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Preface

These notes are an attempt to document the Coyotos system andits theory of operation ”from the inside”. The approach
is to walk through the kernel from power-on through capability invocation, tracing what the kernel does at each step.

I’m sure that these pages will get printed. For many readers (myself included) that is the best way to read a long,
basically linear document. However, the book is an evolvingdocument. It’s official home is at http://www.coyotos.org.
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Part I

A Working Tour of the Kernel
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This part describes the internals of the Coyotos kernel, beginning at power-on and proceeding through the first inter-
process communication operation.
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Chapter 1

Introduction

These notes document the internal structure of the Coyotos microkernel. They proceed by “visiting” the system from
power-on to execution of the first user instruction, and continue to consider the first kernel capability invocation and
then the first invocation of a server-implemented capability. The approach is loosely inspired by a one-week lecture
series on the Multics system given at MIT by Elliott Organick. Each day he opened his seminar with “Today, we will
run the first user-mode instruction, but before we can do that...” The first day started with turning on the power. By the
end of the week the lecture series had covered essentially all of the Multics hardware and its operating system kernel.

The “follow the code” approach gives a very different feel for a system than the conventional operating system text-
book. It is closer to the approach used in John Lions’Commentary on UNIX 6th Edition, with Source Code. Mainly,
the order of presentation works out a bit differently. We will see if it is better, worse, or merely different.

Coyotos is actively under development.. In consequence, this book will quickly become out of date. If you find an
issue of that nature, please add comments to the pages identifying the problem, and if possible, the fix. Also, please
do not hesitate to comment on any points that confuse you.

As with any microkernel, Coyotos incorporates a fair amountof machine-dependent code. In order to walk through
the system, we need to choose an architecture. With some hesitation, I have chosen to describe the internals of the
IA-32 (i386) implementation. I have chosen IA-32 because itwill certainly be the most common architecture on which
Coyotos is run. I hesitate because IA-32 is a complicated architecture, and there are places where this will force me to
diverge into discussion of IA-32’s (alleged) features. There is no such thing as a free lunch.

Where appropriate, I will also interject discussion about considerations for non-IA32 architectures.

To give a sense of scale, Coyotos remains a relatively small kernel. Coyotos remains a fairly small kernel. At this
writing, the IA-32 implementation is 12,956 source lines ofcode, of which 4,738 lines are machine-dependent. Of
those, 615 are assembly lines. There are people who say that human programmers can keep roughly 10,000 lines
of code in their head, and beyond that things get too big to understand. This, of course, is a rough number that is
heavily influenced by code organization (is it well-modularized?), idiomatic conventions (assertions and “boiler plate”
do not count), the complexity of code interdependencies, and the tool used to count the lines. Empirically, the current
Coyotos kernel is of a size that mortals can comprehend.

1.1 Why This Approach

Why is this an interesting — or even useful — way of looking at an operating system? Operating system textbooks
have come to have a fairly well-established structure. Whatis better or different about this one?

Let me answer with an example. Every conventional operatingsystem textbook includes a chapter on memory man-
agement — which is to say, memory allocation policy. If you look at the better textbooks, you will find that they all
end up saying the same thing: the buddy system is the best memory allocator to use. I defy you to find even one
production kernel that uses a buddy system allocator for kernel memory. These days they all use something called the
slab allocator, but even before that nobody used the buddy system. So why did the textbooks say this obviously wrong
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2 CHAPTER 1. INTRODUCTION

thing? Well, the buddy system really is the best allocator,providedyou are handling an infinite stream of allocation
requests consisting of random allocation sizes. What’s wrong with this picture is that operating systems have a small,
well-known set ofparticular sizes that they allocate, and they allocate lots of those. The buddy allocator claim is right,
but for an irrelevant set of assumptions. When you have actually built an operating system, or looked at it from the
inside, it is perfectly apparent that this assumption is irrelevant.

There are some lessons to take away from this:

1. Always ask what the assumptions are behind a conclusion.

2. Always reality-check the assumptions.

3. Don’t believe that a statement is right just because it comes from somebody famous. In that case, the cul-
prit was probably Avi Silberschatz. Avi certianlyhasbuilt real operating systems, but he sometimes lets his
understanding of theory override what he knows from reality.

As the old joke goes: the difference between theory and practice is that in theory there is no difference between theory
and practice, but in practice there is.

Well, enough rambling. On to Coyotos and its code.



Chapter 2

Peculiarities of the Coyotos Design

As you read through the Coyotos code, there are some things about its structure that you will need to know. This
section briefly documents them.

2.1 Coyotos is a Microkernel

Coyotos is a microkernel. There is a great deal of conventional operating system function that isnot implemented
by the kernel. This function is critical to have a complete, functional operating system, and it is certainly critical to
understanding the behavior of any Coyotos system as a whole.For the most part, however, there is no reason for this
code to run in the hardware’s “supervisor” mode. Supervisormode allows code to do absolutelyanything. That is too
much power for a large body of code to wield safely. Indeed, the existing Coyotos kernel is teetering at (some would
say past) the limit on the amount of code that can safely be runin supervisor mode — simply because it is teetering
at the limits of what the human (well, the software developer, which is only approximately the same thing) head can
manage at one time.

Some things that you willnot find in the Coyotos kernel:

• A file system. All management of higher-level abstractions is handled by user-level code.

• Device drivers. All device handling is done at user level. This, by the way, is a debatable design choice.
There are some compelling reasons to implement drivers in the kernel, primarily motivated by issues ofcopy
elimination. We will discuss this late in the book.

• Security policy. The kernel implements protection primitives (in the form of capabilities), but not security policy.
Security policy is implemented by user-level code.

• Networking suport. Coyotos has a TCP/IP stack. By now you canprobably figure out for yourself where that is
implemented...

What youwill find in the kernel:

• Implementations of the system’s “primitive” objects. By “objects,” we mean objects in the sense of operating
systems: memory pages, processes, and so forth.

• The implementation of capabilities, which provides both the primitive mechanism for naming and the primitive
mechanism for protection.

• Interprocess communications. In most microkernels this iscalled IPC. In Coyotos this is folded in to the the
capability mechanism.

