
Differences Between Coyotos and EROS — A Quick Summary†

Version 0.3, revised 2 April 2006

Jonathan Shapiro, Ph.D.
Systems Research Laboratory
Dept. of Computer Science
Johns Hopkins University

May 12, 2005

Abstract

Coyotos is a (mostly) evolutionary step from the EROS
kernel. This document briefly summarizes the major ar-
chitectural differences between EROS and Coyotos, and
gives the rationale for each change. It looks both at the
changes that have been definitely decided, and also at
some questions in the Coyotos architecture that still re-
main open.

1 Overview

Coyotos, the successor to EROS [3], has three main ob-
jectives:

• Correct some known deficiencies relative to the
EROS architecture that impede performance or in-
crease complexity.

4/2/2006 Update: When this document was first
written, the design and evaluation of solutions was
a research issue. That work is still underway, but
the resulting design is now stable modulo minor
tweaks that may become motivated during develop-
ment. The kernel specification can now be found on-
line at the website.

• Explore the use of software verification techniques
to achieve higher confidence in the correctness and
security of the kernel and the key system components
(a topic for another document). This is aresearch
objective.

• Re-examine whether persistence was a good idea.

4/2/2006 Update:The answer is now clearlyyes.

† Copyright c© 2005, Jonathan S. Shapiro.

We are sticking firmly with the idea of capability-based
systems. For the most part, the goal in Coyotos is refine-
ment rather than replacement of ideas.

The most important changes relative to the EROS archi-
tecture are conceptually minor and not particularly con-
troversial. A few are controversial, but possibly important
as Coyotos moves forward. One or two should definitely
be considered exploratory in nature. Overall, the basic
theory of operation for the Coyotos system is very similar
to the EROS theory of operation, and this should allow us
to preserve most of the design elements of EROS applica-
tions — notablycapidl — and much of the structural
design of the EROS kernel

I Definite Changes

2 Address Spaces

EROS (and KeyKOS [1] before it) both used thenode
data structure to describe memory mappings. A node is
a software-defined hierarchical page table structure. The
kernel constructs the real hardware tables by traversing
the node structures.

2.1 EROS vs. KeyKOS

There were only minor differences between EROS and
KeyKOS in the design of the mapping mechanism :

• KeyKOS nodes held 16 capabilities, EROS expanded
this (for reasons having little to do with memory
mapping) to 32 slots.

• KeyKOS had two types of node capabilities: “node”
and “segment”. The main difference between these
is that a segment capability is opaque — you can use

1



it in a memory context to define a mapping, but you
cannot directly fetch capabilities from a node using a
segment capability. In EROS, the segment capability
was renamed an “address space capability.”

• KeyKOS had something called a “red segment,”
which was a rather odd sort of node that carried op-
tional additional information such as a keeper ca-
pability, a background address space, and so forth.
In practice, the primary use of reg segment nodes
were to specify keepers and growable address spaces,
but red segments had a secondary use as a revocable
front end to a start capability. KeyKOS space bank
capabilities, for example, were really red segment ca-
pabilities that wrapped a start capability to the actual
space bank.

Because red segments had important uses outside
of memory contexts, EROS eventually replaced this
with a simplified form called a “wrapper node.” The
wrapper node largely served the same function as the
red segment node, but its specification was signifi-
cantly simpler. Also, wrappers added a ”replace data
register” option that we found very useful in a num-
ber of applications.

2.2 Problems With Nodes

In the KeyKOS and EROS systems, the Node data struc-
ture suffers from several problems.

Overuse Nodes were reused for too many purposes.
In addition to their role in the memory system, nodes
were also the underlying storage resource for processes.
This led to considerable kernel complexity. Nodes simply
aren’t a very pleasant way of describing process state.

Representational Inefficiency A 16-ary or 32-ary hi-
erarchical mapping structure needs too many levels to
efficiently describe an address space, particularly when
the address space consists of sparse, dense sequences of
pages. While Nodes provided a self-encoding height, this
was not as useful in reducing the size of the mapping tree
as we would have liked.

