, no binary Coyotos image file
is emitted.

-o output file Place the constructed system image in
output file. If this option is not given the de-
fault image file name ismkimage.out.

-v Process the input verbosely.

-V Report themkimage version and exit.

–showparseShow the actions of the parser (for debug-
ging).

–showlex Show the actions of the tokenizer (for debug-
ging).

–showpassesEmit a list ofmkimage compiler passes.

–stopafterpass Stop processing afterpasshas been run
on the input (for debugging).

–dumpafter pass Show the state of the AST afterpassas
an XML dump (for debugging).

Themkimage utility is not designed for incremental use.
Like ld, its job is to create the final image for a system.
There is (at the moment) no conceptual equivalent to cre-
ating a relocatable, reusable library.

1.3 Specification Conventions

The primary conventions used in this document concern
the presentation of grammar rules. In grammar rule speci-
fications, non-terminals are presented in lowercase italics,

2

categorical terminals are shown in normal face, and lit-
eral terminals appear in bold face or within single-quote
characters. White space is permitted between tokens.
mkimage is case sensitive; allmkimage keywords are
lowercase.

Except when quoted, the characters{ and} indicate meta-
syntatic grouping following the customary representation
of EBNF grammars. The superscript characters* , +, and
? indicate, respectively, zero or more, one or more, or an
optional item or group. In Except when quoted, the char-
acter “:” indicates the separation between a non-terminal
and its EBNF definition. For categorical terminals, sets of
input characters are abbreviated by enclosing them within
square brackets. Within such a set, the character ’-’ de-
notes an inclusive lexical sequence according to the usual
conventions of regular expressions.

2 Lexical Matters

Themkimage input character set is the UTF-8 encoded
Unicode character set, as defined by the Unicode 4.1.0
standard [2].

Input units of compilation are defined to be encoded us-
ing the Unicode character set as defined in version 4.1.0 of
the Unicode standard [2], using Normalization C. All key-
words and syntactically significant punctuation fall within
the ISO-LATIN-1 subset, and the language provides for
ISO-LATIN-1 encodable “escapes” that can be used to ex-
press the full Unicode character code space in character
and string literals.

Tokens are terminated by white space if not otherwise
terminated. For purposes of input processing, the char-
actersspace(U+0020), tab (U+0009),carriage return
(U+000D), andlinefeed(U+000A) are considered to be
white space.

Input lines are terminated by a linefeed character
(U+000A), a carriage return (U+000D) or by the two
character sequence consisting of a carriage return fol-
lowed by a line feed. This is primarily significant for com-
ment processing and diagnostic purposes, as the rest of the
language treats linefeeds as white space without further
significance.

2.1 Comments

mkimage supports two comment formats derived from C
and C++. Any sequence beginning with// and ending
with the next newline is a comment. Any character se-
quence beginning with/* and ending with the next*/ is
a comment. No beginning of comment appearing within
a comment is considered lexically significant. For pur-

poses of input tokenization, a comment is considered to
be whitespace, and terminates any input token. Comments
therefore cannot be used for “token splicing.”

2.2 Reserved Words

The following identifiers are syntactic keywords or literal
constants, and may not be rebound:

capreg def do
else enum export
external false for
header if import
lambda module new
print return true
while using

Reserved words shown in italics are not currently imple-
mented, but are reserved for future use.

2.3 Identifiers

A mkimage identifier may start with any “identifier
character” (UNICODE 4.1.0 character class XIDStart),
followed by any number of optional “identifier con-
tinue characters” (UNICODE 4.1.0 character class
XID Continue). For this purpose, the underscore charac-
ter (’ ’, U+005F) is considered to be an identifier charac-
ter, and the hyphen character (’-’, U+) is considered to be
an identifier continue character. Any such sequence that is
not a reserved word is an identifier. Identifiers beginning
with two leading underscores are reserved.

A hyphen, if present, may not be the leading character of
an identifier. Hyphens are converted to underscores when
data constant bindings are exported for use in C or C++

header files.

