
Coyotos Developer Guide
Version 0.1

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

September 10, 2007

Copyright c© 2007, The EROS Group, LLC. Verbatim copies of this document may be duplicated or distributed in
print or electronic form for non-commercial purposes.

THIS GUIDE IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WAR-
RANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Contents

1 Introduction 1

2 Setting Up Your Development Machine 3

2.1 Installing the Cross Compilers 3

2.2 Check Out the Source Code 4

2.2.1 Set Up Mercurial 4

2.2.2 Getting the Code 4

3 Tree Organization, Building, and Rebuilding 5

3.1 Re-Building the Tree From Scratch 6

3.2 Rebuilding A Particular Subtree 6

4 What a Coyotos System Looks Like 9

4.1 Interfaces, Objects, and Permissions 9

i

ii CONTENTS

Chapter 1

Introduction

This book will show you how to get started with Coyotos. They setting up your development machine, obtaining the
source code, where to get help, the tutorials, Coyotos ”theory of operation”, and so forth.

There are really two types of Coyotos developers:

• Embedded system developers who want to know how to assemble acomplete Coyotos system, including kernel,
drivers, and application structure. These developers are interested in the ”system view” of Coyotos development.

• Application or driver developers who have an existing Coyotos system running and want to develop a new
application or utility. These developers generally will not be building a system from the ground up. Instead,
they are developing applications that will be installed by the Coyotos installer.

At the moment, the information in this book is biased in favorof embedded system developers, but a lot of that
information is relevant for application developers as well. The squeaky customer gets the grease and all that.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Setting Up Your Development Machine

The Coyotos development environment is currently supported on Fedora Core 8 and later. Since they are obsolete,
we will be dropping support for Fedora 8 through 10 shortly. We also build for CentOS 5.4. The CentOS packages
shouldwork on RHEL5.4 as well, but we do not test that. Some users areusing other versions of Linux or BSD, but
this involves some extra work and we do not actively support it. This page describes how to set yourself up on Fedora
Core.

If you want to be notified when the source base is updated, you should also subscribe to the coyotos-commit notification
list at http://www.eros-os.com/mailman/listinfo.

2.1 Installing the Cross Compilers

The first thing to do is to install the RPM package that adds theCoyotos tool repository to your environment. To do
this, you should (as root):

rpm -ivh http://www.eros-os.com/YUM/coyotos/Fedora/12/Coyotos-Repository.noarch.rpm

If you are running an earlier version of Fedora Core, replacethe ”12” accordingly. If you are running CentOS 5.4, use:

rpm -ivh http://www.eros-os.com/YUM/coyotos/CentOS/5/Coyotos-Repository.noarch.rpm

Once this package is installed, you will be able to install the Coyotos cross tools. We currently provide cross compi-
lation kits for IA-32, Coldfire, and ARM/StrongArm targets [the ARM tools are not tested by us, but are actively used
by the CapROS team. Depending on your target of interest, youshould run one or more of:

yum install coyotos-i386-xenv
yum install coyotos-m68k-xenv
yum install coyotos-arm-xenv

That may take a while. Be patient. The advantage to installing this way is that you will automatically receive updates.
Occasionally we have been known to make changes to the sourcetree that rely on an update in the cross tools. This is
happening less and less often over time, but it still happensonce in a while.

If we don’t supply packaged tools for your platform, the altermative is to build them yourself. Instructions for this will
be moving here shortly. For now, they can be found at the old site.

3

4 CHAPTER 2. SETTING UP YOUR DEVELOPMENT MACHINE

2.2 Check Out the Source Code

If you don’t already have it, you will need to installmercurial. We use mercurial for our source code management.
You can find information abuot how to use mercurial at http://selenic.com/mercurial/wiki. There is a pre-packaged
version of mercurial in the Fedora repository for all recentversions of Fedora. While you are installing mercurial, you
may also find thecolordiff package useful.