Further, the encoding of Nodes requires a surprisingly
complicated traversal algorithm to deal with many cases.
Perhaps Charlie Landau will find a simpler one in
CapROS [2], but I am skeptical.

Size Partitioning Because EROS and KeyKOS are per-
sistent, both systems require that allocate nodes and pages
separately on the disk. Two classes of disk-based objects
is certainly better than three, but one would be very much
better than two. Coyotos will use a different resource allo-
cation mechanism, allowing all persistence to be accom-
plished in terms of pages.

Height Encoding . The height of a node was (in my
opinion) mis-encoded. It should have been an attribute
of the node itself rather than an attribute of the capability
naming the node. As an additional, minor issue, it would
have been better for a variety of reasons to encode the
height using log2 of the address space size in bytes rather
than log16/log32 of the address space size in pages.

2.3 Changes in Coyotos

The memory mapping subsystem is being completely re-
placed in Coyotos.

Coyotos does not have a Node structure. Processes are
first-class objects, and a replacement data structure is be-
ing used in the memory tree: the PATT. The PATT struc-
ture can be seen as a generalization of the Node structure,
but its encoding has been completely reworked.

There is only one type of PATT capability. The distinc-
tion analogous to the difference between “address space”
capabilities and “node capabilities” is subsumed by a new
permission bit in the capability permissions mask: the
opaquebit. The EROS implementation has been mov-
ing in this direction, but the implementation was never
completed.

A PATT (Prefixed Address Translation Tree) consists of:

Height The maximal size in bytes of the
space described by this PATT, ex-
pressed aslog2(SizeInBytes).

Residual The number of bits in the adddress
that will remain to be translated
after this PATT has been success-
fully traversed by the translation
algorithm.

Slots A 16 element array of pairs of the
form (prefix, capability). Matchable
prefix values must be disjoint.

The important innovation in the PATT structure is that
there are no bits used for indexing purposes. Every slot
has an associated prefix, and the prefix must match the
incoming address when bits in the residual portion of the
incoming address are disregarded. The effect of this is that
any PATT can descibe a sparse space of arbitrary size 2h

having up to 16 subspaces within it. A subspace can either
be a PATT describing some smaller space or a page.

Translation against a PATT proceeds by temporarily
masking out the residual bits of the address, and then do-
ing a sequential, first-match comparison against the prefix
values. Because the least mappable unit is a page, there
are low-order bits in the prefix that must be zero in order
to match successfully (because the page offset bits areal-
wayspart of the residual bits). An invalid slot is indicated

2



by setting the least significant bit of the prefix to 1. Spec-
ification of keepers and background spaces1 similarly are
encoded by using distinguished prefix values.

The resulting data structure is significantly simpler to tra-
verse during mapping construction, preserves all of the
clever inverse mapping encoding tricks that were feasible
in EROS/KeyKOS, and requires fewer levels and fewer
total count of PATTs for most address spaces.

3 Address Translation

Both EROS and KeyKOS rely on a data structure known
as thedepend table. Ignoring various compression tricks,
this structure stores a pair of the form (capability slot ad-
dress, hardware PTE address). The purpose of the depend
table is to allow page table entries to be invalidated when-
ever a memory capability slot is overwritten.

In hindsight, the depend table was unnecessarily ineffi-
cient. A better design would store the address of the Node
(rather than the slot), the address of thestartingPTE slot
potentially associated with that node, and a scaling factor
describing how many PTEs are associated with each slot
of that Node.

For PATTs, matters are somewhat more complicated, and
the corresponding dependency structure must adapt. In
Coyotos, the dependency structure will need to be adapted
to reflect the prefix-based nature of PATTs. One bit of
good news here is that the number of depend table entries
required should be dramatically reduced.

10/27/2005 Update:Eric Northup is close to completing
his writeup of the analysis of PATTs, and we will have a
more complete description of this issue when that is com-
plete.