For the sake of compatibility with existing file systems,
identifiers appearing inmkimage module names are re-
stricted to characters that fall within the ISO-LATIN-1
subset of the general identifier specification.

The following regular expression describes those identi-
fiers using only characters from the ISO-LATIN-1 subset.
This subset is commonly used because such identifiers can
be directly exported to languages such as C.

Ident: [a-zA-Z][-a-zA-Z0-9]*

3

2.4 Literals

2.4.1 Integer Literals

The general form of an integer literal is an octal, decimal,
or hexidecimal constant:

IntLit: [1-9][0-9]*
IntLit: 0[0-7]*
IntLit: 0x[0-9a-zA-Z]+

Integer literals beginning with the digit zero (0) are in-
terpreted in base 8 (octal). Integer literals starting with
“0x” are interpreted in base 16 (hexadecimal). Hexidec-
mal digits are interpreted with the customary hexadecimal
valuations. The letters may appear in either lowercase or
uppercase. It is an error for a digit to be present whose
value as a digit is greater than or equal to the specified
base.

2.4.2 String Literals

String literals (String) are written within double quotes,
and may contain printable charactersexcludingbackslash
(“\”). They may also contain spaces (U+0020). The set
of printable characters consists of any character specified
in the UNICODE 4.1.0 standardexceptthose with general
categories ”Cc” (control codes) ”Cf” (format controls),
”Cs” (surrogates), ”Cn” (unassigned), or ”Z” (separators).
That is, any printable character, excluding spaces.

StringLit: /* as described above

Within a string, the backslash character (“\”) is inter-
preted as beginning an encoding of a specially embed-
ded character. The character following the “\” is either a
single-character embedding or a curly brace character “{”
identifying the start of a UNICODE character embedding.
The legal forms and their meanings are:

\n Linefeed
\r Carriage Return
\t Horizontal Tab
\b Backspace
\s Space
\f Formfeed
\” Double quote
\\ Backslash
\{U+digits} Unicode code point, hexidecimaldigits.

I Core Language Definition

3 Structure of a Compilation Unit

A mkimage unit of compilation consists of a single mod-
ule definition, which in turn consist of a sequence of
module-level statements and definitions:

UOC: module modname ’{’ modstmt+ ’}’
modname: Ident {’.’ Ident}*
modstmt:

| export def stmt
| export Ident {’,’ Ident}* ’;’
| import Ident ’=’ modname ’;’
| stmt

In contrast to “inner” definitions, definitions introduced at
module scope may be exported, making them importable
from other modules.

3.1 Import and Export

Export Theexport keyword indicates that a symbol
bound at top level in a module should be visible to import-
ing modules. When interpretation of the module is com-
pleted, and the top-level environment is fully defined, a
selective copy of the elements of this environment is made
to create a “public” environment containing only the ex-
ported symbols. This is the environment that is obtained
by a subsequentimport statement.

Import The import statement has two effects. If the
imported module has not yet been loaded and intepreted,
this is done at the time of the first import. A given mod-
ule will be imported at most once during an execution of
mkimage.

The left-hand identifier specified in animport gives a
local identifier to which the public environment of the im-
ported module is bound. Thus, ifa is defined to 1 and
exported by modulecoyotos.SpaceBank, then the
statements:

import sb = coyotos.SpaceBank;
print sb.a;

displays the value ”1”.

3.2 Defining Statements

The defining statments introduce variables, procedures,
and enumerations:

4

def stmt: def Ident ’=’ expr ’;’
| def Ident ({Ident {’,’ Ident}*}?’)’

block ’;’
| header? enum ’{’ enumDef+ ’}’
| header? enum Ident ’{’ enumDef+ ’}’
| header?capreg ’{’ enumDef+ ’}’
| header?capreg Ident ’{’ enumDef+ ’}’

enumDef : Ident {’=’ expr}*

The firstdef form associates an initial the value with an
identifier and binds that identifier in the current scope.