2.2.1 Set Up Mercurial

The Coyotos makefiles rely on themercurial fetch extension. You may also want to enable thegpg extension.
Both extensions ship withmercurial out of the box. To enable these, create a file.hgrc under your home directory
that enables the extention. Here is an example of a minimal.hgrc file:

[ui]
username=Danny Developer <danny@coderworks.org>

editor=vi

[extensions]
hgext.fetch=
hgext.gpg=

2.2.2 Getting the Code

Checking out the base Coyotos tree can be done with the following command. You may wish to consider doing this
within an empty containing directory:

hg clone http://dev.eros-os.com/hg/coyotos/trunk coyotos

If you wish, you may also want to consider checking out the tutorial subtree:

cd coyotos/src
hg clone http://dev.eros-os.com/hg/tutorial/trunk tutorial

The other package that is currently available is theccs-xenv package. It should also be cloned undercoyotos/src if
you choose to check it out. You don’t actually need it unless you are actively working on the cross tools (e.g. you are
porting to a new target).

With a bit of luck, you should now be able to build the tree with:

cd coyotos/src
make

Chapter 3

Tree Organization, Building, and
Rebuilding

The Coyotos tree is divided loosely into ”packages” (which is a terrible name). In general, the rule is that if a directory
mumble/ appears undercoyotos/src, it is a self-contained ”unit” of the build. The exception tothis statement is
thecoyotos/src/build/ directory, which contains makefile support, scripts for installing binaries, and so forth.

The build order and dependencies for the current subdirectories ofcoyotos/src are:

Order Tree Dependencies Description
1 ccs-xenv/ none This tree produces the cross compilers. It is not built automat-

ically. If you are using Fedora as your development environ-
ment, you will probably never build this tree because you have
installed the cross environment packages from our repository.

2 ccs/ ccs-xenv/ This tree produces additional build tools that are not yet ready
to move into packaging. Logically,ccs/ andccs-xenv/
form a single set of tools. This tree produces thecapidl
andmkimage tools, which are needed to generate interfaces,
header files, IPC stub libraries, server demultiplexing stubs, and
complete system images.

3 sys/ ccs/ Kernel source code. Relies oncapidl to generate interfaces
and opcode macros.

4 base/ sys/, ccs/ Core Coyotos utilities and drivers.
5 web/ ccs/ Documentation tree. Relies on thepresenceof sys/ to ob-

tain the kernel interface IDL specifications, but does not rely on
sys/ being compiled.

6 tutorial/ base/ Tutorial segments for various aspects of Coyotos. These rely
on the utilities and drivers generated frombase/. The tutorial/
tree is an optional tree. If it is not present, we will not try to
build it.

7 var.something base/ Any subdirectory of coyotos/src whose name is
var.something is assumed to contain code added by
you. If one or more directories of these names are present, they
will be built in alphabetical order.

It is assumed that any subdirectory namedvar.something conform to the Coyotos build system conventions. If
these subtrees are maintained using mercurial, our top-level makefile (the one incoyotos/src) can be used to help
keep them up to date and to see their status. The addition of new subdirectories necessarily will drag you into the black
art of Makefile management, which is documented later in theDeveloper Guide.

5

6 CHAPTER 3. TREE ORGANIZATION, BUILDING, AND REBUILDING

Output directoriescoyotos/host andcoyotos/usr are created by the build process. Thecoyotos/host
directory is where tools used on the development host (fromccs/) are installed. Thecoyotos/usr directory is
where all of the build results are installed. The general pattern of the build is that each package is built in sequence
and installs its results intocoyotos/usr and/orcoyotos/host as appropriate. Intheory, it should be possible
to build each subtree in its proper order, delete that subtree, and then build the next subtree. In practice, this would
probably break a number of parts of the build.

Theweb/ subtree is something of an unfortunate special case. It is automatically rebuilt to produce pieces of the Coy-
otos web site. Some of the documents rely on the IDL files of other trees in order to generate interface documentation.
At the moment, these IDL files are extracted from their positions in the source tree rather than from their installed
locations. This is a bug that has not yet been addressed.

3.1 Re-Building the Tree From Scratch

We are currently (perhaps I should say constantly) working to improve the build process, especially in the documen-
tation subtree. As with any operating system build tree, there are build order dependencies from one part of the tree to
the next. Not all of these are capturable in the Makefiles. Thebig issue is that later subtrees depend on interfaces that
are published by earlier subtrees.