4/2/2006 Update:Eric Northup’s design has now been re-
viewed, and the differences are not as complicated as we
had thought. We now know how to do the dependency
tracking, and also how to do efficient translation. Eric’s
implementation will require some transformation, but the
basic structure of his approach should be directly trans-
ferrable into the Coyotos implementation.

4 Processes

There have been many changes in Coyotos to the Process
abstraction. Most of these changes are individually minor,

1 It is not clear at this time whether Coyotos will preserve background
spaces in the architecture, as no compelling use case for them was ever
found in EROS. Wewill reserve a prefix code point for them should
they ever prove useful in the future.

though some have significant implications for implemen-
tations.

4.1 Processes are First Class

Both KeyKOS and EROS represented process state as an
arrangement of Nodes. The details between the two sys-
tems varied in only minor ways. While it would be pos-
sible to use the same style of design in Coyotos, we have
decided instead to make processes into first-class objects.
There are several reasons to do this:

Elimination of Consistency Issues Making processes
first class eliminates the need for consistency management
between the ”process as node” view of the world and the
”process as process” view of the world, which was a sig-
nificant source of complexity in the EROS and KeyKOS
implementaions. EROS had already started to move in
this direction by revising the process capability interface
so as to make most node references unnecessary.

Note that this significantly improves the performance of
IPC, and simplifies both the process dispatch and the reg-
ister save logic of the kernel.

Impact of Endpoints In KeyKOS and EROS, the means
for invoking a process was the start capability, which di-
rectly named the process. For reasons described below,
start and resume capabilities have been replaced by end-
points and endpoint capabilities in EROS. One conse-
quence of this is that processes are not pageable.2 In the
absence of process paging, there is no strong rationale to
express the process state using a disk-based data structure,
and there are many reasons to want toavoiddoing so.

4/2/2006 Update:The endpoint idea did not survive con-
tact with the enemy, and was subsequently replaced by
first-class receive buffers (FCRBs) and scheduler activa-
tions. Readers are encouraged to examine the descrip-
tion of FCRBs in the Coyotos kernel specification to learn
about these.

Out of Kernel Helpers Coyotos follows the trend in later
versions of EROS to significantly relax one of the kernel
design rules. In EROS/KeyKOS, the kernel did not rely
on the correct behavior of application code for its correct
execution — not eventrustedapplication code. Coyotos
adopts the view that certain portions of the fundamental
system logic can and should be implemented in trusted
processes that have the same standing as the kernel with
respect to enforcement of security.

A consequence of this is that all responsibility for disk-
based object representations can be offloaded to user-

2 More precisely, processes are not pageble in the first version of Coy-
otos. Conceptually, we know how to implement process paging. We
are deferring the implementation to a second, backwards compatible
iteration on the kernel interface.

3



mode code, where it can be debugged.

4.2 Changes to Process State

Coyotos makes a number of changes to per-process state
relative to EROS and KeyKOS.

Capability Address Spaces The KeyKOS and EROS
kernels both implemented per-process “capability regis-
ters.” In Coyotos, we have decided instead to implement
capability address spaces and adapt the capability invoca-
tion logic to use addresses relative to the capability ad-
dress space rather than register numbers. The new imple-
mentationmayprove to be somewhat less space-efficient
than the old one for small processes, but this seems un-
likely. Two key reasons for introducing a capability ad-
dress space are the need for some applications to easily
manage larger numbers of capabilities, and the need to
implement some form of capability stack so that libraries
can manipulate temporary capabilities. Neither of these
was particularly efficient in either EROS or KeyKOS. In
EROS, we found this to be a pragmatically important per-
formance problem for certain key applicatoins.

Virtual Registers Every coyotos process has a page
of “virtual registers.” These are used to describe capa-
bility invocations, and also to store the data payload for
small invocations. The virtual register page is optionally
mapped into the process address space. Processes that do
not map a virtual register page cannot, as a practical mat-
ter, perform capability invocations.