3
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2.2 Coyotos is a Capability System

Coyotos is a capability system. It’s basic mechanism for naming and protection is something called acapability. In
contrast to many other capability systems, Coyotos is a “pure” capability system, because capabilities are theonly
mechanism for naming and invoking objects or services. Conceptually, the kernel implements only one system call:
invoke capbility. In practice, the kernel implements two additional system calls load capability andstore capability.
These simulate instructions that general-purpose computing hardware does not provide.

In the literature, you will often find a capability describedas an (object, permissions) pair. This is unfortunate, because
we want the term “object” to mean something else, and we wouldlike “permissions” to be something that we can relate
more directly to programming languages and the lambda calculus. In the programming languages world, an object
consists of some representation state and a set of methods that perform operations which optionally reference that
representation state. The intution we want is that a capability names an object in the programming languages sense of
the word “object.” Unfortunately, the operating system community is equally sure about what an “object” means. It is
a page, a process, a file, and so forth. Both views are right; they simply speak at different levels of abstraction. The
problem is that the bridge between these levels of abstraction is the capability. As a compromise, we recommend the
view that a capability consists of a (representation-object, method-set) pair. This is impossibly cumbersome to say,
so we will often fall back on the (object, permissions) intuition. When we do, remember thatpermissionsis really
a short-hand for “a set of permitted methods.” Also, be careful about the termobject. When we speak of “invoking
an object,” we mean an object in the programming languages sense. When we speak of a “capability designating an
object,” we may meaneitheran object in the operating system senseor an object in the programming languages sense.
Hopefully it will be clear from context. The important pointis to be aware that the term is overloaded.

We have tried various ways to disentangle this term. None were very satisfactory. The confusion of
overloading the termobjectseems to be less than the confusion of trying to introduce a new term.

The reason that Coyotos uses capabilities as its primitive mechanism of protection has to do with security: it allows
applications to limit the flow of authority in the system. We use the termpermissionto mean “the authorization to
directly perform an operation on an object.” We use the termauthority to mean “the transitive effect that a process
might have on a system, including all of the operations that it might perform in the future based on the permissions that
it currently wieldsor can transitively obtain. In most systems, permissions are determined primarily by who is running
a program (theprincipal). In capability systems, permission is determined by the capabilities that a process possesses.
Because of this, capability system designs are greatly concerned with both the initial arrangement of capabilities and
objects and the ways in which that arrangement can evolve. Coyotos is a pure capability system. The kernel simply
doesn’t implement any notion of principal at all. All accessdecisions are made on the basis of capabilities. Possessing
a capability is a necessaryandsufficient proof of authority to perform the operations permitted by that capability on
the object that it designates.

2.3 Coyotos is Persistent

While the current implementation does not (yet) implement persistence, Coyotos is designed to be a persistent system.
Like its predecessor EROS, Coyotos has the ability to save the entire running state of the system to disk at any time.
This creates an inversion of responsibilities in comparison to a conventional kernel. For example, theprocessstructure
of a conventional kernel is a kernel data structure that lives in main memory. It is owned by the kernel, created by the
kernel, managed by the kernel, and reclaimed by the kernel.

In Coyotos, a process is managed by the kernel, but it is adisk-baseddata structure that is created, destroyed, and
owned by some user (more precisely: by a storage allocator called by a program). In order to execute a process, the
Coyotos kernel “borrows” its state from the disk-based object. At any time, the kernel may be called on to put that state
back into its on-disk form so that it can be written out to the disk. This is true for every other major kernel object type
as well. This imposes some constraints on how the kernel is allowed to manipulate objects, and on the dependency
relationships that it is required to maintain. You will find that every kernel object that has state (some kernel services
have no state, but are considered “objects by courtesy”) divides cleanly into two parts: the persistent state, which lives
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within thestate field of the object, and other fields that are used by the kernelto keep track of the object at run time.
These other fields are not saved when the object is written out.

Because the Coyotos kernel is required to be able to write outall of the major kernel objects on demand, we often say
that Coyotos kernel memory is a cache of the “official” state,which lives on the disk.

2.4 Coyotos is Transactional

The EROS system, which was the predecessor of Coyotos, was strictly transactional. Every EROS system call happens
as a single unit of operation. Control enters the kernel, resources are gathered, a “commit point” is reached, and the
operation proceeds without interruption until it completes. After the commit point occurs, the operation is required to
complete or to panic the system . Failures after the commit point indicate a deep kernel logic error. Prior to the commit
point, no modifications to externally visible system state are required. The kernel is entitled to load and clear caches
before the commit point. It can mark objects dirty (thereby allowing them to be modified after the commit point).
It can convert their representation from one format to another. It cannot actually modify them in any semantically
observable way.

A corollary to this is that any EROS system call can be abandoned prior to the commit point without any damage to
kernel integrity. Think of this as a form of exception handling: any kernel path can “throw” before the commit point,
but not after. In practice, locks must be released and the current transaction ID must be abandoned, but that is it. In the
EROS implementation, this is accomplished by cleaning up a small number of global variables, re-setting the kernel
stack pointer to point to the top of the kernel stack, and branching to a well-known “figure out what to do next” entry
point. From a code-reading perspective, there are two implications to this:

• No state should ever go on the stack that requires any sort of cleanup, because if proceduref() calls procedure
g(), control may never return tof() and cleanup may never occur.

• The nominal return values of procedures indicate what happens if things succeed. If things fail and the current
transaction is aborted or restarted, procedure returns will not happen at all.

A second corollary to this is that any system state can be reconstructed by some purely sequential sequence of system
calls and user-mode instructions. That is, the system evolution is serializable. Unfortunately, it is impossible to
preserve this model in pure form on a multiprocessor. As an example, consider a string copy. When address spaces are
suitably shared, is possible for a second processor to observe a string that has been partially copied by a first processor.
As a result, serializability is lost.

Once the purely serializable transactional model is lost, it is desirable for performance reasons to look for ways to
optimize. In some cases, it is good enough to say that the results are not fully defined until the operation completes,
and that partial results may appear from operations thatnevercomplete. We will look at some examples of this in
the discussion of capability invocation. Coyotos preserves the EROS model in spirit, but it aggressively exploits these
sorts of “partially defined” operations for performance. Ineach case, it is necessary to specify why the optimizing
short cut is safe with respect to the original model, and we will do so. If you catch usfailing to do so, it is a mistake,
and you should ask about it by posting a comment on the appropriate page.