Because of this, the first thing you should do if you suspect you have a build problem is to rebuild the tree from scratch.
The simplest way to do this is:

cd coyotos/src
make pristine

This is a short-hand for the following commands:

cd coyotos/src
make distclean # clean out the tree and everything that has been installed
make # 2m37s elapsed with cold ccache, 2m16s with warm ccache

The Coyotos build is designed to useccache if you have it installed. Theccache tool does amazing things to
reduce build times, and we strongly recommend it. Ironically, this leaves the documentation tree as the ”expensive”
part of the build. If you are in a hurry, there are a couple of things that you can do to reduce build times.

• You can skip the build of the documentation tree entirely. Setting OPTIONAL DIRS=”” on your make command
line will skip the build of the doc/ and tutorial/ subtrees.

make OPTIONAL DIRS="" # 21s elapsed (warm ccache) # 45s
elapsed (cold ccache)

• You can suppress generation of PDF files by restricting the targets for OSDoc. It is the PDF files that take all of
the time:

make OSDOC TARGETS="%.html" # 30s elapsed (warm ccache)

Please note that you shouldneverchange the value of OPTIONALDIRS when you are runningmake clean or
make distclean. If you do so, those subdirectories will not be visited by thecleaning process. As a result, you
will not get a clean build later.

3.2 Rebuilding A Particular Subtree

The convention in the Coyotos tree is that typingmake package from within a package subtree rebuilds that subtree
(from the top of the subtree) and installs its output. This build process assumes (without checking) that previous

3.2. REBUILDING A PARTICULAR SUBTREE 7

subtrees have been built. It also assumes that the results ofprevious builds of the current subtree will not alter the build
result. This creates a requirement of convention:where the build of a given package requires interface specifications
or mkimage component files that are provided by the same package, it should obtain these from the package source
directory, not from the installed location. You can also typemake world or make pristine, either of which
will rebuild the entire tree proceeding fromcoyotos/src. If you simply typemake, what happens depends on your
current directory. If you are sitting incoyotos/src, typingmake is equivalent to typingmake world. If you are
sitting within a package subtree, typingmake is equivalent to typingmake package.

At this point, we need to explain one piece of the makefile magic: how do the makefiles figure out where you are in
the subtree? In principle, you could check out your tree anywhere. Two rules are applied in sequence:

1. If an environment variableCOYOTOS ROOT is set, it will be used.COYOTOS ROOT tells the build system
where the top of your tree is. It is not required that the top-level directory be namedcoyotos/, but it will
avoid confusion if you follow this convention. The treeunderneaththe${COYOTOS ROOT} directory must
follow the coyotos conventions.

2. If COYOTOS ROOT is not set, the build system will examine your current working directory to see if it is of
the formsome/path/coyotos/src/ or some/path/coyotos/src/subdirectory. If so, it will
assume thatsome/path/coyotos/src/ is the top of your development tree. As a practical matter, I don’t
think that any of the Coyotos or EROS developers (EROS makefiles used a similar trick) have bothered to set
COYOTOS ROOT in the last decade.

A minor word of caution: the mechanism used to findsome/path/coyotos/src/ is not sophisticated. If you
have a directory of the formpath/coyotos/src/more/path/coyotos/src, please let us know what it does.

8 CHAPTER 3. TREE ORGANIZATION, BUILDING, AND REBUILDING

Chapter 4

What a Coyotos System Looks Like

Viewed as a whole, a Coyotos system consists of some number ofrunning programs that are ”connected” by capabili-
ties. The result is a graph, in which entry capabilities indicate dependencies. If my program relies on yours to provide
some function, then my program will call yours. In order to dothat, my program will hold an entry capability to your
program. If we were to freeze the system, and draw a graph showing all of the entry capabilitiesother thanbrand
capabilities (see below), we would have a picture illustrating the runtime software dependency graph.

This graph is dynamic. New processes are created. They in turn create new helper processes. Later, these processes
finish, tearing down some or all of the structure that they have built. The dependencies that we are looking at are
dynamic, run-time dependencies. In a well-structured system, we would find that there are no cycles in this graph. A
cycle would indicate a path where some program might deadlock by depending on itself recursively.

In contrast to most other systems, Coyotos processes are notbuilt from files. Actually, it is more the other way around:
the ”file” object is really an interface implemented by one (or more) processes. In fact, the general pattern in Coyotos
is that every process implements one or more objects.

4.1 Interfaces, Objects, and Permissions

9