As a corollary to this change, all kernel-implemented ca-
pabilities in Coyotos are designed to return their results
the virtual registers, which eliminates much of the string
processing complexity of the kernel invocation path. The
kernel is entitled to rely on the presence of the virtual reg-
isters page in any process that is executing, and does not
need to perform any validity checks on the virtual regis-
ters page. The only string manipulation in the Coyotos
kernel is done in the interprocess communication path.

4.3 Fault Handling

Both EROS and KeyKOS handled exception processing
using a distinguished subtype of resume capability called
a restart capability . Coyotos does not have either start
or resume capabilities, and the restart capability has been
replaced with a distinguished subtype of process capabil-
ities. Resumption of a faulted process is accomplished by
invoking this capability.

5 IPC

The most significant committed change in Coyotos is
in the area of interprocess communication (IPC). This
section addresses conceptual differences in the interpro-
cess communication abstraction. There are also generic
changes to the capability invocation mechanism that are
discussed below.

Endpoints By far the most important change in the IPC
design is the introduction of endpoints. Anendpoint is
a new kernel object type that encapsulates a rendezvous
queue for interprocess communication. In order to send a
message to a process, the sending process must perform
a send operation on an endpoint descriptor. In order to
receive from an endpoint, the receiving process must per-
form a receive operation on an endpoint descriptor. End-
point descriptors carry permission bits that indicate which
operations (send, receive, destroy) on a given endpoint are
permitted for each descriptor.

The main motivation for moving endpoints into the ker-
nel was the desire to do thread demultiplexing within the
IPC path. Orran Krieger pointed out that it is extremely
inefficient to do user-level thread dispatch on a multipro-
cessor, because data ends up in the wrong L2 CPU cache.
However, multiple recieve endpoints can also be used to
selectively classify senders into different service classes.

The receiver on an endpoint receives both an endpoint-
specific value (to a reserved virtual register) an a value that
is specific to the endpoint capability invoked in the send
operation (replacing the KeyKOS/EROS key data field).

There is no capability type in Coyotos analogous to a re-
sume capability. In the typical case, a calling process will
have an endpoint that it uses to receive all incoming mes-
sages. This endpoint can be revoked explicitly at the dis-
cretion of the incoming process, causing outstanding end-
point capabilities (including send capabilities) to become
invalid.

FCRBs (Added 4/2/2006) The endpoint idea did not play
out, and was dropped from the architecture. We decided
to move to a variant of a “scheduler activations” design.
This allows message payload to be delivered even when
the receiving process is not explicitly blocked, and al-
lows a tighter meld between user-mode and kernel-mode
thread scheduling. The new mechanism is described in the
FCRBs section of the Coyotos kernel specification, along
with the surrounding discussion of process states, event
delivery, and the meld of activations with messaging.

Events One of the problems we encountered in the im-
plementation of the EROS networking stack [4] was an
asynchronous rendevous problem. When two processes
are communicating using shared memory, it is helpful
to have some atomic event mechanism in which (a) the

4



sender never blocks, but (b) the receiver is not preempted.
Think of this as comparable to signals, but without the
preemption. The measured effect ofnothaving this mech-
anism in the network stack was a 15% reduction in achie-
veable network bandwidth.

Coyotos incorporates a new type of invocation that is only
supported by endpoint capabilities. It allows events (rep-
resented as bits) to be posted to an endpoint. On the next
receive operation, the receiver gets a distinguished mes-
sage type indicating that incoming events are present.

6 Capability Invocation

Both EROS and KeyKOS have very simple IPC mech-
anisms. Simple is generally good, but in both systems
the absence of a scatter/gather mechanism came to be
an impediment. It is not entirely clear whether this was
the result of a shortage of registers or truly a result of
the absence of a scatter/gather mechanism. The difficulty
was most obvious in the implementation of a file system,
where you really wanted incoming file content to end up
in a differentiable buffer from the rest of the operation’s
payload. Other arguments for scatter gather seem less
compelling, but we may experiment with them in Coy-
otos.