The seconddef form introduces a procedure. When
called, the body of the procedure will be executed in an
environment consisting of its lexically preceding defini-
tions within the module and the formal parameters of the
procedure. Inner procedures are legal, and can be returned
as values.

The enum form introduces enumerated constant values.
The values of these identifiers cannot be modified. Enu-
merated constants are supported in the language because
there are certain values thatmkimage and it’s constructed
programs must agree on. In particular, enumerations are
used to define slot numbers in the “tools” capability page
of each process.

The capreg form introduces enumerated constant values
that are to be used as capability register numbers. For pur-
poses of use inside a mkimage file, there is no difference
between acapregenumeration and anenum.

When anenum or capreg definition is market by the
headerkeyword, definitions for the enumerated constants
will be emitted to the corresponding C header file when
header files are generated. Constants defined in anenum
enumeration will be emitted as integer literals, while con-
stants defined in acapregenumeration will be emitted as
constant structure declarators of typecapreg t.

When an expression appears on the right hand side of an
enumDef, it is subject to several constraints:

• The only functions that can be called are arithmetic
functions and unary negation.

The only identifiers that can be referenced are iden-
tifiers defined by earlierenumDefforms.

The combined effect of these constraints is that enumera-
tion definitions may make reference to, and compute val-
ues based on, other enumeration definitions, but they do
not require general interpretation to occur. This is neces-
sary to support header file generation. At the time header
files are generated the corresponding binary programs do
not exist, so attempts to execute (e.g.)loadimage()would
fail.

The value of a defining statement isunit.

3.3 Control Flow Statements

The statement:

if stmt: if ’(’ expr ’)’ block { else block
| if ’(’ expr ’)’ block { else if stmt

stmt: if stmt

provides conditional execution with the customary mean-
ing. The value of this statement is the value of the exe-
cuted block, orunit if the test expression producesfalse
and noelse clause is given. The expression in the test
position should generate either an integer or a boolean re-
sult. If the result is an integer, the value zero is interpreted
as a false condition result and non-zero is interpreted as a
true condition result.

The statement:

return stmt: return expr ’;’

causes a value to be returned from the nearest enclosing
procedure. This statement is not legal at module scope.
Any statement following areturn statement will not be
executed.

The statement:

while stmt: while ’(’ expr ’)’ block

Causes the sequence of statements within the block to be
executed as long as the value ofexprevaluates to true (see
if statement, above). The return value of this statement is
the value of the last iteration of executed block, orUnit
if the loop is not executed at all.

The statement:

do stmt: do block while ’(’ expr ’)’ ’;’

Causes the sequence of statements within the block un-
til the value ofexpr evaluates to true (seeif statement,
above). The return value of this statement is the value of
the last iteration of executed block.

3.4 General Statements

The traditional syntax for assignment is accepted, and
statements may be executed for side effects:

stmt: expr ’=’ expr ’;’
stmt: expr ’;’

The left hand side of an assignment must be an “lvalue”.
That is: an identifier bound in the current environment, a
field of an object, or a slot of an array.

5

Sequences of statements may be surrounded by braces to
form a statement block:

block: ’{’ block stmt+ ’}’
block stmt: stmt

| return stmt
| def stmt

A block is not a legal statement. The value of a block is
the value of the last executed statement within the block.

Diagnostics may be obtained during execution through
two print statements:

stmt: print expr
| print ’*’ expr

The first prints the value of the expressionexpr. If expr
is a capability-valued expression denoting an object, the
second prints the fields of the object in human-readable
form.

The print statementsmaybe dropped shortly in favor of
comparable built-in procedures.

4 Expressions

mkimage provides both the conventional “basic” expres-
sions and a number of expressions that are particular to
the problem of system image construction.