From the kernel perspective, there is an important consequence of a transactional kernel design: there is no per-process
kernel stack. When a process becomes blocked in the kernel itdoes not hold resources. On resumption, it will restart
its current system call from scratch. Because of this, it hasno state on the stack that needs to be preserved. Coyotos
requires a stack for each CPU, but that stack is owned by the CPU, not the process.
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Chapter 3

From Power-On to kernel main

Traditionally, the first instruction of a UNIX binary is labeled by the symbolstart. Actually, the leading ’’ may
or may not be present, depending on your linker. In any case, agreat deal happens between the time that the hardware
powers on and the time we arrive at the start symbol of the Coyotos kernel:

• The BIOS runs, sizing your memory, initializing the system memory controller and interrupt controller (we
hope, but not always) to sane states, possibly running the network boot ROM to load your kernel, or possibly
loading the first sector of your boot loader from disk (or these days, from a USB key, CF card, or SD card).

• The boot loader (in our case,grub) executes, collecting various information from the BIOS that may or may not
turn out to be useful later. It isgrub that establishes most of the initial conditions that apply when Coyotos is
started.

Within the Coyotos source tree (coyotos/src), the kernel source tree lives in the sys/ subdirectory. The kernel build
makes use of the IDL compiler, so it is necessary to build the ccs/ subtree before building the sys/ subtree. Most of
what we are about to discuss occurs in the file arch/i386/kernel/boot.S. You may find it convenient to have a copy of
that ready to hand while you read.

3.1 Postcards from the Boot Loader

By the time control reaches the kernel atstart, thegrub boot loader has placed the IA-32 processor in protected
mode, and has established 4 gigabyte segment limits for bothcode and data. Grub has loaded the kernel to its linker-
specified load address (on IA-32: 0x100000, or 1 megabyte). It has also loaded a second file using the grub “module”
directive. This second file contains theinitial system image, which is a serialized form of all the objects which exists
when the system initially starts running.

At system startup on a multiprocessor, only one CPU has been enabled. The BIOS has elected this CPU as the “master”
CPU. Any other CPUs that are present on the system are quiescent. We will refer to this CPU as “cpu0.” Of course,
on a uniprocessor cpu0 is the only CPU that there is.

The situation bequeathed to us bygrub is delicate. We know that it has established various initialconditions and
collected various information. Unfortunately, we don’t know wheregrub has placed this information in memory.
This means that we cannot allocate any memory until we figure out where grub has put things. In particular, we
cannot reserve space for either a kernel stack or an initial kernel memory mapping structure. We know thatgrub has
established a map for us somewhere, but thegrub specification does not tell us where this might be. The Coyotos
kernel linker scriptarch/i386/kernel/ldscript.S has pre-reserved space for these things. We need to get
out from under these unknowns as quickly as we can, but there are some things that we need to do first.

To make matters really fun, there is some delicacy that we have imposed on ourselves. Long-standing convention
on IA-32 is that the kernel resides in the uppermost portion of the address space, typically starting at 0xC000000 (3
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8 CHAPTER 3. FROM POWER-ON TO KERNELMAIN

gigabytes). Most IA-32 machines don’t have that much physical memory, so we cannot load the kernel at that address
directly. What we do instead is tolink the kernel starting at 0xC0100000 (3 gigabytes plus 1 megabyte), butload the
kernel starting at 0x10000 (1 megabyte). This has implications:

• Coyotos will not run on an IA-32 machine with less than 1 megabyte of memory (or at least, not the way we
normally compile it).

• Until we can build a virtual memory map for the kernel, we needto restrict ourselves to purely position-
independent instructions, because any attempt to reference an absolute address is going to try to make that
reference at the official address above 3 gigabytes, and we don’t yet have a mapping there.

At various points inarch/i386/kernel/ldscript.S you will see the symbol KVA being subtracted from a
symbol address. KVA is a macro that tells us what the linker’snotion of the base virtual address was. Subtracting it
allows us to correct from linked addresses to loaded addresses where we need to. Confusing? Definitely. We are going
to get out of this confused as quickly as possible, but we needto build a kernel virtual map before we can do that.

3.2 Zeroing the BSS Region

The first thing we need to do is to zero thebss region. When applications run, it is the responsibility of the paging
subsystem (or the application loader) to make sure that thebss region is zeroed. A kernel must do this for itself.
Further, we want to do this before we touch any global variables, because some of those variables may live in thebss
section. If we write to them andthenzero thebss section, we will end up zeroing anything we have written. To zero
thebss region we need to use the%eax register. Unfortunately grub has left some information there that we do not
yet want to lose, so we need to move that value out of the way first. Immediately after clearing thebss area, we can
save the information provided bygrub into global variables (being careful to make the KVA adjustment). We will use
this information later.

3.3 Processor Identification and PAE Mode

The beauty of the IA-32 family of processors is that there areso many variants to choose from. Later processors
support features that earlier machines do not. There are four features that we want to use if we can:

• Large page support will allow us to map the kernel with a much smaller number of TLB entries. This has a very
significant impact on kernel performance, so we want to use this feature if it is available.

• Global page support allows mappings for the kernel to remainresident in the TLB across TLB flushes. This also
has a significant impact on kernel perfomance.

• Later processors implement a “no-execute” hardware protection. The IA-32 family supportstwo memory map-
ping models: legacy (the original two-level scheme) and PAE(a three-level scheme). The no-execute feature is
only available in PAE mode, and then only on later processors. Unfortunately, it is not simple to switch between
legacy and PAE mode later, so we need to figure out early whether PAE mode is available and use it from the
beginning.

• We want to enable the extended hardware debugging features if present. Later, this will allow us to use hardware
watchpoints and breakpoints for debugging.

