Coyotos Developer Guide

Version 0.1

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

September 10, 2007

Copyright(© 2007, The EROS Group, LLC. Verbatim copies of this documeay ime duplicated or distributed in
print or electronic form for non-commercial purposes.

THIS GUIDE IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, INCLWDING ANY WARRANTY OF
MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTCULAR PURPOSE, OR ANY WAR-
RANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFICATION ORABIPLE.

Contents

1 Introduction

2 Setting Up Your Development Machine
2.1 |Installing the Cross Compilers

2.2 Check Out the Source Code
2.2.1 SetUpMercurial

2.2.2 Gettingthe Code

3 TreeOrganization, Building, and Rebuilding
3.1 Re-Building the Tree From Scratch . .
3.2 Rebuilding A Particular Subtree . . .

4 What a Coyotos System LooksLike
4.1 Interfaces, Objects, and Permissions

-P-b.l;w

ol
»

CONTENTS

Chapter 1

| ntroduction

This book will show you how to get started with Coyotos. Theftiag up your development machine, obtaining the
source code, where to get help, the tutorials, Coyotos ftheboperation”, and so forth.

There are really two types of Coyotos developers:

e Embedded system developers who want to know how to asserblagiete Coyotos system, including kernel,
drivers, and application structure. These developersweedsted in the "system view” of Coyotos development.

e Application or driver developers who have an existing Cogosystem running and want to develop a new
application or utility. These developers generally willtte building a system from the ground up. Instead,
they are developing applications that will be installed iy €oyotos installer.

At the moment, the information in this book is biased in faedbrembedded system developers, but a lot of that
information is relevant for application developers as wélie squeaky customer gets the grease and all that.

CHAPTER 1. INTRODUCTION

Chapter 2

Setting Up Your Development Machine

The Coyotos development environment is currently supploste Fedora Core 8 and later. Since they are obsolete,
we will be dropping support for Fedora 8 through 10 shortlye ®so build for CentOS 5.4. The CentOS packages
shouldwork on RHEL5.4 as well, but we do not test that. Some usersisirgy other versions of Linux or BSD, but
this involves some extra work and we do not actively suppoitthis page describes how to set yourself up on Fedora
Core.

If you want to be notified when the source base is updated,lyoulg also subscribe to the coyotos-commit notification
list at http://www.eros-os.com/mailman/listinfo.

2.1 Installing the Cross Compilers

The first thing to do is to install the RPM package that add€dbgotos tool repository to your environment. To do
this, you should (as root):

rpm-ivh http://ww. eros-os. com YUM coyot os/ Fedor a/ 12/ Coyot os- Reposi t ory. noarch. rpm
If you are running an earlier version of Fedora Core, reptae€’12” accordingly. If you are running CentOS 5.4, use:
rpm-ivh http://ww. eros-os. com YUM coyot os/ Cent OS/ 5/ Coyot 0s- Reposi t ory. noarch. rpm

Once this package is installed, you will be able to instadl @oyotos cross tools. We currently provide cross compi-
lation kits for IA-32, Coldfire, and ARM/StrongArm targethg ARM tools are not tested by us, but are actively used
by the CapROS team. Depending on your target of interestskiould run one or more of:

yuminstall coyotos-i 386-xenv
yuminstall coyotos-n68k-xenv
yuminstall coyotos-arn xenv

That may take a while. Be patient. The advantage to instgihirs way is that you will automatically receive updates.
Occasionally we have been known to make changes to the siweectnat rely on an update in the cross tools. This is
happening less and less often over time, but it still happeis in a while.

If we don’t supply packaged tools for your platform, the atative is to build them yourself. Instructions for this il
be moving here shortly. For now, they can be found at the ¢¢d si

4 CHAPTER 2. SETTING UP YOUR DEVELOPMENT MACHINE

2.2 Check Out the Source Code

If you don't already have it, you will need to instater cur i al . We use mercurial for our source code management.
You can find information abuot how to use mercurial at htel#nic.com/mercurial/wiki. There is a pre-packaged
version of mercurial in the Fedora repository for all recesmtsions of Fedora. While you are installing mercurial, you

may also find theol or di f f package useful.