One change that is definite is the need to revise the speci-
fication of an invocation to consist of a vector of “items”
that may include capabilities from the capability address
space.

Non-blocking Invocation Both the send phase and the
receive phase of an invocation may specify that they are
unwilling to block. This is borrowed from the L4 specifi-
cation, but we donot provide any specific timeout value.
It appears that the successor to L4 will similarly drop the
ability to specify an explicit timeout.

Scatter/Gather We have written elsewhere that we in-
tend to provide scatter/gather support in the Coyotos in-
vocation mechanism. Recently, we realized that this may
no longer be motivated. The main practical motivator for
scatter/gather was the EROS file implementation. The
problem there, in hindsight, is that we ran out of regis-
ters. With the introduction of virtual registers this may no
longer be a problem in practice. Our current plan is to re-
serve a code point in the invocation mechanism to specify
strings, but defer the implementation of any scatter/gather
mechanism until we can see if it is still well motivated.

7 Capability GC

10/27/2005 Update:This section has been moved from
“contemplated” to “definite.”

One of the performance-limiting issues in EROS/KeyKOS
was the implementation of prepared capabilities. In both
systems, a capability to an in-memory object is placed on
a circular list that is rooted at the target object. This al-
lows efficient invalidation and conversion back to out of
memory format, but it makes capability copy extremely
expensive. The interacting issues are:

• Most copied capabilities are prepared, and are there-
fore members of a list.

• Most overwritten capabilities are prepared.

• Capability copy therefore requires unlinking the tar-
get capability (two cache misses) and then re-linking
the copy (one additional cache miss). This proves to
be a major cost in invocations that transfer capabili-
ties.

• 50% of all invocations transfer at least one capability,
which is that descriptor to which the reply should be
transmitted.

There are two possible ways to resolve this. The first is to
re-introduce capability registers into Coyotos, and rework
the in-register capability format using the design for soft
register rename that was described on theeros-arch
mailing list some time ago.

The other is to change the in-memory capability format
such that capability depreparation is driven by an incre-
mental mark/sweep pass rather than by a linked list. In
this design, the link chain fields would be replaced by a
pointer to a secondary data structure (Figure 1). When
the target object is removed or deprepared, theMemCap
structure is updated to zero thevalid field. Before using
a capability in a given invocation, the current validity of
thevalid field in the correspondingMemCap structure
must be checked. TheMemCap structures are reclaimed
using a mark/sweep pass, which is incrementally driven
by capability preparation.

The advantage to the GC-based design is that it allows
capabilities to be copied without regard to their current
representation (in memory or out of memory). This elim-
inates all avoidable cache misses in the capability copy
path.

Thedisadvantagesto this approach are that (a) the incre-
mental GC approach must be assured of convergence, and
(b) in some cases the MemCap structure is comparable in
size to the object it governs — notably indirection objects

5



Capability

Target Object

MemCap Structure
Valid (0 => out of core)
Target OID

Type, Permissions

Allocation Count
MemCap Ptr
Target Ptr

Figure 1: Alternative capability arrangement for GC.

and endpoints. There are also some less important impli-
cations for dependency tracking in the memory manage-
ment subsystem.

There is some comfort in the knowledge that the old
(linked) approach can be introduced as a well-understood
standby and the new approach can be introduced experi-
mentally at a later time without externally visible change.

II Contemplated Changes

8 Persistence

We are currently going back and forth on whether Coy-
otos will provide persistence in the style of EROS and
KeyKOS. Persistence is an extremely convenient thing to
have, and we need to understand what complexity it car-
ries. Thefirst implementation of Coyotos willnotprovide
persistence, but the existing EROS/KeyKOS persistence
design could be adapted straightforwardly to Coyotos.

Initially, our concern about persistence was the desire to
deal with hard real-time applications. The introduction of
endpoints has partially mitigated this problem, and one of
the other changes we are contemplating may eliminate it
entirely. It may be that we should now re-open the persis-
tence question.

