Inside Coyotos

Version 0.1

Jonathan S. Shapiro, Ph.D.
The EROS Group, LLC

September 10, 2007

Copyright(© 2007, The EROS Group, LLC. Verbatim copies of this documeay ime duplicated or distributed in
print or electronic form for non-commercial purposes.

THIS GUIDE IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, INCLWDING ANY WARRANTY OF
MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTCULAR PURPOSE, OR ANY WAR-
RANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFICATION ORABIPLE.

Contents

Preface iii

| A Working Tour of the Kernel v

1 Introduction 1
1.1 WhyThisApproach. 1

2 Peculiarities of the Coyotos Design 3
2.1 CoyotosisaMicrokernel e 3
2.2 Coyotosis a Capability System e e 4
2.3 CoyotosisPersistent e e 4
2.4 Coyotosis Transactional e e e 5

3 From Power-On to kernel.main 7
3.1 Postcards fromthe BootLoader e 7
3.2 Zeroingthe BSSRegion e 8
3.3 Processor ldentification and PAEMode 8
3.4 Primordial Kernel Map, Switch to Linked Address 9
3.5 Transitionto C L e e e 9
3.6 kernelmain: Starting the First Process e e 9

4 Architecture-Specific Initialization 11
4.1 Console Initialization e e e 11
4.2 CPUCONSIUCLON e e e e e e 12
4.3 Memory Management. e e e e 12

5 Memory Map Management 13
5.1 ThelA-32 Physical Memory Map e e 13
5.2 ThePhysMem Allocator e 14
5.21 InitialSetup e e e e 14
5.2.2 Allocating Physical Memory e 15
5.3 TheKernelVirtualMap e e e 15
5.3.1 TheoryofOperation e e 16

5.4

5.5

CONTENTS
5.3.2 TheKernelMap e e e 17
The TransMap o 18
5.4.1 Purposeofthe Transmap e e e 18
542 Lazy TLBCONSISIENCY o e e e 19
5.4.3 DataCachelocality e e 19
5.4.4 Otherimplementations e e 19
Implementation: Configuring Memory L 19

Preface

These notes are an attempt to document the Coyotos systeits #rabry of operation "from the inside”. The approach
is to walk through the kernel from power-on through cap#pitivocation, tracing what the kernel does at each step.

I'm sure that these pages will get printed. For many readessélf included) that is the best way to read a long,
basically linear document. However, the book is an evoldoagument. It's official home is at http://www.coyotos.org.

PREFACE

Part |

A Working Tour of the Kernel

This part describes the internals of the Coyotos kernelinmégg at power-on and proceeding through the first inter-
process communication operation.

Chapter 1

Introduction

These notes document the internal structure of the Coyota®kernel. They proceed by “visiting” the system from
power-on to execution of the first user instruction, and twd to consider the first kernel capability invocation and
then the first invocation of a server-implemented capabillithe approach is loosely inspired by a one-week lecture
series on the Multics system given at MIT by Elliott Organi&ach day he opened his seminar with “Today, we will
run the first user-mode instruction, but before we can da.thahe first day started with turning on the power. By the
end of the week the lecture series had covered essentibdif/thle Multics hardware and its operating system kernel.

The “follow the code” approach gives a very different feal fosystem than the conventional operating system text-
book. It is closer to the approach used in John Liddsimmentary on UNIX 6th Edition, with Source Coti&ainly,
the order of presentation works out a bit differently. Welsée if it is better, worse, or merely different.

Coyotos is actively under development.. In consequencgptiok will quickly become out of date. If you find an
issue of that nature, please add comments to the pagesyiemthe problem, and if possible, the fix. Also, please
do not hesitate to comment on any points that confuse you.

As with any microkernel, Coyotos incorporates a fair amaefihachine-dependent code. In order to walk through
the system, we need to choose an architecture. With someti@sj | have chosen to describe the internals of the
IA-32 (i386) implementation. | have chosen I1A-32 becauseélitcertainly be the most common architecture on which
Coyotos is run. | hesitate because 1A-32 is a complicateditacture, and there are places where this will force me to
diverge into discussion of IA-32’s (alleged) features. ihis no such thing as a free lunch.

Where appropriate, | will also interject discussion abaurisiderations for non-1A32 architectures.

To give a sense of scale, Coyotos remains a relatively smeatldt. Coyotos remains a fairly small kernel. At this
writing, the 1A-32 implementation is 12,956 source linescofle, of which 4,738 lines are machine-dependent. Of
those, 615 are assembly lines. There are people who say uharhprogrammers can keep roughly 10,000 lines
of code in their head, and beyond that things get too big tetstdnd. This, of course, is a rough number that is
heavily influenced by code organization (is it well-modidad?), idiomatic conventions (assertions and “boiletgila
do not count), the complexity of code interdependenciedtha tool used to count the lines. Empirically, the current
Coyotos kernel is of a size that mortals can comprehend.

1.1 Why This Approach

Why is this an interesting — or even useful — way of looking atogperating system? Operating system textbooks
have come to have a fairly well-established structure. Vighaetter or different about this one?

Let me answer with an example. Every conventional operaystem textbook includes a chapter on memory man-
agement — which is to say, memory allocation policy. If yoakat the better textbooks, you will find that they all
end up saying the same thing: the buddy system is the best maihocator to use. | defy you to find even one
production kernel that uses a buddy system allocator fareddanemory. These days they all use something called the
slab allocator, but even before that nobody used the budstgisy So why did the textbooks say this obviously wrong

2 CHAPTER 1. INTRODUCTION

thing? Well, the buddy system really is the best allocgiayyidedyou are handling an infinite stream of allocation
requests consisting of random allocation sizes. What'swyreith this picture is that operating systems have a small,
well-known set ofarticular sizes that they allocate, and they allocate lots of those.bliddy allocator claim is right,
but for an irrelevant set of assumptions. When you have Hgtbailt an operating system, or looked at it from the
inside, it is perfectly apparent that this assumption isl@vant.

There are some lessons to take away from this:

1. Always ask what the assumptions are behind a conclusion.
2. Always reality-check the assumptions.

3. Don't believe that a statement is right just because iteofnom somebody famous. In that case, the cul-
prit was probably Avi Silberschatz. Avi certiantyasbuilt real operating systems, but he sometimes lets his
understanding of theory override what he knows from reality

As the old joke goes: the difference between theory and igeaist that in theory there is no difference between theory
and practice, but in practice there is.

Well, enough rambling. On to Coyotos and its code.

Chapter 2

Peculiarities of the Coyotos Design

As you read through the Coyotos code, there are some thirms &b structure that you will need to know. This
section briefly documents them.