To figure out which subset of these features is available, we need to do a moderately convoluted exercise in processor
feature identification. IA-32 processor identification is now a subject for a long Intel technical note. At this stage, we
want to do the bare minimum. If you are following along in boot.S, the instruction marking the end of this sequence
is thejnz setup pae map. At that point, we have made a decision about the availability of the PAE features, and
we will proceed to build the appropriate type of mapping table.
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Note that the current startup code enables PAE mode without checking whether the no-execute (NX) feature is present
on the hardware. This is a bug. The PAE mapping mode is slower and more complicated than the legacy mapping
mode. While itdoesprovide some new features, none of these are used by Coyotos,and we probably should not be
enabling PAE unless we are actually going to get some value out of it.

3.4 Primordial Kernel Map, Switch to Linked Address

Now that the processor has been identified, we can begin weaning ourselves from the initial configuration provided
by grub. The first step is to build a memory map of our own at a known location. The kernel has pre-reserved space
for a single page table, a single page directory, and a page directory page table (PDPT). The last is used only in PAE
mode. We will initialize a full page table of mappings. In thelegacy mapping mechanism, this will map the lowest 4
megabytes of memory. In the PAE mapping mechanism, this willmap the lowest 2 megabytes of memory. We will
construct two aliases for this region: one at 0x00000000 (which is where we are presently running) and the other at
0xC000000 (which is where we are linked). In the process, we take care to ensure that the text-mode console frame
buffer is mapped non-cacheable, so that writes to that area will appear on the physical display immediately. Once the
map is build, we load it onto the processor and enable the virtual address translation hardware.

This is a very sloppy mapping. We have no idea whether the machine actually has 2 or 4 megabytes of memory, but
we are going to be re-building this map later in any case. The reason we want this early mapping is so that we can
start running at our properly linked address.

Once the mapping is established, we perform a jump register to drop low map. Note that for the first time we do
not correct the destination address by subtracting KVA from it.The purpose of this jump is to change the program
counter to be running at our proper virtual address. Having done so, we remove the low-memory mapping at virtual
address 0x0, reload the hardware mapping table pointer to flush the hardware TLB, and re-initialize the kernel stack
pointer After all of this we canfinally call C code!

Eventually, the primordial kernel map will serve as our fall-back mapping structure — the one we use when we cannot
identify an appropriate user-mode mapping to run. This mapping will contain only kernel mappings.

3.5 Transition to C

Having established a mapping structure that allows us to do so, we transition to C code by callingkernel main().

3.6 kernel main: Starting the First Process

In application programs, themain() procedure surrounds the entire execution of the program. Ifmain() exits, so
does the application. This is not true in many kernels, and itis not true in Coyotos. Operating system kernels are event-
driven systems. They respond to interrupts and exceptions (system calls are generally a special form of exception), do
something, and return control to some user process. Becauseof this, the role of the kernel’s equivalent tomain()is
to get the system initialized and start the first process.

In Coyotos, we do not use the traditional function name main() because its signature is not appropriate.
The kernel main() procedure accepts no arguments and returns no results — in fact, it never returns at
all. If you look at the code insys/kernel/kern main.c. you will find that the last action is to call
sched dispatch something(). As we will see in detail later, thesched dispatch something() pro-
cedure never returns. If necessary, it will run an idle loop until some process is ready to run. In practice, the call
fromkernel main() is thefirst call tosched dispatch something(), and the initial system image contains
many processes that are ready to run.

Note

When you see a statement like “the initial system image contains many processes that are ready to run,”
you should immediately ask: well, what if it doesn’t? Perhaps the initial system image is broken. How
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does ths system behave if there is nothing to do? Is this statement a requirement, or does it merely describe
the expected case?

In fact it is not a requirement. If there are no processes to run, the call to
sched dispatch something() will simply idle the current CPU and loop forever. Arguably,the
kernel main() procedure should complain in this unlikely case. The existing behavior is correct, but
without a diagnostic it may be mysterious.

The kernel main() procedure calls, in sequence,arch init(), obhdr stallQueueInit(),
cache init(), and arch cache init() before calling sched dispatch something(). These
procedures respectively perform architecture-dependentinitialization, initialize the object stall queues, set upthe
data structures for the kernel object cache, give the architecture-specific code a chance to do additional cache setup,
and then dispatch the first process. We will need to look at each of these steps in turn, but first we need to pause to
describe some of the internal logic of the Coyotos kernel.
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Architecture-Specific Initialization

By the time it is completed, the architecture-specific initialization routines will do several things:

• It will initialize the console, if any, for output.

• It will determine what physical memory is present, and whereit is found.

• It will determine how many processors are attached to the machine, and initialize them.

• It will construct a proper virtual memory map for the kernel to use.

• It will set up the necessary data structures so that interrupts, system calls, and exceptions can be processed.

• It will reserve space for use as application page tables and page directories.

• When all this is done it will enable interrupts for the first time.

While most of this activity isextremelyarchitecture dependent, the same basic requirements must be satisfied for each
architecture, and there are a surprising number of common elements in the management structures for these activities.

All of these actions are driven by procedure calls made from the arch init() procedure in
arch/i386/BSP/multiboot/bsp mem config.c.

4.1 Console Initialization

Thevery first action taken by the architecture-specific initialization code is to intialize the console logic. This sub-
system is responsible for the actual display of characters that are passed to the kernelprintf() andfatal()
functions. The implementation ofprintf putc() in kernel/kern printf.c calls two functions: one puts
each output character into a ring buffer containing all diagnostic output. The other emits the same character to the
display if one is available. On machines that have an attached display, we would like to be able to see what is going
on as early as possible. On machines that donot, we would at least like to be able to store those messages intoa
holding buffer so that they can be retrieved by a hardware debugging probe. Both of these are good reasons to enable
the console logic as early as possible.

Implementation Deficiency

The architecture-dependent configuration parameters include a C preprocessor macroHAVE HUI that is
intended to indicate whether any sort of human interface exists on the platform. If none exists, the entire
implementation of printf() is compiled out.

This is excessively draconian, since the circular ring buffer can usefully be read using an in-circuit emu-
lator or debug monitor probe even if no display is present. The current implementation arguably ought to
implement the ring buffer even whenHAVE HUI is not defined.