10/27/2005 Update:After some further thought on this
issue, we have decided to keep persistence. This intro-
duces a new design issue for Coyotos. Where EROS had
only two on-disk object sizes (node and page), Coyotos
has several, and we will need to rethink the design of the
object store to accomodate this.

9 First-Class Kernel Heaps

With the introduction of a number of new kernel object
types, it may be appropriate to re-examine the method of
kernel resource allocation. The goal would be to reduce

the number of fundamental allocatable units in the system
to just the page, and then come up with some construct
that would allow the kernel to construct internal heaps out
of these units for allocation of kernel data structures.

One proposal that we are considering is the introduction
of first-class kernel heaps. Objects would be allocated
from heaps rather than space banks. The role of the ker-
nel heap is to accomplish the protected converstion of un-
typed page frames into objects of particular types. Ker-
nel heaps are backed by user-mode page frame allocators,
which supply the heaps with untyped frames.

One of the underlying goals in introducing kernel heaps
is to introduce a layer in which everything is just a page
frame, and resource allocation can be done with respect to
an object of uniform size. The responsibility of the kernel
heaps is to suballocate these frames as appropriate.

Kernel heaps also provide a locus from which to estab-
lish two other goals: control of persistence and control
of residency. It is contemplated that kernel heaps may
be marked “non-persistent,” with the meaning that no ob-
ject allocated from that heap will be implicitly saved by
any persistence mechanism. It is also contemplated that a
kernel heap may be marked “resident,” with the meaning
that all frames associated with that heap will be pinned
in memory. A kernel heap that is both non-persistent and
resident is suitable for use in hard real-time applications.

10/27/2005 Update:This still seems like a good idea, but
it doesn’t appear to be truly essential, and we have decided
to defer it in the interest of making faster progress.

III Speculative Changes

We have been going back and forth on a feature whose
value and impact are uncertain: large pages. The motiva-
tion for large pages is to provide some means to deal with
things like device buffers on machines whose hardware
TLB and memory management subsystems can usefully
exploit some form of large page size. The question is:
how should large page sizes be expressed? Some of the
issues:

• Should they be discovered dynamically by the mem-
ory management subsystem, or should they be ex-
plicitly allocated?

• If large pages are explicit, are they definitive? That
is, is the kernel entitled to validate only some frac-
tional portion of a large page?

This decision interacts with the notional kernel heaps
design in various ways that suggest that the least
hardware page size needs to be the only definitive

6



hardware page size.

• If large page sizes are explicit, how do they interact
with issues of residency management? Might they
turn out to create various ugly forms of residency
pressure?

• Is a large page capability a descriptor to a page
frame, or is it a descriptor to a page’scontent? If
content, is it required that the page be contiguously
stored on the disk?

All of these are currently issues under discussion, with no
firm conclusions as yet.

10 Acknowledgements

Several people have made significant contributions to the
design process that led to the outcome summarized here.
In particular, the insight that PATTs should be fully asso-
ciative is due to Eric Northup. Scott Doerrie has worked
out a method for reasoning formally about the expressive-
ness and transformative correctness of the PATT traversal
algorithm.

As always, the contributions of the KeyKOS kernel team
cannot be overstated. Both EROS and Coyotos have
evolved from the rather amazing work of Norm Hardy,
Charlie Landau, and Bill Frantz.

References

[1] Norman Hardy. “The KeyKOS Architecture.”Oper-
ating Systems Review, 19(4), October 1985, pp. 8–25.

[2] Charles Landau. “CapROS: The Capability-
based Reliable Operating System.”
http://www.capros.org.

[3] J. S. Shapiro, J. M. Smith, and D. J. Farber. “EROS,
A Fast Capability System”Proc. 17th ACM Sympo-
sium on Operating Systems Principles. Dec 1999, pp.
170–185. Kiawah Island Resort, SC, USA.

[4] Sinha, A., Sarat, S, Shapiro, J. S.: Network Subsys-
tems Reloaded. Proc. 2004 USENIX Annual Techni-
cal Conference. Dec. 2004

7