2.1 Coyotos is a Microkernel

Coyotos is a microkernel. There is a great deal of conveatioperating system function that met implemented

by the kernel. This function is critical to have a completedtional operating system, and it is certainly critical to
understanding the behavior of any Coyotos system as a wholghe most part, however, there is no reason for this
code to run in the hardware’s “supervisor” mode. Supervisode allows code to do absolutelyything That is too
much power for a large body of code to wield safely. Indeed gkisting Coyotos kernel is teetering at (some would
say past) the limit on the amount of code that can safely bémrsapervisor mode — simply because it is teetering
at the limits of what the human (well, the software developérich is only approximately the same thing) head can
manage at one time.

Some things that you withotfind in the Coyotos kernel:

A file system. All management of higher-level abstractianisandled by user-level code.

e Device drivers. All device handling is done at user level.isTloy the way, is a debatable design choice.
There are some compelling reasons to implement driversarkénnel, primarily motivated by issues oépy
elimination We will discuss this late in the book.

e Security policy. The kernel implements protection prines (in the form of capabilities), but not security policy.
Security policy is implemented by user-level code.

e Networking suport. Coyotos has a TCP/IP stack. By now youprahably figure out for yourself where that is
implemented...

What youwill find in the kernel:

e Implementations of the system’s “primitive” objects. Bybjects,” we mean objects in the sense of operating
systems: memory pages, processes, and so forth.

e The implementation of capabilities, which provides both phimitive mechanism for naming and the primitive
mechanism for protection.

e Interprocess communications. In most microkernels thisaited IPC. In Coyotos this is folded in to the the
capability mechanism.

4 CHAPTER 2. PECULIARITIES OF THE COYOTOS DESIGN

2.2 Coyotos is a Capability System

Coyotos is a capability system. It's basic mechanism foringrand protection is something calleccapability. In
contrast to many other capability systems, Coyotos is ag’poapability system, because capabilities aredhly
mechanism for naming and invoking objects or services. €ptually, the kernel implements only one system call:
invoke capbility. In practice, the kernel implements two additional systefistoad capability andstore capability.
These simulate instructions that general-purpose comgbtrdware does not provide.

In the literature, you will often find a capability describ&slan (object, permissions) pair. This is unfortunate, beea
we want the term “object” to mean something else, and we witkédpermissions” to be something that we can relate
more directly to programming languages and the lambda kedcun the programming languages world, an object
consists of some representation state and a set of methatdpetform operations which optionally reference that
representation state. The intution we want is that a cajpphémes an object in the programming languages sense of
the word “object.” Unfortunately, the operating system coumity is equally sure about what an “object” means. It is
a page, a process, a file, and so forth. Both views are righy; $fhmply speak at different levels of abstraction. The
problem is that the bridge between these levels of abstractithe capability. As a compromise, we recommend the
view that a capability consists of a (representation-abjgethod-set) pair. This is impossibly cumbersome to say,
so we will often fall back on the (object, permissions) itittri. When we do, remember thaérmissiongs really

a short-hand for “a set of permitted methods.” Also, be adrabout the ternobject When we speak of “invoking
an object,” we mean an object in the programming languagesesé/VVhen we speak of a “capability designating an
object,” we may meaeitheran object in the operating system sensan object in the programming languages sense.
Hopefully it will be clear from context. The important poiistto be aware that the term is overloaded.

We have tried various ways to disentangle this term. Noneswery satisfactory. The confusion of
overloading the ternobjectseems to be less than the confusion of trying to introducenat@en.

The reason that Coyotos uses capabilities as its primitieehanism of protection has to do with security: it allows
applications to limit the flow of authority in the system. Weeuthe termpermissionto mean “the authorization to
directly perform an operation on an object.” We use the tauthorityto mean “the transitive effect that a process
might have on a system, including all of the operations thatght perform in the future based on the permissions that
it currently wieldsor can transitively obtainln most systems, permissions are determined primarily fby is running

a program (therincipal). In capability systems, permission is determined by thmabdities that a process possesses.
Because of this, capability system designs are greatlyeroed with both the initial arrangement of capabilities and
objects and the ways in which that arrangement can evolvgotBs is a pure capability system. The kernel simply
doesn’timplement any notion of principal at all. All acceesisions are made on the basis of capabilities. Possessing
a capability is a necessaandsufficient proof of authority to perform the operations péted by that capability on
the object that it designates.

2.3 Coyotos is Persistent

While the current implementation does not (yet) implemensjstence, Coyotos is designed to be a persistent system.
Like its predecessor EROS, Coyotos has the ability to sawettire running state of the system to disk at any time.
This creates an inversion of responsibilities in comparisoa conventional kernel. For example, firecessstructure

of a conventional kernel is a kernel data structure thaslimenain memory. It is owned by the kernel, created by the
kernel, managed by the kernel, and reclaimed by the kernel.

In Coyotos, a process is managed by the kernel, but itdskebasedlata structure that is created, destroyed, and
owned by some user (more precisely: by a storage allocali@dday a program). In order to execute a process, the
Coyotos kernel “borrows” its state from the disk-based objét any time, the kernel may be called on to put that state
back into its on-disk form so that it can be written out to tiekd This is true for every other major kernel object type
as well. This imposes some constraints on how the kernelasi@tl to manipulate objects, and on the dependency
relationships that it is required to maintain. You will finlgbt every kernel object that has state (some kernel services
have no state, but are considered “objects by courtesyifleicleanly into two parts: the persistent state, whiaksliv

2.4. COYOTOS IS TRANSACTIONAL 5

within thest at e field of the object, and other fields that are used by the keorledep track of the object at run time.
These other fields are not saved when the object is written out

Because the Coyotos kernel is required to be able to writalbat the major kernel objects on demand, we often say
that Coyotos kernel memory is a cache of the “official” statkich lives on the disk.

2.4 Coyotos is Transactional

The EROS system, which was the predecessor of Coyotos, kalystansactional. Every EROS system call happens
as a single unit of operation. Control enters the kernebueses are gathered, a “commit point” is reached, and the
operation proceeds without interruption until it comptetéfter the commit point occurs, the operation is requiced t
complete or to panic the system . Failures after the comniittjpadicate a deep kernel logic error. Prior to the commit
point, no modifications to externally visible system statera@quired. The kernel is entitled to load and clear caches
before the commit point. It can mark objects dirty (therebigwaing them to be modified after the commit point).

It can convert their representation from one format to aatlit cannot actually modify them in any semantically
observable way.