11
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On IA-32, the console implementation relies on the fact thatthe legacy MDA graphics adaptor (the text-mode display)
is memory mapped from 0xb8000 to 0xb8fff. Note that this address range falls within the 2 megabyte initial memory
region that has been mapped for us by the bootstrap code. Because of this, the IA32 console implementation is
actually very simple. All it needs to do is write new characters to the memory region with an appropriate background
and foreground color and deal with scrolling when needed. The bootstrap code inboot.S has mapped the display
region as non-cacheable, so we do not need to worry about update delays that might result from use of the hardware’s
write-back cache.

A tricky point arises here that might not be obvious at first. Agoal of the Coyotos design is for drivers to execute
as application code. This means that we will later have some application that believes it owns the display. This
application may write to display memory, or it may even change the display mode in such a way that kernel writes
in the 0xb8000-0xb8fff region are meaningless (or even harmful). The kernel must be careful to avoid getting in the
way of the console management application. We ensure this bymeans of theconsole detach() function. This is
called just before the process scheduler is called fromkernel main() to dispatch the first piece of application cod.e
Onceconsole detach() is called,console putc() will simply do nothing when it is called. In consequence,
the kernel will no longer update the display and the application-level console manager will be able to manipulate it
without worry of interference.

As a very transient measure, there is a bring-up expedientconsole shrink(). This is an early debugging tool in
which the kernel and the console management application divide the screen by hard-coded agreement. It is the kind of
mechanism that is very helpful during early system bring-up, but tends to do more harm than good in the long term.
These sorts of “hidden contracts” between the kernel and external code are very easy to forget later.

4.2 CPU Construction

The next action taken byarch init() is to construct the per-CPU data structures. At this point wedon’t actually
know how many CPUs there are, and we haven’t started any otherCPUs, so strictly speaking we only need to initialize
the data structures for CPU0 (the bootstrap CPU). In fact, wecannot even fully initialize CPU0, because we haven’t
yet fully determined the feature set of this CPU.

Unfortunately, we need one field of the CPU structure initialized early: the lock word field. This is needed because we
will soon start calling the physical memory manager, and thephysical memory manager uses the locking subsystem.
Constructing the per-CPU structures is done here so that theper-CPU lockword field will have a non-zero value.

4.3 Memory Management

We now turn to matters having to do with managing the physicaland virtual memory map, but these requires enough
background information that it is best provided by a separate chapter.
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Memory Map Management

The next step ofarch init() is to initialize thetransmap. We have a previously reserved (at link time) page table.
We zero it and install it at a known address (TRANSMAP WINDOW VA). The question is: what is atransmapand why
to we need one? To answer that, we first need to talk about the kernel’s virtual and physical memory maps and our
strategies for managing them.

5.1 The IA-32 Physical Memory Map

The IA-32 has been through a fair amount of evolution. Early PCs were limited to 640 kilobytes of RAM, so the BIOS
ROM was placed just below the 1 megabyte addressable limit. As later machines came to support more memory, logic
was introduced in the memory controller hardware to “skip” the BIOS ROM region. Some controllers have that logic,
others do not. Other portions of the physical memory map are taken up by the PCI bus and the video subsytem. How
much depends on your video card. If you go out and buy two of thelatest and greatest video cards with 512 megabyte
graphics memories, you are going to devote more than a gigabyte of yourphysicaladdress space to mapping those
regions across the PCI bus. In addition, you will lose part ofthe physical address space to the PCI configuration areas.
Install 4 gigabytes of memory on a machine like that and on most hardware you will actually get to use a bit under 3
gigabytes — the rest will be hidden behind PCI card memory.

Or maybe not. As of late 2007, a few of the very latest motherboards have memory controllers and BIOS logic that
will relocate that memory to appear above 4 gigabytes. Note that you cannot address that memory unless you are using
PAE mode mappings. The problem here is that there is a lot being done behind the scenes by the BIOS as it brings up
your machine, and we really don’t want to have to fool around with the low-level memory controller chipset if we can
avoid it. Fortunately the BIOSes that can do these tricks provide interfaces we can query to find out what happened.
We also want to support earlier BIOSes. There are a surprising number of people out there who are still running i486
processors or first-generation Pentiums. Coyotos runs justfine on these systems. We do not support the i386, because
it lacks a memory protection feature that we really need.

In any case, the point is that the physical map is not something that we can hard-code. We need to find out how it is
layed out from the BIOS, and then we need to take care to allocate physical memory from regions that are actually
populated on the current machine. Finally, we want to mark certain physical memory locations as ”reserved”, because
they contain information generated by the BIOS that we will later want to use from application level. Examples of
such locations include the basic and extended BIOS data area, the APM and ACPI configuration data areas, the various
locations where pieces of the BIOS ROM are mapped into the physical address space, and so forth. Finally, we want
to make sure that the locations where the kernel code, data, and stack live are not allocated later by, say, the kernel
heap management code. It would not be good to overwrite the kernel!

To keep track of all this complexity, Coyotos implements a physical memory management subsystem.

13
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5.2 The PhysMem Allocator

The Coyotos physical memory manager is implemented bykernel/kern PhysMem.c and
kerninc/PhysMem.h. The physical memory allocator has three functions:

1. It tracks which portions of the physical address space areaddressable, given our choice of hardware mapping
options. If we are using the legacy virtual memory mapping structure, we cannot address anything above
address 0xffffffff (4 gigabytes) in the physical memory address space. If we are using the newer PAE mapping
mechanism, we can address up to 0xfffffffff (64 gigabytes).

2. It tracks which portions of the physical address space arepopulated. That is: where each RAM, ROM, and
NVRAM or equivalent device memory region can be found and what type of memory resides at that location.

3. It tracks the kernel’suseof these memory regions. For example, some RAM will be used for mapping tables,
some will be used to store the kernel heap, and some will be used as frames for page objects. Each of these is a
distinct type of use that is tracked by the physical memory allocator.

The physical memory allocator is a special-purpose allocator. It assumes that we are subdividing an initially contiguous
region (the addressable physical range) into contiguous, non-overlapping subregions (RAM, ROM, NVRAM, and
“holes”). A defined region may be further subdivided as uses for it are determined, but — with the notable exception
of device memory — the physical memory allocator assumes that these regions will be allocated once and will never
be released. The goal is to support an initial partitioning of physical memory, rather than to support a general-purpose
allocation scheme. For the same reason, the allocator assumes — again with the exception of device memory —
that two adjacent memory regions having the same class and use can be coalesced in the allocation book-keeping
structures.