4.1 Basic Expressions

mkimage supports the traditional infix arithmetic, com-
parison, and boolean negation operators with the usual
precedence:

expr: ’-’ expr
expr: expr arithop expr
expr: expr cmpop expr
expr: ’!’ expr
arithop: ’-’ | ’+’ | ’/’ | ’*’ | ’%’
cmpop: ’<’ | ’>’ | ’<=’ | ’>=’

| ’==’ | ’!=’

Arbitrary-precision integer literals, double-precision
floating point values, and strings are valid expressions:

expr: Int | Float | String

The identifierstrue andfalse are built-in literals:1

expr: true | false

1 True and false are not currently implemented.

Procedure calls are expressions written in the usual way:

expr: expr ’(’ expr* ’)’

4.2 Object Allocation Expressions

Processes, GPTs, Endpoints, Pages, CapPages, and Banks
are primitive objects. Creating one entails reserving real
storage in the output image file. In consequence, alloca-
tion of these is supported by syntax:

expr: new Bank ’(’ expr ’)’
expr: new CapPage ’(’ expr ’)’
expr: new GPT ’(’ expr ’)’
expr: new Endpoint ’(’ expr ’)’
expr: new Page ’(’ expr ’)’
expr: new Process ’(’ expr ’)’

Theexprargument must be a bank capability.

4.3 Vector and Environment Expressions

If env is a environment-valued expression, andident
is a field of the corresponding object, then:env.ident
is an lvalue expression denoting the location of that field.
When this appears in a use-occurrence, it is automatically
promoted to thevalueof the field.

expr: expr ’.’ Ident

For each of the objects defined in the Coyotos specifica-
tion, if expr is a capability-valued expression naming one
of these objects thenexpr is also an environment-valued
expression whose identifiers are the fields of the object.
For example:

;references the fault code slot:
processCap.faultCode
;references the GPT capability array:
gpt.cap

If evec is an expression denoting an array, andndx is an
integer-valued expression, then:evec[ndx] is an lvalue
expression denoting a slot in that array (or raises an ex-
ception if bounds are violated). When this appears in a
use-occurrence, it is automatically promoted to thevalue
of the field.

expr: expr ’[’ expr ’]’

For example:

6

;references to a capability register:
processCap.capReg[ndx]
;references to a GPT capability slot:
gpt.cap[2]

Environment-valued and vector-valued expressions are
obtained by calling various built-in library procedures
within the mkimage runtime. A capability page capa-
bility is a vector-valued expression. Thecap field of a
GPT is a vector-valued expression.

4.4 Block Expressions

A statement block is an expression whose value is the
value of the last statement. Note that this subsumes the
need for a local binding construct:

def a = { def i = 1; i + 3; };

II Built-In Procedures

5 Kernel Object Constructors

For each kernel capability defined by the Coyotos kernel,
there is a corresponding constructor function in the run-
time library that returns this capability. In some cases the
capability is a “miscellaneous” capability that does not
designate an object. In other cases the capability desig-
nates an object and a call to the constructor function has
the side effect of adding an object of that type to the coy-
otos image that is under construction:

Window(offset) Returns a window capability into the
background space with the specified integer-valued
offset.

LocalWindow(offset, slot) Returns a local window capa-
bility into the space named byslot with the specified
integer-valued offset.

enter(cap, pp) Fabricates an entry capability to the end-
point named bycap. The protected payload value of
the fabricated capability will bepp.

NullCap() Returns a null capability.

KeyBits() Returns the KeyBits capability.

Discrim() Returns the Discrim capability.

Range() Returns the Range capability.

Sleep() Returns the Sleep capability.

Range() Returns the Sleep capability.

IrqCtl() Returns the IrqCtl capability.

SchedCtl() Returns the SchedCtl capability.

Checkpoint() Returns the Checkpoint capability.

ObStore() Returns the ObStore capability.

IoPerm() Returns the IoPerm capability.

PinCtl() Returns the PinCtl capability.

There is also a procedure for duplicating an existing ob-
ject:

dup(bank, cap) Given a capabilitybankto a space bank,
duplicates the object named becapand returns a ca-
pability to the duplicate.