A corollary to this is that any EROS system call can be abaadgmior to the commit point without any damage to
kernel integrity. Think of this as a form of exception hamgli any kernel path can “throw” before the commit point,
but not after. In practice, locks must be released and thectiransaction ID must be abandoned, but that is it. In the
EROS implementation, this is accomplished by cleaning upalsxumber of global variables, re-setting the kernel
stack pointer to point to the top of the kernel stack, and dnarg to a well-known “figure out what to do next” entry
point. From a code-reading perspective, there are two tapbns to this:

¢ No state should ever go on the stack that requires any solearfiap, because if proceduré) calls procedure
g(), control may never return tb() and cleanup may never occur.

e The nominal return values of procedures indicate what hapgehings succeed. If things fail and the current
transaction is aborted or restarted, procedure returdswaflhappen at all.

A second corollary to this is that any system state can benstnacted by some purely sequential sequence of system
calls and user-mode instructions. That is, the system &wolus serializable. Unfortunately, it is impossible to
preserve this model in pure form on a multiprocessor. As amgle, consider a string copy. When address spaces are
suitably shared, is possible for a second processor to wdaestring that has been partially copied by a first processor
As a result, serializability is lost.

Once the purely serializable transactional model is ldg§ desirable for performance reasons to look for ways to
optimize. In some cases, it is good enough to say that thétseme not fully defined until the operation completes,
and that partial results may appear from operations tlegercomplete. We will look at some examples of this in
the discussion of capability invocation. Coyotos presethie EROS model in spirit, but it aggressively exploits ¢hes
sorts of “partially defined” operations for performance. dach case, it is necessary to specify why the optimizing
short cut is safe with respect to the original model, and wkdei so. If you catch ugailing to do so, it is a mistake,
and you should ask about it by posting a comment on the apiptegrage.

From the kernel perspective, there is an important consegpef a transactional kernel design: there is no per-psces
kernel stack. When a process becomes blocked in the kemh@t# not hold resources. On resumption, it will restart
its current system call from scratch. Because of this, itriastate on the stack that needs to be preserved. Coyotos
requires a stack for each CPU, but that stack is owned by tté @&t the process.

CHAPTER 2. PECULIARITIES OF THE COYOTOS DESIGN

Chapter 3

From Power-On to kernel_main

Traditionally, the first instruction of a UNIX binary is lakeal by the symbolst art . Actually, the leading” may
or may not be present, depending on your linker. In any cageea deal happens between the time that the hardware
powers on and the time we arrive at the start symbol of the @mykernel:

e The BIOS runs, sizing your memory, initializing the systeremory controller and interrupt controller (we
hope, but not always) to sane states, possibly running ttveonle boot ROM to load your kernel, or possibly
loading the first sector of your boot loader from disk (or #hegys, from a USB key, CF card, or SD card).

e The boot loader (in our casgrub) executes, collecting various information from the BIO&ttmay or may not
turn out to be useful later. It igrub that establishes most of the initial conditions that apphew Coyotos is
started.

Within the Coyotos source tree (coyotos/src), the kernat@®tree lives in the sys/ subdirectory. The kernel build
makes use of the IDL compiler, so it is necessary to build tte# subtree before building the sys/ subtree. Most of
what we are about to discuss occurs in the file arch/i3868t4raot.S. You may find it convenient to have a copy of
that ready to hand while you read.

3.1 Postcards from the Boot Loader

By the time control reaches the kernel_at ar t , thegrub boot loader has placed the 1A-32 processor in protected
mode, and has established 4 gigabyte segment limits fordmuté and data. Grub has loaded the kernel to its linker-
specified load address (on IA-32: 0x100000, or 1 megabytbpad also loaded a second file using the grub “module”
directive. This second file contains thetial system imagewhich is a serialized form of all the objects which exists
when the system initially starts running.

At system startup on a multiprocessor, only one CPU has be@nied. The BIOS has elected this CPU as the “master”
CPU. Any other CPUs that are present on the system are quiestfe will refer to this CPU as “cpu0.” Of course,
on a uniprocessor cpuO is the only CPU that there is.

The situation bequeathed to us gyub is delicate. We know that it has established various int@iditions and
collected various information. Unfortunately, we don’tdm wheregrub has placed this information in memory.
This means that we cannot allocate any memory until we figuteandhere grub has put things. In particular, we
cannot reserve space for either a kernel stack or an iniadldd memory mapping structure. We know thatb has
established a map for us somewhere, butgheb specification does not tell us where this might be. The Cayoto
kernel linker scriptar ch/ i 386/ ker nel /1 dscri pt. S has pre-reserved space for these things. We need to get
out from under these unknowns as quickly as we can, but thiersome things that we need to do first.

To make matters really fun, there is some delicacy that we liaposed on ourselves. Long-standing convention
on IA-32 is that the kernel resides in the uppermost portibthe address space, typically starting at 0xC000000 (3

8 CHAPTER 3. FROM POWER-ON TO KERNEMAIN

gigabytes). Most IA-32 machines don't have that much platsiemory, so we cannot load the kernel at that address
directly. What we do instead is tnk the kernel starting at 0xC0100000 (3 gigabytes plus 1 megaiyutioad the
kernel starting at 0x10000 (1 megabyte). This has implicesti

e Coyotos will not run on an 1A-32 machine with less than 1 megatof memory (or at least, not the way we
normally compile it).

e Until we can build a virtual memory map for the kernel, we needestrict ourselves to purely position-
independent instructions, because any attempt to referancabsolute address is going to try to make that
reference at the official address above 3 gigabytes, and wéydki have a mapping there.

At various points inar ch/ i 386/ ker nel /1 dscri pt. Syou will see the symbol KVA being subtracted from a
symbol address. KVA is a macro that tells us what the linkeoton of the base virtual address was. Subtracting it
allows us to correct from linked addresses to loaded addsashere we need to. Confusing? Definitely. We are going
to get out of this confused as quickly as possible, but we teedild a kernel virtual map before we can do that.

3.2 Zeroing the BSS Region

The first thing we need to do is to zero thes region. When applications run, it is the responsibility lo¢ {paging
subsystem (or the application loader) to make sure thab#®eregion is zeroed. A kernel must do this for itself.
Further, we want to do this before we touch any global vaesiibecause some of those variables may live im#&se
section. If we write to them antthenzero thebss section, we will end up zeroing anything we have written. ooz
thebss region we need to use tléax register. Unfortunately grub has left some informatiorréhnat we do not
yet want to lose, so we need to move that value out of the way firsnediately after clearing thiess area, we can
save the information provided lgrubinto global variables (being careful to make the KVA adjusirt). We will use
this information later.