2.2.1 Set Up Mercurial

The Coyotos makefiles rely on timer cur i al f et ch extension. You may also want to enable ¢y extension.
Both extensions ship witlrer cur i al out of the box. To enable these, create a.fiigr c under your home directory
that enables the extention. Here is an example of a minirngl c file:

[ui]
user nanme=Danny Devel oper <danny@oderworks. or g>
edi t or =vi

[ext ensi ons]
hgext . fet ch=

hgext . gpg=

2.2.2 Gettingthe Code

Checking out the base Coyotos tree can be done with the foijpeommand. You may wish to consider doing this
within an empty containing directory:

hg clone http://dev. eros-o0s. conf hg/ coyot os/trunk coyot os
If you wish, you may also want to consider checking out theriat subtree:

cd coyotos/src
hg clone http://dev.eros-o0s.com hg/tutorial/trunk tutori al

The other package that is currently available is ¢b&xenv package. It should also be cloned undeyotos/src if
you choose to check it out. You don’t actually need it unless gre actively working on the cross tools (e.g. you are
porting to a new target).

With a bit of luck, you should now be able to build the tree with

cd coyotos/src
make

Chapter 3

Tree Organization, Building, and
Rebuilding

The Coyotos tree is divided loosely into "packages” (whih terrible name). In general, the rule is that if a directory
nmunbl e/ appears underoyot os/ sr c, it is a self-contained "unit” of the build. The exceptionttos statement is
thecoyot os/ src/ bui | d/ directory, which contains makefile support, scripts fotatigng binaries, and so forth.

The build order and dependencies for the current subdiriestofcoyot os/ sr ¢ are:

Order
1

(G2

Tree
ccs-xenv/

ccs/

sys/

base/
web/

tutorial/

var . sonet hi ng

Dependencies

none

ccs-xenv/

ccs/

sys/,ccs/
ccs/

base/

base/

Description

This tree produces the cross compilers. It is not built aatibm
ically. If you are using Fedora as your development environ-
ment, you will probably never build this tree because youehav
installed the cross environment packages from our repysito
This tree produces additional build tools that are not yatlye

to move into packaging. Logicallccs/ andccs- xenv/
form a single set of tools. This tree produces trepi dl
andnki mage tools, which are needed to generate interfaces,
header files, IPC stub libraries, server demultiplexingstand
complete system images.

Kernel source code. Relies aapi dl to generate interfaces
and opcode macros.

Core Coyotos utilities and drivers.

Documentation tree. Relies on tipeesenceof sys/ to ob-
tain the kernel interface IDL specifications, but does niytoa
sys/ being compiled.

Tutorial segments for various aspects of Coyotos. These rel
on the utilities and drivers generated frdrase/ . The tutorial/
tree is an optional tree. If it is not present, we will not toy t
build it.

Any subdirectory of coyot os/src whose name is
var . sonet hi ng is assumed to contain code added by
you. If one or more directories of these names are preseayt, th
will be built in alphabetical order.

It is assumed that any subdirectory nanved . sonet hi ng conform to the Coyotos build system conventions. If
these subtrees are maintained using mercurial, our tagl-heakefile (the one inoyot 0s/ sr ¢) can be used to help
keep them up to date and to see their status. The additiomo$uledirectories necessarily will drag you into the black
art of Makefile management, which is documented later irCtbeeloper Guide

6 CHAPTER 3. TREE ORGANIZATION, BUILDING, AND REBUILDING

Output directoriexoyot os/ host andcoyot os/ usr are created by the build process. Theyot os/ host
directory is where tools used on the development host (ftars/) are installed. Theoyot os/ usr directory is
where all of the build results are installed. The generalgpatof the build is that each package is built in sequence
and installs its results intooyot os/ usr and/orcoyot os/ host as appropriate. ltheory, it should be possible

to build each subtree in its proper order, delete that sebtad then build the next subtree. In practice, this would
probably break a number of parts of the build.

Theweb/ subtree is something of an unfortunate special case. It@smaatically rebuilt to produce pieces of the Coy-
otos web site. Some of the documents rely on the IDL files ofiottees in order to generate interface documentation.
At the moment, these IDL files are extracted from their posgiin the source tree rather than from their installed
locations. This is a bug that has not yet been addressed.

3.1 ReBuildingthe Tree From Scratch

We are currently (perhaps | should say constantly) workangrprove the build process, especially in the documen-

tation subtree. As with any operating system build treergtlaee build order dependencies from one part of the tree to
the next. Not all of these are capturable in the Makefiles. Aigassue is that later subtrees depend on interfaces that
are published by earlier subtrees.