6 Capability Manipulation

The following built-in procedures manipulate and/or mod-
ify existing capabilities:

readonly(cap) Returns a read-only variant of the passed
capabilitycap(sets the RO restriction bit).

weaken(cap) Returns a read-only and weak variant of the
passed capabilitycap (sets the WK, RO restriction
bits).

noexec(cap) Returns a non-executable variant of the
passed capabilitycap(sets the NX restriction bit).

opaque(gpt-cap) Given a GPT capabilitygpt-cap, re-
turns an opaque capability to the same GPT.

guard(cap, guard [, l2g]) Given a memory object capa-
bility cap, returns a capability with the same permis-
sions whose guard value is set to (guard>>l2v). If
l2g is not specified, the capability’s existingl2gvalue
is used.

7 Space and Object Manipulation

There are a variety of functions for manipulating address
spaces. It is probably advisable to experiment with these
usingprint treeandprint spaceto fully understand what
they do.

7

readfile(bank, string) Given a capabilitybankto a space
bank, and a file namestring, reads the file whose path
is provided instring and returns an appropriate ad-
dress space capability. This routine will allocate any
GPT and page structures necessary to fabricate the
address space.

loadimage(cap, string) Given a capabilitybank to a
space bank, loads an executable file from the file
named bystring into an address space in executable
form. The file name should name an ELF executable.
The result is an address space that is populated ex-
actly as needed to contain the loadable sections spec-
ified in the ELF file’s program header. This routine
will allocate any GPT and page structures necessary
to fabricate the address space.

In contrast toreadfile, this procedure returns an
environment-valued result. The environment will
have bound identifiers;

pc An integer-valued expression con-
taining the binary’s entry point.

space A capability-valued expression con-
taining the fabricated address space.

guarded space(bank, cap, guard [, l2g]) Given a capa-
bility bank to a space bank, and a capabilitycap to
an existing address space, returns a new capability to
the same space having the specifiedguard and l2g
values. Ifl2g is not provided, the currentl2g value
of the address space capability is used.

In contrast toguard, which acts on the capabil-
ity alone,guardedspacemay insert additional GPT
structures in order to satisfy a guard request that
would not fit trivially into the guard field.

insert subspace(bank, spc, subspc, offset[, l2arg])
Given capabilities a capabilitybankto a space bank,
and capabilitiesspc and subspcthat name existing
address spaces, inserts the address space named
by subspcinto the address space named byspc at
the specifiedoffset. If the effective size ofsubspc
exceeds the effective size ofspc, returnssubspc.

The l2arg value, if supplied, gives theeffective size
of the subspace being inserted, which may be either
larger or smaller than the actual size of the subspace.
In this case, the subspace is inserted into the contain-
ing spaceas if it were of the size indicated byl2arg.

print tree(cap) Given an address space capabilitycap,
recursively prints the objects comprising the address
space in raw form.

print space(cap) Given an address space capabilitycap,
recursively prints the objects comprising the address
space. The output is designed to provide a picture of

what pages are mapped where and with what permis-
sions.

fillpage(cap, uint8) Fills the page referenced bycapwith
the 8-bit valueuint8.

set pageuint64(cap, addr, uint64) Writes the 64-bit
value uint64 at offsetaddr in the page referenced
by cap. addr must be a multiple of 8 less than the
target’s page size. The value is written in the target’s
endianness.

A Change History

This section is an attempt to track the changes to this doc-
ument by hand. It may not always be accurate!

This section is non-normative.

A.1 Version 0.2

Complete rewrite reflecting new implementation.

A.2 Version 0.1

Initial capture.

References

[1] J. S. Shapiro, Jonathan W. Adams, Eric Northup, M.
Scott Doerrie, Swaroop Sridhar, Neal H. Walfield,
and Marcus Brinkmann.Coyotos Microkernel Spec-
ification, 2007, available online at www.coyotos.org.

[2] Unicode Consortium. The Unicode Standard, ver-
sion 4.1.0, defined byThe Unicode Standard Version
4.0, Addison Wesley, 2003, ISBN 0-321-18578-1, as
amended byUnicode 4.0.1and by Unicode 4.1.0.
http://www.unicode.org.

8