3.3 Processor Identification and PAE Mode

The beauty of the 1A-32 family of processors is that there sranany variants to choose from. Later processors
support features that earlier machines do not. There ardéatures that we want to use if we can:

e Large page support will allow us to map the kernel with a munhler number of TLB entries. This has a very
significant impact on kernel performance, so we want to uiseféfature if it is available.

e Global page support allows mappings for the kernel to reresident in the TLB across TLB flushes. This also
has a significant impact on kernel perfomance.

e Later processors implement a “no-execute” hardware ptiotecThe 1A-32 family supportsvo memory map-
ping models: legacy (the original two-level scheme) and PaEhree-level scheme). The no-execute feature is
only available in PAE mode, and then only on later procesddngortunately, it is not simple to switch between
legacy and PAE mode later, so we need to figure out early whe¥le mode is available and use it from the
beginning.

e \We want to enable the extended hardware debugging feafymesent. Later, this will allow us to use hardware
watchpoints and breakpoints for debugging.

To figure out which subset of these features is available,eeglto do a moderately convoluted exercise in processor
feature identification. IA-32 processor identification @wna subject for a long Intel technical note. At this stage, we
want to do the bare minimum. If you are following along in h&the instruction marking the end of this sequence
isthej nz set up_pae_map. At that point, we have made a decision about the availglmfithe PAE features, and
we will proceed to build the appropriate type of mappingéabl

3.4. PRIMORDIAL KERNEL MAP, SWITCH TO LINKED ADDRESS 9

Note that the current startup code enables PAE mode withmaiking whether the no-execute (NX) feature is present
on the hardware. This is a bug. The PAE mapping mode is sloneémn@ore complicated than the legacy mapping
mode. While itdoesprovide some new features, none of these are used by Coypatdsye probably should not be
enabling PAE unless we are actually going to get some valtiefau

3.4 Primordial Kernel Map, Switch to Linked Address

Now that the processor has been identified, we can begin wganirselves from the initial configuration provided
by grub. The first step is to build a memory map of our own at a knowntiooa The kernel has pre-reserved space
for a single page table, a single page directory, and a pagetdry page table (PDPT). The last is used only in PAE
mode. We will initialize a full page table of mappings. In flegacy mapping mechanism, this will map the lowest 4
megabytes of memory. In the PAE mapping mechanism, thismalb the lowest 2 megabytes of memory. We will
construct two aliases for this region: one at 0x0000000ddlvis where we are presently running) and the other at
0xC000000 (which is where we are linked). In the process,ake tare to ensure that the text-mode console frame
buffer is mapped non-cacheable, so that writes to that ailtappear on the physical display immediately. Once the
map is build, we load it onto the processor and enable thealigddress translation hardware.

This is a very sloppy mapping. We have no idea whether the meacttually has 2 or 4 megabytes of memory, but
we are going to be re-building this map later in any case. Bason we want this early mapping is so that we can
start running at our properly linked address.

Once the mapping is established, we perform a jump registér op_| ow_.map. Note that for the first time we do
not correct the destination address by subtracting KVA froniTihe purpose of this jump is to change the program
counter to be running at our proper virtual address. Havioigedso, we remove the low-memory mapping at virtual
address 0x0, reload the hardware mapping table pointergb fhe hardware TLB, and re-initialize the kernel stack
pointer After all of this we carfinally call C code!

Eventually, the primordial kernel map will serve as ourdadick mapping structure — the one we use when we cannot
identify an appropriate user-mode mapping to run. This nrapwill contain only kernel mappings.

3.5 Transitionto C

Having established a mapping structure that allows us todas transition to C code by callinger nel _mai n() .

3.6 kernelLmain: Starting the First Process

In application programs, theai n() procedure surrounds the entire execution of the programmilfn() exits, so
does the application. This is not true in many kernels, aisthibt true in Coyotos. Operating system kernels are event-
driven systems. They respond to interrupts and excepteystgm calls are generally a special form of exception), do
something, and return control to some user process. Beadils, the role of the kernel’'s equivalentiai n() is

to get the system initialized and start the first process.

In Coyotos, we do not use the traditional function name n)alcause its signature is not appropriate.
The ker nel _mai n() procedure accepts no arguments and returns no results —ctn ifanever returns at
all. If you look at the code irsys/ kernel / kern_mai n. c. you will find that the last action is to call
sched_di spat ch_sonet hi ng() . As we will see in detail later, theched_di spat ch_sonet hi ng() pro-
cedure never returns. If necessary, it will run an idle loopillsome process is ready to run. In practice, the call
fromker nel _mai n() isthefirstcalltosched_di spat ch_son®et hi ng(), and the initial system image contains
many processes that are ready to run.

Note

When you see a statement like “the initial system image @ositaany processes that are ready to run,”
you should immediately ask: well, what if it doesn’t? Perhé#pe initial system image is broken. How

10 CHAPTER 3. FROM POWER-ON TO KERNEMAIN

does ths system behave if there is nothing to do? Is thisséatea requirement, or does it merely describe
the expected case?

In fact it is not a requirement. If there are no processes tm, rihe call to
sched_di spat ch_sonet hi ng() will simply idle the current CPU and loop forever. Arguabilye
ker nel _mai n() procedure should complain in this unlikely case. The exgsbiehavior is correct, but
without a diagnostic it may be mysterious.

The kernel _mai n() procedure calls, in sequencearch.init(), obhdr_stall Queuelnit(),
cache.init(), and arch_cache.init() before calling sched.di spatch_sonething(). These
procedures respectively perform architecture-depenitétidlization, initialize the object stall queues, set e
data structures for the kernel object cache, give the achite-specific code a chance to do additional cache setup,
and then dispatch the first process. We will need to look at efthese steps in turn, but first we need to pause to
describe some of the internal logic of the Coyotos kernel.

Chapter 4

Architecture-Specific Initialization

By the time it is completed, the architecture-specific &litiation routines will do several things:

o It will initialize the console, if any, for output.
o It will determine what physical memory is present, and wheigefound.
o It will determine how many processors are attached to thehimacand initialize them.

e It will construct a proper virtual memory map for the kernelse.

It will set up the necessary data structures so that intésrgystem calls, and exceptions can be processed.
o It will reserve space for use as application page tables agé gdirectories.

e When all this is done it will enable interrupts for the firshg.

While most of this activity ixtremelyarchitecture dependent, the same basic requirements mgstisfied for each
architecture, and there are a surprising number of commemehts in the management structures for these activities.

All of these actions are driven by procedure calls made frohe farch.init() procedure in
arch/i 386/ BSP/ mul ti boot/ bsp_nemconfig.c.

4.1 Console Initialization

The veryfirst action taken by the architecture-specific initialiaatcode is to intialize the console logic. This sub-
system is responsible for the actual display of characteatadre passed to the kernali ntf () andfatal ()
functions. The implementation @fri nt f put c() in kernel / kern_printf. c calls two functions: one puts
each output character into a ring buffer containing all diagtic output. The other emits the same character to the
display if one is available. On machines that have an atthdisplay, we would like to be able to see what is going
on as early as possible. On machines thanhdt we would at least like to be able to store those messagesinto
holding buffer so that they can be retrieved by a hardwareidging probe. Both of these are good reasons to enable
the console logic as early as possible.