A Limitation

While there is a paper design, the current implementation does not adequately address the use of hot-plug
memory boards. Hot-plug memory is different from other device memory because the use of the memory
is general-purpose.

Taken together, these assumptions allow us to implement theallocator very simply. It is stored in a statically allocated
array. Regions do not overlap. The vector is kept sorted in order of start address, with unallocated entries at the end of
the array. For each region, the allocator keeps track of the memory regionclassand the memory regionuse. Theclass
tells us what type of memory exists at a location (ROM, RAM, NVRAM, valid but undefined). Theusetells us how
this memory is currently being used (if at all). For example,pmu KMAP tells us that the memory region consists of
pages that define the kernel virtual map. Both of these are documented in the header file. Thepmc UNUSED allocation
class is reserved to mean that the table entry is not presently being used for anything. Entries in the pmemtable are
maintained sorted by start address, with all entries of classpmc UNUSED kept at the end of the table. Adjacent entries
having the same class and use are coalesced into a single entry whenever possible. The PhysMem allocator tracks both
theexistenceand theallocationof physical memory.

Device memory (pmc DEV) is an exception to the coalescing rule. Among the initial applications will be drivers.
These will inform us about memory regions that were not visible to the BIOS, such as memory on PCI cards or AGP
graphics controllers. Some of these devices — notably CardBus adaptors — can be inserted and removed from the
system, with the consequence that their memory regions can appear and disappear. If we allowed these regions to
be coalesced, we might find thatremovinga memory region from the physical memory allocator’s list would require
allocatingone or more tracking structures in order to split an existingregion up so that part of it could be converted to
a hole. This operation could fail if we run out of entries in the physical memory range table. To ensure that this failure
cannot occur in practice, we do not allow device regions to becoalesced.

5.2.1 Initial Setup

Initially, the allocator has no knowledge of physical memory structure. Very early in thearch init() procedure
we will initialize the allocator by callingpmem init(). This tells it what the addressable physical range is. If
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we are using the legacy mapping hardware, we can address up to4 gigabytes of physical memory. If we are using
the PAE mapping mechanism, we can address up to 64 gigabytes of physical memory. The call topmem init()
establishes an initial physical memory allocation record whose class ispmc ADDRESSABLE and whose current use
is pmu AVAIL.

Once the addressable range is established, the architecture-dependent initialization code will start to define what
portion of the physically addressable range is actually backed by physical memory, where various ROM chips live,
and so forth. This is done by performing calls topmem AllocRegion(), specifying the appropriate memory class
and use for each call (seeconfig physical memory() in arch/i386/kernel/init.c). In addition to
adding regions for each memory device identified by the BIOS,this code adds regions for the BIOS data area and the
extended BIOS data area. Some BIOSes already report these regions. Others do not. If the physical memory allocator
is asked to allocate a region that is already allocated with the same class and use, it ignores the second allocation.

Earlier, I stated thatgrub had collected various information for us. We need to allocate storage so that we have a
place to put that information, but we would like to avoid the misfortune of allocating that storage from the memory
areas thatgrub has set up. We therefore go through and allocate these physical regions as well. We will release
them later after we have copied thegrub-supplied information to a safe place. Dealing with that is the purpose of
arch cache init().

5.2.2 Allocating Physical Memory

The other parts of the physical memory allocator interface support memory allocation (as opposed to definition). In
order to be allocatable, a memory region must have classpmc RAM and usepmu AVAIL.Thepmem Available()
function determines how many units of physical memory having a particular size and alignment and falling between a
specified base and bound address are available to be allocated. The caller may optionally specify thatcontiguousunits
are required. Thepmem AllocBytes() procedure can be used to allocate storage thatpmem Available() has
indicated is available. Regions returned bypmem AllocBytes() are always contiguous. These calls will be used
by the kernel heap manager to allocate backing store for the kernel heap.

Bug

at present, the code in kernPhysMem.c is not multiprocessor-safe, because no locks aretaken. This is a
bug, because driver code may need to define new physical memory regions later, and those calls may be
made after multiprocessing is enabled. The current logic assumes that the entire valid physical memory
map can be defined at system startup. Because drivers are not in the kernel, we are unable to determine
the requirements of attached cards and peripherals.

By the end of physical memory initialization, we have definedthe entire physical map that is available for allocation
by the kernel. We may later add device memory, but the kernel should not use that memory for general-purpose
allocation. It would be an awkward mistake if, say, GPT structures got allocated from the frame buffer!

Note

There is an exception to this statement: hot-plug memory. The current implementation does not have
enough infrastructure to support hot-pluggable memory cards such as are seen on high-end multipro-
cessors. Adding support for that is straightforward, but itrequires some logic in the physical memory
allocator that we do not currently provide.

5.3 The Kernel Virtual Map

Now that we have a picture of what is happening at the physicalmemory layer, we need to look at thevirtual memory
organization. As part of that, we need to look at the “theory of operation” for how Coyotos handles memory mapping
in general.
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5.3.1 Theory of Operation

There are several challenges that a virtual mapping design needs to address. The two biggest ones are virtual crowding
and multiprocessing. Neither of these issues is architecture specific.

Virtual Crowding

On IA-32, the application owns the [0x0,0xBFFFFFFF] regionof the address space. The kernel owns, at most,
the [0xC0000000,0xFFFFFFFF] range (which is 1 gigabyte). On implementations that support the “small spaces”
optimization, the kernel may have a bit less than that. Machines with more than a gigabyte of main memory are pretty
common these days, so it is obvious that the kernel cannot just map the entire physical memory into the kernel portion
of the virtual address space. Actually, kernel virtual memory is very constrained on this platform, because there is a
second factor to consider.