Because of this, the first thing you should do if you suspeuathaye a build problem is to rebuild the tree from scratch.
The simplest way to do this is:

cd coyotos/src
make pristine

This is a short-hand for the following commands:

cd coyotos/src
make di stcl ean # clean out the tree and everything that has been installed
make # 2nB7s el apsed with cold ccache, 2ml6s with warm ccache

The Coyotos build is designed to useache if you have it installed. Thecache tool does amazing things to
reduce build times, and we strongly recommend it. IronycdHis leaves the documentation tree as the "expensive
part of the build. If you are in a hurry, there are a couple @fdis that you can do to reduce build times.

e You can skip the build of the documentation tree entirelytiSg OPTIONAL DIRS=""0on your make command
line will skip the build of the doc/ and tutorial/ subtrees.

make OPTI ONAL DI RS="" # 21s el apsed (warm ccache) # 45s
el apsed (cold ccache)

e You can suppress generation of PDF files by restricting tigeeta for OSDoc. It is the PDF files that take all of
the time:

nmake OSDOC.TARGETS="% htm " # 30s el apsed (warm ccache)
Please note that you shouléverchange the value of OPTIONADIRS when you are runningake cl ean or

make di st cl ean. If you do so, those subdirectories will not be visited by theaning process. As a result, you
will not get a clean build later.

3.2 Rebuilding A Particular Subtree

The convention in the Coyotos tree is that typimake package from within a package subtree rebuilds that subtree
(from the top of the subtree) and installs its output. Thigdbprocess assumes (without checking) that previous

3.2. REBUILDING A PARTICULAR SUBTREE 7

subtrees have been built. It also assumes that the resylts\obus builds of the current subtree will not alter theldui
result. This creates a requirement of conventiwhere the build of a given package requires interface spatifins

or mkimage component files that are provided by the same gackashould obtain these from the package source
directory, not from the installed locationYou can also typerake wor | d or meke pri sti ne, either of which
will rebuild the entire tree proceeding froooyot 0s/ sr c. If you simply typenake, what happens depends on your
current directory. If you are sitting inoyot os/ sr ¢, typingnake is equivalent to typingrake wor | d. If you are
sitting within a package subtree, typingke is equivalent to typingrake package.

At this point, we need to explain one piece of the makefile wiagow do the makefiles figure out where you are in
the subtree? In principle, you could check out your tree drgne. Two rules are applied in sequence:

1. If an environment variabl€OYOTOS ROOT is set, it will be used.COYOTOSROOT tells the build system
where the top of your tree is. It is not required that the teyel directory be namedoyot os/ , but it will
avoid confusion if you follow this convention. The treederneattthe ${COYOTOS_ROOT} directory must
follow the coyotos conventions.

2. If COYOTOSROQT is not set, the build system will examine your current wogkitirectory to see if it is of
the formsome/ pat h/ coyot os/ src/ or sone/ pat h/ coyot os/ src/ subdi rect ory. If so, it will
assume thatonre/ pat h/ coyot os/ sr ¢/ is the top of your development tree. As a practical mattegn'd
think that any of the Coyotos or EROS developers (EROS makefited a similar trick) have bothered to set
COYOTOSROOT in the last decade.

A minor word of caution: the mechanism used to fexne/ pat h/ coyot os/ src/ is not sophisticated. If you
have a directory of the forpat h/ coyot os/ sr ¢/ nor e/ pat h/ coyot os/ sr c, please let us know what it does.

CHAPTER 3. TREE ORGANIZATION, BUILDING, AND REBUILDING

Chapter 4

What a Coyotos System L ooks Like

Viewed as a whole, a Coyotos system consists of some numbenioing programs that are "connected” by capabili-
ties. The result is a graph, in which entry capabilities ¢atit dependencies. If my program relies on yours to provide
some function, then my program will call yours. In order totdat, my program will hold an entry capability to your
program. If we were to freeze the system, and draw a graphislyoail of the entry capabilitiesther thanbrand
capabilities (see below), we would have a picture illugtigathe runtime software dependency graph.

This graph is dynamic. New processes are created. Theyrnrcteate new helper processes. Later, these processes
finish, tearing down some or all of the structure that theyehlawilt. The dependencies that we are looking at are
dynamic, run-time dependencies. In a well-structuredesystve would find that there are no cycles in this graph. A
cycle would indicate a path where some program might deadlgaepending on itself recursively.

In contrast to most other systems, Coyotos processes abeiifidftom files. Actually, it is more the other way around:
the "file” object is really an interface implemented by onerfore) processes. In fact, the general pattern in Coyotos
is that every process implements one or more objects.

4.1 Interfaces, Objects, and Permissions