Implementation Deficiency

The architecture-dependent configuration parameteradiech C preprocessor madidVE_HUI that is
intended to indicate whether any sort of human interfacstexin the platform. If none exists, the entire
implementation of printf() is compiled out.

This is excessively draconian, since the circular ring &uéan usefully be read using an in-circuit emu-
lator or debug monitor probe even if no display is present gtrrent implementation arguably ought to
implement the ring buffer even whe#AVE_HUI is not defined.

11

12 CHAPTER 4. ARCHITECTURE-SPECIFIC INITIALIZATION

On IA-32, the console implementation relies on the fact theaiegacy MDA graphics adaptor (the text-mode display)
is memory mapped from 0xb8000 to 0xb8fff. Note that this @addrange falls within the 2 megabyte initial memory
region that has been mapped for us by the bootstrap code.uBeaH this, the 1A32 console implementation is
actually very simple. All it needs to do is write new charast® the memory region with an appropriate background
and foreground color and deal with scrolling when needece Gotstrap code iboot . S has mapped the display
region as non-cacheable, so we do not need to worry abouteigdkays that might result from use of the hardware’s
write-back cache.

A tricky point arises here that might not be obvious at firstgéal of the Coyotos design is for drivers to execute
as application code. This means that we will later have soppdication that believes it owns the display. This
application may write to display memory, or it may even chalfite display mode in such a way that kernel writes
in the 0xb8000-0xb8fff region are meaningless (or even fia)mThe kernel must be careful to avoid getting in the
way of the console management application. We ensure thisdans of theonsol e_det ach() function. Thisis
called just before the process scheduler is called kemnel _mai n() to dispatch the first piece of application cod.e
Onceconsol e_det ach() is called,consol e_put c() will simply do nothing when it is called. In consequence,
the kernel will no longer update the display and the appbicatevel console manager will be able to manipulate it
without worry of interference.

As a very transient measure, there is a bring-up expediensol e_shri nk() . This is an early debugging tool in
which the kernel and the console management applicatiodaditie screen by hard-coded agreement. It is the kind of
mechanism that is very helpful during early system bringfug tends to do more harm than good in the long term.
These sorts of “hidden contracts” between the kernel aneteat code are very easy to forget later.

4.2 CPU Construction

The next action taken bgr ch_i ni t () is to construct the per-CPU data structures. At this pointiwe’'t actually
know how many CPUs there are, and we haven't started any G, so strictly speaking we only need to initialize
the data structures for CPUO (the bootstrap CPU). In factcavenot even fully initialize CPUO, because we haven't
yet fully determined the feature set of this CPU.

Unfortunately, we need one field of the CPU structure irted early: the lock word field. This is needed because we
will soon start calling the physical memory manager, andaingsical memory manager uses the locking subsystem.
Constructing the per-CPU structures is done here so thaa¢dh€PU lockword field will have a non-zero value.

4.3 Memory Management

We now turn to matters having to do with managing the physiadl virtual memory map, but these requires enough
background information that it is best provided by a segacagpter.

Chapter 5

Memory Map Management

The next step o&r ch_i ni t () is to initialize thetransmap We have a previously reserved (at link time) page table.
We zero it and install it at a known addreFRANSMAP_W NDOWVA). The question is: what isteansmapand why

to we need one? To answer that, we first need to talk about timellevirtual and physical memory maps and our
strategies for managing them.

5.1 The IA-32 Physical Memory Map

The 1A-32 has been through a fair amount of evolution. Ea@g Bvere limited to 640 kilobytes of RAM, so the BIOS
ROM was placed just below the 1 megabyte addressable limitatér machines came to support more memory, logic
was introduced in the memory controller hardware to “skipg BIOS ROM region. Some controllers have that logic,
others do not. Other portions of the physical memory mapaiert up by the PCI bus and the video subsytem. How
much depends on your video card. If you go out and buy two ofatest and greatest video cards with 512 megabyte
graphics memories, you are going to devote more than a gigaifyyourphysicaladdress space to mapping those
regions across the PCI bus. In addition, you will lose pathefphysical address space to the PCI configuration areas.
Install 4 gigabytes of memory on a machine like that and ontrasdware you will actually get to use a bit under 3
gigabytes — the rest will be hidden behind PCI card memory.

Or maybe not. As of late 2007, a few of the very latest motharty® have memory controllers and BIOS logic that
will relocate that memory to appear above 4 gigabytes. Nweytou cannot address that memory unless you are using
PAE mode mappings. The problem here is that there is a logtone behind the scenes by the BIOS as it brings up
your machine, and we really don’t want to have to fool arouiith whe low-level memory controller chipset if we can
avoid it. Fortunately the BIOSes that can do these tricksigminterfaces we can query to find out what happened.
We also want to support earlier BIOSes. There are a surgrisiiber of people out there who are still running 1486
processors or first-generation Pentiums. Coyotos rungipesbn these systems. We do not support the i386, because
it lacks a memory protection feature that we really need.

In any case, the point is that the physical map is not somgthiat we can hard-code. We need to find out how it is
layed out from the BIOS, and then we need to take care to @aquaysical memory from regions that are actually

populated on the current machine. Finally, we want to martagephysical memory locations as "reserved”, because
they contain information generated by the BIOS that we wilef want to use from application level. Examples of

such locations include the basic and extended BIOS datathesAPM and ACPI configuration data areas, the various
locations where pieces of the BIOS ROM are mapped into thsipaladdress space, and so forth. Finally, we want
to make sure that the locations where the kernel code, datbastack live are not allocated later by, say, the kernel
heap management code. It would not be good to overwrite tireeke

To keep track of all this complexity, Coyotos implements ggtal memory management subsystem.

13

14 CHAPTER 5. MEMORY MAP MANAGEMENT

5.2 The PhysMem Allocator

The Coyotos physical memory manager is implemented Iernel/kern_PhysMem c and
ker ni nc/ PhysMem h. The physical memory allocator has three functions:

1. It tracks which portions of the physical address spacaddeessablegiven our choice of hardware mapping
options. If we are using the legacy virtual memory mappingdatire, we cannot address anything above
address Oxffffffff (4 gigabytes) in the physical memory agekbk space. If we are using the newer PAE mapping
mechanism, we can address up to Oxfffffffff (64 gigabytes).

2. It tracks which portions of the physical address spacepapmilated That is: where each RAM, ROM, and
NVRAM or equivalent device memaory region can be found andiviyy@e of memory resides at that location.