An IA-32 machine can have up to 64 gigabytes of physical memory. Very few machines actually have this much,
but in principle it is possible. If we want to support a memorythis large, we need a book-keeping structure for each
of these pages. The book-keeping structure tells us the OID associated with each page frame, the current allocation
count, and so forth. The Coyotos per page book-keeping structure (MemHeader) is about 48 bytes. 64 gigabytes
works out to 16,777,216 pages, each requiring aMemHeader structure. While the pages themselves do not need to be
mapped into the kernel, theMemHeader structuresdoneed to be mapped. For a fully loaded system, theMemHeader
structures alone will require 805,306,368 bytes of virtualmemory. The good news is that we have 1,073,741,824 bytes
of virtual space available. The bad news is that there are a whole bunch ofother things that need to go into that space.
Realistically, the current Coyotos kernel can cleanly support roughly 32 gigabytes of physical memory or perhaps a
bit more. Beyond that we would either need to start using the remaining memory as a disk cache or we would need
to run the kernel in its own addess space. At present, the implementation simply ignores any physical memory that is
above what we can actually handle.

But you begin to see the problem. In addition to the object management structures for pages, we need to keep other
kernel objects — processes, GPTs, endpoints, and so forth — in virtual memory as well.

Multiprocessing

The other major design concern in designing the memory map ismultiprocessing. Can multiple processors use a
common virtual map? The answer is driven by several factors:

• CPU-local storage. Each CPU requires some amount of privatestorage. At a minimum, each CPU needs to be
able to build temporary mappings independent of the others,and each requires a separate notion of the “current
process.”

• Hardware coupling. On some hardware, sharing memory acrossprocessor clusters is expensive. The current
implementation is designed to support tightly coupled and closely coupled hardware implementations. An
effective implementation for a loosely coupled machine is possible, but it requires a different implementation.

• Hardware bugs. There are bugs in the multiprocessing logic on many IA-32 implementations, and some of
them interact with the memory mapping subsystem. In particular, if two processors attempt to update the
accessed/used bits of a page table entry at the same time, theresults can be entertaining. Fortunately this
behavior can be suppressed by software.

Concerning CPU-local storage, there are basically two possible designs:

• All CPUs share the same map. Each somehow retains a pointer toits per-CPU state, all of which is gathered
into a single data structure somewhere.

• CPUs have distinct memory maps. These maps agree except for asmall number of places that are CPU-local.
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Coyotos adopts the “shared map” approach. All CPU’s run out of the same map. Each CPU has a pointer to its
CPU-local storage that is maintained at the bottom of the stack.

To be more precise, any CPU can run in any map, and the kernel portion of the map is shared in the sense that all of
the page tables for the kernel portion of the mapping are shared in common across all per-process mapping trees.

In the Coyotos IA-32 implementation, each CPU has the following bits of CPU-local storage:

• A per-CPU stack.

• A current process pointer

• A current CPU pointer

• A region of the TransMap that is used exclusively by that CPU.In effect, each CPU has its own TransMap
structure, but all of those TransMaps live within a common page table.

To repeat something that I said earlier, Coyotos kernel stacks are per-CPU, not per-Process. This means that the
association between a kernel stack and its CPU is long-lived.

Note

At present, Coyotos includes the necessary mechanism to declare and reference CPU-local storage, but
it does not actually implement the necessary mechanisms to access this storage on a per-CPU basis. The
seeds of the support can be seen inkerninc/ccs.h, but the implementation is incomplete.

5.3.2 The Kernel Map

With all of that as preamble, here is what the IA-32 kernel virtual map looks like in greater detail:

Base Bound Start Description
0x0 0x100000 Flat map of low physical memory.

Used only for BIOS access
start=0x100000 etext Kernel code
extext erodata Kernel read-only data
syscallpg esyscallpg Page boundary System call trampoline page. This

page will be mapped at a published
location within upper memory so
that applications can use the most
efficient system call entry mecha-
nism available on the platform.

cpu data start cpu data end Page boundary Per-CPU data area.
KernPageDir KernPageDir+0x1000 Page boundary Kernel page directory
KernPageTable KernPageTable+0x1000 Page boundary Kernel page table
TransientMap end maps Page boundary Page table for transient maps
kstack lo kstack hi Page boundary CPU0 stack
pagedata epagedata Page boundary Data region for page-sized data

items (presently empty)
data end Page boundary Kernel data and BSS
end 0xFF400000 (bound) Kernel heap

0xFF400000 0xFF800000 Additional CPU stacks (not yet im-
plemented)
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Base Bound Start Description
0xFF800000 0xFFC00000 TransMap window
0xFFC00000 top of memory IPC Destination window (not yet

implemented)

Everything shown between start and end is determined by the kernel linkerscript
arch/i386/kernel/ldscript.S. The reserved regions in the uppermost portion of the map aredeternined by
constants defined inarch/i386/kernel/target-hal/config.h.

Of these various locations, only the location of the system call trampoline page is architecturally visible to applications,
and we will probably need to rearrange the map when we start touse that. All of the rest can be adjusted without
impacting application compatibility.

The table shows a kernel page directory. When we run with the pre-PAE mapping logic, each application will have its
own page directory. In pre-PAE execution, the Kernel Page Directory page will be used when there is no per-process
directory that is appropriate. In PAE mode, this kernel pagedirectory covers the 1 gigabyte region owned by the
kernel. All per-process PDPT structures will reference this directory, and there is a Kernel PDPT that is used when no
per-process mapping table is appropriate.

The table shows a single kernel page table. Obviously this will not be enough as the kernel heap grows beyond the
0xC0200000 (PAE: 2 megabyte) or 0xC0400000 (non-PAE: 4 megabyte) boundary. As that occurs, additional pages
will be allocated from physical memory to serve as additional page tables. These are not normally mapped into the
kernel address space. Coyotos manipulates the kernel mapping tables using thetransmapmechanism (see below).

Note that the kernel heap is dynamically sized. This presents a potential problem. In non-PAE execution, application
page directories are initially created by making a copy of the kernel page directory, thereby incorporating a complete
set of kernel mappings. Heap growth can require that an additional page table be allocated to map the heap. This
occurs frequently during system initialization, but that is before any per-process page directory is created, so it does
not create any problems. Unfortunately,driverscan later come along and announce new regions of physical memory
to the kernel. These may force the kernel to allocateMemHeader structures, which come from the heap. If the
heap grows as a result, and a new kernel page table gets allocated, the individual per-process page directories may
no longer be up to date. In the current implementation, the kernel avoids this by pre-reserving a bounded number
of MemHeader structures for later driver use (this number can be adjustedon the kernel command line). A better
solution would have the kernel page fault handler “fix” the per-process page directories by copying the missing entries
from the master kernel page directory as needed.

5.4 The TransMap

Finally we arrive at thetransmap. The purpose of the transmap is to allow the kernel to build mappings dynamically
so that it can access data which is not ordinarily mapped intothe kernel. Typically this happens when the kernel
manipulates pages or capability pages, but it also can happen when the kernel manipulates mapping tables.

5.4.1 Purpose of the Transmap

The transmapis a page of memory that is mapped simultaneously as a page table and as a data page. Viewed as
a page table, it specifies 512 (PAE) or 1024 (non-PAE) mappingentries for the virtual address region beginning at
0xFF800000. Viewed as a data page, it can be found at the address associated with the symbolTransientMap.
TheTransientMap symbol has no intrinsic type. Depending on the mapping mode that is currently in use by the
hardware, we will cast it to one of the typesIA32 PTE * or IA32 PAE *, which are the types for the respective
types of page table entries for the two mapping modes. We willthen use this pointer to update the mapping table,
which allows us to construct temporary mappings.

Whenever the kernel needs to manipulate the content of a datapage, capability page, or mapping table, the protocol is
to callTRANSMAP MAP(pa,ptr type). The supplied physical address must be page aligned, and thereturn value
is the assigned virtual address. When the mapping is no longer needed,TRANSMAP UNMAP(va) is called, passing
the previously returned virtual address. The unmap operation marks the virtual address as “available for re-mapping,
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but not yet cleared from the TLB.”

Thetransmappage is shared across CPUs. Each CPU has a dedicated region ofthetransmapproviding 32 slots where
pages can be mapped on a transient basis. This allows the current implementation to support up to 16 processors.
Obviously, the size of thetransmapcould be extended at need. Our view as designers is that above16 CPUs the
memory hierarchy of the machine tends to switch to a more pronounced NUMA architecture, and the entire model of
a shared kernel map needs to be re-examined.

5.4.2 Lazy TLB Consistency

The general rule is to flush the TLB when a mapping is removed. For application mappings this is absolutely required.
For kernel mappings, the true constraint is more subtle: we must not re-use any transient mapping if it might still
reside in the hardware TLB. For kernel mappings, we can impose an invariant requiring that no transient mapping be
used after it is unmapped. This creates an opportunity for anoptimization that may initially seem like a bug.

The transmap implementation can be found inarch/i386/kernel/transmap.c. When an unmap is
performed, the corresponding TLB entry is not flushed immediately. If you examine the implementation
of the transmap map(), you will see that it initially attempts to allocate entriesfrom TransMetaMap.
TransMetaMap indicates which entries are available (corresponding bit set to 1) for allocation. In order to be
available, an entry must be free and we must know that it cannot be resident in the local TLB. Initially all entries are
available.

If the allocator cannot find an entry inTransMetaMap, it locates an entry inTransReleased and uses that. The
TransReleased map indicates which entries have been unmapped (corresponding bit set to 1) but not yet flushed
from the TLB. The allocator flushes the entry selectively andre-uses it.

The reason for this approach is that we are making a bet. We arebetting that an address space switch will be per-
formed soon in any case. When that occurs, any entries inTransReleased can be migrated toTransMetaMap
immediately. Note that some system calls do not flush the TLB at all.

Finally, note that entries in the transmap arenevershared across CPUs. Invalidating TLB entries is expensive,but
invalidating them across all CPUs in a multiprocessor is glacial. This is why the transmap is divided into separate
regions for the entries of each CPU.

5.4.3 Data Cache Locality

On some processor implementations, including recent AMD 64-bit processors, TLB loads proceed through the data
cache. The data cache is subject to an inter-processor coherency protocol. For this reason, it is desirable to choose the
number of per-CPU transmap entries in such a way that they will occupy an integral multiple of cache lines. This will
ensure that the respective entries will be allocated exclusively to the proper CPU by the hardware cache coherency
protocol, and later will avoid contention because no other CPU will reference the entry.

5.4.4 Other Implementations

The implementation of thetransmapis part of the hardware abstraction layer. On machines wherethe entire physical
memory space can be mapped into the kernel virtual region, the transmap can be implemented using a constant offset
mechanism, and no manipulation of the hardware map is required.

5.5 Implementation: Configuring Memory

With the mechanisms now explained, we return to the discussion ofarch init(), picking up after the initialization
of the transmap. The callb topmem init() initializes the physical memory manager by advising it how large the
physically addressable region is. The call toconfig physical memory() uses the information provided bygrub
to add all of the defined regions of the physical map to the allocator (or at least all of the ones we know about at this
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point). It also adds (by hand) a small number of well-known regions that contain BIOS information. Applications may
want those regions later, and by reserving them now we ensurethat the kernel does not use them for object storage.

Ignoring the memory used by any local APICs and/or IOAPICs, which will not come out of RAM regions, we now have
configured all of the RAM memory that we are ever going to know about. Momentarily, we will do temporary alloca-
tions of some of the multiboot regions thatgrubhas built in order to protect them while we allocate the heap,but before
we do that we want to get an estimate of the total number of physical pages that are going to be available when we are
done. This is returned by the call topmem Available(). Finally, the call toprotect multiboot regions()
allocates the regions containing thegrub-provided information that we still need, primarily the command line and the
loaded module that defines the initial system image. This prevents these regions from being overwritten as we define
the heap.

All of this gets us most of the way to where we need to be, but we still have not reserved the physical memory addresses
for any local APICs and/or IOAPICs that happen to be present.The local APIC and IOAPIC logic is discussed in the
next chapter. For the present, suffice it to say that we want tomark their locations in the physical map allocated.
In order to do that, we need to probe the system to determine how many CPUs there are and where their hardware
elements are mapped. The call tocpu probe cpus() in turn callsacpi probe cpus(), which reserves the
required locations and determines (as a side effect) how many CPUs are actually present.

At this point, we have reserved all of the physical memory locations that it is possible to know about at this point in
the execution,