3. It tracks the kernel'siseof these memory regions. For example, some RAM will be usednfapping tables,
some will be used to store the kernel heap, and some will b asérames for page objects. Each of these is a
distinct type of use that is tracked by the physical memdgcalor.

The physical memory allocator is a special-purpose alwcétassumes that we are subdividing an initially contigsio
region (the addressable physical range) into contiguoas;averlapping subregions (RAM, ROM, NVRAM, and
“holes”). A defined region may be further subdivided as usestfare determined, but — with the notable exception
of device memory — the physical memory allocator assumedtiiiese regions will be allocated once and will never
be released. The goal is to support an initial partitionifigtg/sical memory, rather than to support a general-purpose
allocation scheme. For the same reason, the allocator &sswmagain with the exception of device memory —
that two adjacent memory regions having the same class andarsbe coalesced in the allocation book-keeping
structures.

A Limitation

While there is a paper design, the currentimplementati@s ot adequately address the use of hot-plug
memory boards. Hot-plug memory is different from other deuinemory because the use of the memory
is general-purpose.

Taken together, these assumptions allow us to implemeuatliheator very simply. Itis stored in a statically allocate
array. Regions do not overlap. The vector is kept sorteddeioof start address, with unallocated entries at the end of
the array. For each region, the allocator keeps track of theary regiorclassand the memory regioase Theclass
tells us what type of memory exists at a location (ROM, RAM,RAM, valid but undefined). Thasetells us how
this memory is currently being used (if at all). For exammpleu _KMAP tells us that the memory region consists of
pages that define the kernel virtual map. Both of these arerdented in the header file. Thpet _UNUSED allocation
class is reserved to mean that the table entry is not prgdeeitig used for anything. Entries in the pmeafble are
maintained sorted by start address, with all entries osgas _UNUSED kept at the end of the table. Adjacent entries
having the same class and use are coalesced into a singlew@never possible. The PhysMem allocator tracks both
theexistenceand theallocationof physical memory.

Device memory gt _DEV) is an exception to the coalescing rule. Among the initighlegations will be drivers.
These will inform us about memory regions that were not Véstb the BIOS, such as memory on PCI cards or AGP
graphics controllers. Some of these devices — notably Qasditlaptors — can be inserted and removed from the
system, with the consequence that their memory regions ppeaa and disappear. If we allowed these regions to
be coalesced, we might find th@&movinga memory region from the physical memory allocator’s listulebrequire
allocatingone or more tracking structures in order to split an existgmjon up so that part of it could be converted to
a hole. This operation could fail if we run out of entries i tphysical memory range table. To ensure that this failure
cannot occur in practice, we do not allow device regions todadesced.

5.2.1 Initial Setup

Initially, the allocator has no knowledge of physical megnsiructure. Very early in thar ch_i ni t () procedure
we will initialize the allocator by callingpmemi ni t (). This tells it what the addressable physical range is. If

5.3. THE KERNEL VIRTUAL MAP 15

we are using the legacy mapping hardware, we can address4igitiabytes of physical memory. If we are using
the PAE mapping mechanism, we can address up to 64 gigakypégsical memory. The call tpmremi ni t ()
establishes an initial physical memory allocation recohbge class ipnt _ADDRESSABLE and whose current use
is pmu_AVAI L.

Once the addressable range is established, the arch@edtpendent initialization code will start to define what
portion of the physically addressable range is actuallykbddy physical memory, where various ROM chips live,
and so forth. This is done by performing callsgoemAl | ocRegi on() , specifying the appropriate memory class
and use for each call (senfi g_physi cal _-menory() in arch/i 386/ kernel/init.c). In addition to
adding regions for each memory device identified by the BIi®S,code adds regions for the BIOS data area and the
extended BIOS data area. Some BlOSes already report ttggeaseOthers do not. If the physical memory allocator
is asked to allocate a region that is already allocated Wwiglsime class and use, it ignores the second allocation.

Earlier, | stated thagrub had collected various information for us. We need to allecdbrage so that we have a
place to put that information, but we would like to avoid thesfortune of allocating that storage from the memory
areas thagrub has set up. We therefore go through and allocate these pihysigions as well. We will release
them later after we have copied theub-supplied information to a safe place. Dealing with thathis purpose of
arch_cache.init().

5.2.2 Allocating Physical Memory

The other parts of the physical memory allocator interfagep®rt memory allocation (as opposed to definition). In
order to be allocatable, a memory region must have gassRAMand usgnmu_AVAI L.ThepmemAvai | abl e()
function determines how many units of physical memory hgaparticular size and alignment and falling between a
specified base and bound address are available to be adodéte caller may optionally specify thewntiguousinits

are required. ThenemAl | ocByt es() procedure can be used to allocate storagepghaimAvai | abl e() has
indicated is available. Regions returnedgnyemAl | ocByt es() are always contiguous. These calls will be used
by the kernel heap manager to allocate backing store foraheekheap.

Bug

at present, the code in kefPfhysMem.c is not multiprocessor-safe, because no lockskea. This is a
bug, because driver code may need to define new physical ngaegions later, and those calls may be
made after multiprocessing is enabled. The current loggomgs that the entire valid physical memory
map can be defined at system startup. Because drivers ane tha kernel, we are unable to determine
the requirements of attached cards and peripherals.

By the end of physical memory initialization, we have defitieel entire physical map that is available for allocation
by the kernel. We may later add device memory, but the kernellsl not use that memory for general-purpose
allocation. It would be an awkward mistake if, say, GPT dunues got allocated from the frame buffer!

Note

There is an exception to this statement: hot-plug memorye durrent implementation does not have
enough infrastructure to support hot-pluggable memorgl€auch as are seen on high-end multipro-
cessors. Adding support for that is straightforward, bueguires some logic in the physical memory
allocator that we do not currently provide.

5.3 The Kernel Virtual Map

Now that we have a picture of what is happening at the physieashory layer, we need to look at thigtual memory
organization. As part of that, we need to look at the “thedrgperation” for how Coyotos handles memory mapping
in general.

16 CHAPTER 5. MEMORY MAP MANAGEMENT

5.3.1 Theory of Operation

There are several challenges that a virtual mapping desigdsito address. The two biggest ones are virtual crowding
and multiprocessing. Neither of these issues is archite&pecific.

Virtual Crowding

On IA-32, the application owns the [0x0,0xBFFFFFFF] reg@fnthe address space. The kernel owns, at most,
the [0xC0000000,0xFFFFFFFF] range (which is 1 gigabytei. i@plementations that support the “small spaces”

optimization, the kernel may have a bit less than that. Ma&hivith more than a gigabyte of main memory are pretty
common these days, so it is obvious that the kernel canniotjap the entire physical memory into the kernel portion

of the virtual address space. Actually, kernel virtual meynie very constrained on this platform, because there is a
second factor to consider.

An IA-32 machine can have up to 64 gigabytes of physical mgmwery few machines actually have this much,
but in principle it is possible. If we want to support a memthig large, we need a book-keeping structure for each
of these pages. The book-keeping structure tells us the G¢Dciated with each page frame, the current allocation
count, and so forth. The Coyotos per page book-keepingtastei§VenHeader) is about 48 bytes. 64 gigabytes
works outto 16,777,216 pages, each requiribdparHeader structure. While the pages themselves do not need to be
mapped into the kernel, tidenmHeader structuresioneed to be mapped. For a fully loaded systemMieHeader
structures alone will require 805,306,368 bytes of virtmaimory. The good news is that we have 1,073,741,824 bytes
of virtual space available. The bad news is that there aredeAdunch obtherthings that need to go into that space.
Realistically, the current Coyotos kernel can cleanly suppmughly 32 gigabytes of physical memory or perhaps a
bit more. Beyond that we would either need to start using émeaining memory as a disk cache or we would need
to run the kernel in its own addess space. At present, thesimgahtation simply ignores any physical memory that is
above what we can actually handle.

But you begin to see the problem. In addition to the objectagament structures for pages, we need to keep other
kernel objects — processes, GPTs, endpoints, and so fortnwirtuial memory as well.

Multiprocessing

The other major design concern in designing the memory mapulsiprocessing. Can multiple processors use a
common virtual map? The answer is driven by several factors:

e CPU-local storage. Each CPU requires some amount of prétatage. At a minimum, each CPU needs to be
able to build temporary mappings independent of the ottaerd each requires a separate notion of the “current
process.”

e Hardware coupling. On some hardware, sharing memory agnag®ssor clusters is expensive. The current
implementation is designed to support tightly coupled alodety coupled hardware implementations. An
effective implementation for a loosely coupled machinedsgible, but it requires a different implementation.

e Hardware bugs. There are bugs in the multiprocessing logimany 1A-32 implementations, and some of
them interact with the memory mapping subsystem. In pdeicuf two processors attempt to update the
accessed/used bits of a page table entry at the same timegdhks can be entertaining. Fortunately this
behavior can be suppressed by software.

Concerning CPU-local storage, there are basically twoiplesdesigns:

e All CPUs share the same map. Each somehow retains a pointsrger-CPU state, all of which is gathered
into a single data structure somewhere.

e CPUs have distinct memory maps. These maps agree exceprimalbnumber of places that are CPU-local.

5.3. THE KERNEL VIRTUAL MAP 17

Coyotos adopts the “shared map” approach. All CPU’s run duhe same map. Each CPU has a pointer to its
CPU-local storage that is maintained at the bottom of theksta

To be more precise, any CPU can run in any map, and the kern@bpof the map is shared in the sense that all of
the page tables for the kernel portion of the mapping aressh@rcommon across all per-process mapping trees.

In the Coyotos IA-32 implementation, each CPU has the fatigvbits of CPU-local storage:

A per-CPU stack.

A current process pointer

A current CPU pointer

A region of the TransMap that is used exclusively by that CRiJeffect, each CPU has its own TransMap
structure, but all of those TransMaps live within a commogetable.

To repeat something that | said earlier, Coyotos kernekstace per-CPU, not per-Process. This means that the
association between a kernel stack and its CPU is long-lived

Note

At present, Coyotos includes the necessary mechanism tardeand reference CPU-local storage, but
it does not actually implement the necessary mechanismscesa this storage on a per-CPU basis. The
seeds of the support can be seek@r ni nc/ ccs. h, but the implementation is incomplete.

5.3.2 The Kernel Map

With all of that as preamble, here is what the 1A-32 kerneiuat map looks like in greater detail:

Base Bound Start Description

0x0 0x100000 Flat map of low physical memory.
Used only for BIOS access

_start=0x100000 _etext Kernel code

_ext ext _erodat a Kernel read-only data

_syscal | pg _esyscal | pg Page boundary System call trampoline page. This

page will be mapped at a published
location within upper memory so

that applications can use the most
efficient system call entry mecha-
nism available on the platform.

_cpudatastart _cpu.dataend Page boundary Per-CPU data area.

Ker nPageDi r Ker nPageDi r +-0x1000 Page boundary Kernel page directory

Ker nPageTabl e Ker nPageTabl e+0x1000 Page boundary Kernel page table

Transi ent Map _end_nmaps Page boundary Page table for transient maps

kstack.l o kst ack_hi Page boundary CPUO stack

_pagedat a _epagedat a Page boundary Data region for page-sized data
items (presently empty)

_data _end Page boundary Kernel data and BSS

_end 0xFF400000l§ound) Kernel heap

0xFF400000 0xFF800000 Additional CPU stacks (not yet im-

plemented)

18 CHAPTER 5. MEMORY MAP MANAGEMENT

Base Bound Start Description
OxFF800000 0OxFFC00000 TransMap window
0xFFC00000 top of memory IPC Destination window (not yet

implemented)

Everything shown between start and _end is determined by the kernel linkerscri pt
arch/i 386/ kernel /| dscri pt. S. The reserved regions in the uppermost portion of the mapeternined by
constants defined iar ch/ i 386/ ker nel / t ar get - hal / confi g. h.

Of these various locations, only the location of the systalttiampoline page is architecturally visible to applioas,
and we will probably need to rearrange the map when we starséothat. All of the rest can be adjusted without
impacting application compatibility.

The table shows a kernel page directory. When we run with teePAE mapping logic, each application will have its
own page directory. In pre-PAE execution, the Kernel Pageddry page will be used when there is no per-process
directory that is appropriate. In PAE mode, this kernel pdgectory covers the 1 gigabyte region owned by the
kernel. All per-process PDPT structures will referencs thirectory, and there is a Kernel PDPT that is used when no
per-process mapping table is appropriate.

The table shows a single kernel page table. Obviously tHisnet be enough as the kernel heap grows beyond the
0xC0200000 (PAE: 2 megabyte) or 0xC0400000 (non-PAE: 4 imggaboundary. As that occurs, additional pages
will be allocated from physical memory to serve as additiggeaye tables. These are not normally mapped into the
kernel address space. Coyotos manipulates the kernel ntatghiles using thsEansmapmechanism (see below).

Note that the kernel heap is dynamically sized. This presamotential problem. In non-PAE execution, application
page directories are initially created by making a copy efkkrnel page directory, thereby incorporating a complete
set of kernel mappings. Heap growth can require that an iadditpage table be allocated to map the heap. This
occurs frequently during system initialization, but thebiefore any per-process page directory is created, so & doe
not create any problems. Unfortunatedyiverscan later come along and announce new regions of physicabmyem
to the kernel. These may force the kernel to alloddterHeader structures, which come from the heap. If the
heap grows as a result, and a new kernel page table getstatip¢he individual per-process page directories may
no longer be up to date. In the current implementation, thedeavoids this by pre-reserving a bounded number
of MenHeader structures for later driver use (this number can be adjustethe kernel command line). A better
solution would have the kernel page fault handler “fix” the-peocess page directories by copying the missing entries
from the master kernel page directory as needed.

5.4 The TransMap

Finally we arrive at théransmap The purpose of the transmap is to allow the kernel to builgppirags dynamically
so that it can access data which is not ordinarily mappedtimtokernel. Typically this happens when the kernel
manipulates pages or capability pages, but it also can mappen the kernel manipulates mapping tables.

5.4.1 Purpose of the Transmap

The transmapis a page of memory that is mapped simultaneously as a pafgeant as a data page. Viewed as
a page table, it specifies 512 (PAE) or 1024 (non-PAE) mapeiriges for the virtual address region beginning at
OxFF800000. Viewed as a data page, it can be found at the ssldssociated with the symbbi ansi ent Map.
TheTr ansi ent Map symbol has no intrinsic type. Depending on the mapping mbdeis currently in use by the
hardware, we will cast it to one of the type#32_PTE * or | A32_PAE =*, which are the types for the respective
types of page table entries for the two mapping modes. Wetheih use this pointer to update the mapping table,
which allows us to construct temporary mappings.

Whenever the kernel needs to manipulate the content of gpdgt, capability page, or mapping table, the protocol is
to call TRANSVAP_VAP(pa, ptr type). The supplied physical address must be page aligned, amettira value
is the assigned virtual address. When the mapping is no toregded TRANSMAP_UNMAP(va) is called, passing
the previously returned virtual address. The unmap opmratiarks the virtual address as “available for re-mapping,

5.5. IMPLEMENTATION: CONFIGURING MEMORY 19

but not yet cleared from the TLB.”

Thetransmappage is shared across CPUs. Each CPU has a dedicated rethetrahsmapproviding 32 slots where
pages can be mapped on a transient basis. This allows thentimplementation to support up to 16 processors.
Obviously, the size of theransmapcould be extended at need. Our view as designers is that dfo@PUs the
memory hierarchy of the machine tends to switch to a morequoned NUMA architecture, and the entire model of
a shared kernel map needs to be re-examined.

5.4.2 Lazy TLB Consistency

The general rule is to flush the TLB when a mapping is removedapplication mappings this is absolutely required.
For kernel mappings, the true constraint is more subtle: wstmot re-use any transient mapping if it might still
reside in the hardware TLB. For kernel mappings, we can ir@wsinvariant requiring that no transient mapping be
used after it is unmapped. This creates an opportunity fapimization that may initially seem like a bug.

The transmap implementation can be foundanch/i 386/ kernel /transmap. c. When an unmap is
performed, the corresponding TLB entry is not flushed imratdy. If you examine the implementation
of the t ransmap_map(), you will see that it initially attempts to allocate entri@®m Tr ansMet aMap.
TransMet aMap indicates which entries are available (corresponding &itts 1) for allocation. In order to be
available, an entry must be free and we must know that it calpmoesident in the local TLB. Initially all entries are
available.

If the allocator cannot find an entry ifr ansMet aMap, it locates an entry iffr ansRel eased and uses that. The
Tr ansRel eased map indicates which entries have been unmapped (corresppbid set to 1) but not yet flushed
from the TLB. The allocator flushes the entry selectively eaxdises it.

The reason for this approach is that we are making a bet. Weedtimg that an address space switch will be per-
formed soon in any case. When that occurs, any entri#ds ansRel eased can be migrated tdr ansMet aMap
immediately. Note that some system calls do not flush the Tl a

Finally, note that entries in the transmap aevershared across CPUs. Invalidating TLB entries is expensire,
invalidating them across all CPUs in a multiprocessor igigla This is why the transmap is divided into separate
regions for the entries of each CPU.

5.4.3 Data Cache Locality

On some processor implementations, including recent AMEbi4érocessors, TLB loads proceed through the data
cache. The data cache is subject to an inter-processoraradygprotocol. For this reason, it is desirable to choose the
number of per-CPU transmap entries in such a way that théyadlpy an integral multiple of cache lines. This will
ensure that the respective entries will be allocated ekalysto the proper CPU by the hardware cache coherency
protocol, and later will avoid contention because no othieQvill reference the entry.

5.4.4 Other Implementations

The implementation of th}ansmapis part of the hardware abstraction layer. On machines wiherentire physical
memory space can be mapped into the kernel virtual regiertrédmsmap can be implemented using a constant offset
mechanism, and no manipulation of the hardware map is reduir

5.5 Implementation: Configuring Memory

With the mechanisms now explained, we return to the disongsiar ch_i ni t (), picking up after the initialization

of thetransmap The callb topnemi ni t () initializes the physical memory manager by advising it havgé the
physically addressable regionis. The calttmnf i g_physi cal _menor y() uses the information provided lgyub

to add all of the defined regions of the physical map to thecatior (or at least all of the ones we know about at this

20 CHAPTER 5. MEMORY MAP MANAGEMENT

point). It also adds (by hand) a small number of well-knowgi@as that contain BIOS information. Applications may
want those regions later, and by reserving them now we ertat¢he kernel does not use them for object storage.

Ignoring the memory used by any local APICs and/or IOAPIQsgcv will not come out of RAM regions, we now have
configured all of the RAM memory that we are ever going to knewt. Momentarily, we will do temporary alloca-
tions of some of the multiboot regions tlgatib has built in order to protect them while we allocate the hbapbefore

we do that we want to get an estimate of the total number ofipalsages that are going to be available when we are
done. Thisis returned by the callporemAvai | abl e() . Finally, the call tgpr ot ect _nul t i boot _r egi ons()
allocates the regions containing theib-provided information that we still need, primarily the corand line and the
loaded module that defines the initial system image. Thiggmis these regions from being overwritten as we define
the heap.

All of this gets us most of the way to where we need to be, buttildave not reserved the physical memory addresses
for any local APICs and/or IOAPICs that happen to be preseme. local APIC and IOAPIC logic is discussed in the
next chapter. For the present, suffice it to say that we wamhddk their locations in the physical map allocated.
In order to do that, we need to probe the system to determimerhany CPUs there are and where their hardware
elements are mapped. The calldpu_pr obe_cpus() in turn callsacpi _pr obe_cpus(), which reserves the
required locations and determines (as a side effect) how@&ws are actually present.

At this point, we have reserved all of the physical memonatams that it is possible to know about at this point in
the execution,

